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Abstract

The characterising new requirement for distributed multime-
dia applications is the coexistence of dynamic real-time and
non-real-time applications on hosts and networks. While
some networks (e.g., ATM) in principle have the capability
to reserve bandwidth on shared links, host systems usually
do not. DROPS (Dresden Real-time OPerating System) is
being built to remedy that situation by providing resource
managers that allow the reservation of resources in advance
and enforce that reservations. It allows the coexistence of
timesharing applications (with no reservations) and real-time
applications (with reservations). By outlining the princi-
ple architecture, some design decisions, and first results, the
paper demonstrates how these objectives can be met using
straightforward OS technology. It argues thatmiddleware
for diverse platforms cannot meet these objectives efficiently
without proper core operating system support.

1 Introduction

The following observations and objectives are guiding the
design of DROPS (Dresden Real-time OPerating System):

� Real-time systems used to be dedicated systems, hence
had complete computing systems for themselves. With
the advent of multimedia applications, real-time and
non-real-time applications (we will use the term “time-
sharing applications”) share computer cores, disks, the
video subsystem, and networks. The real-time appli-
cations are dynamic in two aspects. On the one hand,
new applications are started and others terminated from

time to time. On the other hand, some application types
can adapt to changing resource situations. Tradition-
ally, the problems caused by this situation are either
dealt with not at all, or by spending enormous amounts
of resources. DROPS attempts to organise the coex-
istence of real-time and time-sharing applications by
providing managers for all resources that can reserve
them for real-time applications, enforce these reserva-
tions, and leave the rest to the time-sharing applications.
Resource managers have means to notify applications
about changes in the availability of resources.

� Advances in computer architecture achieved enormous
performance improvements for time-sharing systems by
exploiting observed locality of behaviour in such appli-
cations. Many of the employed techniques are not use-
ful for real-time systems, where not the average case
counts but the worst case (take caches as an example).
Hence, many dedicated real-time systems use expensive
and less powerful architectures. DROPS attempts to
make simple powerful standard technology predictable.

� The system must achieve a degree of maturity that
makes it usable on daily basis, for the builders as well as
for outsiders. This causes a lot of “unscientific” work,
but enforces honesty. Hence, a widely available time
sharing API must be provided and its implementation
must be efficient and maintainable. DROPS provides a
Linux ABI as the standard time-sharing interface. De-
sign and implementation decisions must be guided by
their effect on achieving the objectives, not by novelty
or extravagance.

Contrasting common belief in middleware technology, the
key to meet the first two objectives in the authors’ opin-
ion lies in the core of the host’s operating systems, since
otherwise—that is, without support at the memory manage-
ment or driver level—neither reservations nor efficient use of
modern hardware architectures are possible.



The remainder of this paper points out how the mentioned
objectives are pursued in the DROPS system using straight-
forward core OS technology. It describes the architecture
and some components; performance results and other expe-
riences are given. It concludes by arguing that none of these
techniques can be properly applied at the middleware level
and hence the objectives cannot be addressed there unless
enormous amounts of resources are wasted. A proper dis-
cussion of related work is omitted due to lack of space.

2 The DROPS Architecture

DROPS borrows from the (almost ancient) principle to pro-
vide multiple “OS personalities” based on virtual machines
or microkernels. It runs a time-sharing personality (a mod-
ified Linux kernel [8]) as a user level program side-by-side
with a real-time personality. It has a manager for basic re-
sources to provide CPU time, second-level cache and main
memory to real-time and time-sharing system components
and applications. Using the basic resource manager, real-
time components, for instance the driver for the SCSI sub-
system, provide interfaces for both L4Linux and the real-time
applications, one interface with reservations and guarantees,
the other without.
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Figure 1: The DROPS Architecture

In the subsequent subsections, we show an example sce-
nario and specify the general interface of the real-time com-
ponents.

2.1 An Example Scenario

Figure 2 describes a scenario which is typical for a multi-
media (real-time) application as those DROPS is being built
for.

A SCSI-based file containing compressed video is fed into
a decoder and then on to a presentation and a transport com-
ponent. The presentation component controls the current po-
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Figure 2: A Real-time Scenario

sition of the video, the transport component moves the video
to another host. To start such an application, the resources
needed for all components need to be reserved. During the
runtime of the application, the reserved resources must be
guaranteed to the components.

2.2 The Interface of RT Components

It is well established that physical copying operations are
costly and must be avoided, at least for larger amounts of
data. Hence, DROPS uses virtual memory management
techniques similar to fbufs [5], extended however by time-
interval-stamps for the validity of memory regions.

thread
send flexpage
flush

region organised
by producer

valid
from time
for duration

address space

consumerproducer

Figure 3: Timed Fbufs

An application producing a data stream for a consumer
application organises a region of the consumer’s address
space. For each part of that region a time-and-duration-
stamp, hence a time-interval-stamp (TIS), specifies the pe-
riod of time during which that part is valid. The producer is
responsible to provide the data in time, the consumer to use
them within the specified period. After the specified time in-
terval the region is flushed. If the region offered by the con-
sumer is not large enough the data stream is wrapped around.

To access a data stream, the consumer requests a reserva-
tion from the potential producer by providing as parameters

� the bandwidth needed,

� the duration of the complete stream,

� the duration of each unit of the stream as needed by the
consumer,



� and the approximate starting time.

If the producer is capable of delivering the stream, admission
is granted, otherwise it is rejected. Once an admission is
granted, the data stream can be started. The start operation
takes a requested starting time as an in parameter and the real
starting time as an out parameter. Started streams may be
requested to stop and restart. As in start operations, restart
takes the requested restarting time as in, the real restarting
time as out parameter.

After the start of a stream, the producer selects the size
of the units in which the stream is provided to the consumer.
The real starting time and the duration parameters are used to
calculate the time-interval-stamp for each unit of the stream.
Units are provided to the consumer before their time inter-
val and flushed thereafter. The implementation is based on
sending, receiving, and flushing “flexpages” [9]. Flexpages
are roughly similar but much more efficient then Mach’s out-
of-line messages. A producer acts as an external pager for its
consumer.

A generalized feed back mechanism to allow notifica-
tion of application programs regarding the availability of re-
sources based on reservation priorities as described for pro-
cesses is still under construction.

3 Coordination of Resource
Scheduling

One of the generally hardest problem is the coordination of
the reservation and scheduling of the various envolved re-
sources. A commonly employed technique is to decouple
components using buffers of messages that increase latency.
Then, latency critical events need higher responsiveness than
others. This section describes a framework to compute nec-
essary buffer sizes based on a mathematical description of
streams of events and a CPU scheduling model that allows
to meet the responsiveness requirements.

3.1 Jitter Constrained Periodic Streams

The interface as roughly described in Section 2.2 allows to
specify the duration that each unit of a stream is requested to
be maintained in the consumer’s address space. This dura-
tion is determined by the requesting consumer based on the
estimated processing time and on the jitter in processing the
data. Jitter may be caused by application dependent inter-
pretation of the content of the stream (e.g., differing frame
sizes in MPEG encoded stream), differing processing times
for units of the stream and the preciseness of CPU schedul-
ing. The larger the jitter the larger the time interval needed.

The model used for DROPS describes such a stream as
a sequence of eventsEi. Beginning from a starting pointt0

the events occur principally with a periodT , but they may
vary over a given interval: events may occurτ time units too

early orτ0 time units too late as long as they obey a minimum
distanceD< T (see Fig. 4).
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Figure 4: Jitter constrained periodic event stream

Based on a formal definition Hamann [7] proved the
equivalence of numerous sets of parameters that are used to
specify the jitter of streams and provided formulas to com-
pute the duration parameters needed, mainly the maximum
burst sizeL and the lower boundP of buffer size to avoid
loss of data:

L = 1+

�
τ+ τ0

T �D

�

P = 1+

�
(L�1)(T �D)

T

�

Furthermore, the model enables to transform different sets
of parameters describing jitter constraint streams into each
other.

3.2 CPU Scheduling

To process units of streams in time, the availability of CPU
cycles must be guaranteed. However, jitter constrained
streams have quite different requirements regarding the re-
sponsiveness (latency) with which the buffered units are pro-
cessed.

Hence, these three requirements are to be met by a
scheduling scheme:

� The number of cycles needed within a period is to be re-
served for the process in question. A process exceeding
its guaranteed CPU time is to be notified.

� Within the limits of their reserved cycles events needing
higher responsiveness need to have priority over other
processes. Prime examples are device driver processes,
since precise prediction of I/O interrupts is not possible
in general and—for some hardware—fast responsive-
ness is required.

� Processes need ways to reserve cycles in at least two
levels, one expressing the resources that are guaranteed
under all circumstances the other onnice to have basis.
Processes need to be notified whennice to have cycles
become available or unavailable to allow adaptation.



Static reservation of CPU time for a given process and time
interval as employed in the MARS system [11] or in princi-
ple in [8] or EDF based scheduling is much to inflexible due
to the impossibility to precisely predict I/O interrupts. Clas-
sic priority based systems do not offer enough flexibility to
allow programmers to influence scheduling. Capacity Re-
serves [13] provide a notion to reserve processor shares for
tasks subject to time constraints. Tasks with reservations are
given priority over other tasks within the limits of their reser-
vation. Capacity reserves don’t provide a feedback mecha-
nism allowing to allow applications to adjust to the current
system load.

The scheme being currently investigated for DROPS em-
ploys reserved priorities to achieve the mentioned objectives.
It allows a process to reserve a priority for a given number of
cycles within a period. If a process has used up its priority
cycles, its priority is decreased and the process is notified.
Thus, the process is guaranteed to have the reserved priority
for the specified time period, but not for longer as the spec-
ified number of cycles. If for instance an interrupt is known
to appear in a certain period and the handler is known to run
for n cycles, then a high priority is reserved for the driver.
A lower priority can be reserved for another process within
the same period and form cycles. Admission control must
check whethern+m cycles are available for the processes
during the period in question. The remaining cycles can still
be used by lower priority time sharing processes.

An up-call mechanism is provided to notify processes in
the case that they try to exceed the reserved number of cy-
cles. This turns out to be useful to determine the numbers of
cycles needed for certain processes and to enable scaling of
applications.

A simplified MPEG player looks as follows. It first re-
serves a priority for a given number of cycles in a given
period. Then it starts its computation. The begin (and im-
plicitly the end) of each region is marked by calling the be-
gin region function. If the reserved number of cycles is ex-
ceeded a call back function is called to globally scale the ap-
plication. By returningfalse from the beginperiod function
the application is notified of having exceeded the requested
and granted number of cycles.

4 Some Components, Perfor-
mance and Other Results

Some components of DROPS that have been built or are un-
der construction are described next and performance data are
given.

4.1 L4Linux and its Taming

Linux has been ported to the L4 microkernel by modifying
the scheduler and the architecture dependent part of the origi-
nal Linux kernel. The design follows closely former attempts

reserve(period, cycles, priority);
while (!end)f

if (begin period(callback, event)f
decodepicture();

g elsef
skip picture();

g
g
releasereservation();

void call back(reason)f
if (reason == TIME)f

reducequality();
g

g

Figure 5: Example for the use of the process model
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Figure 6: AIM Multiuser Benchmark Suite VII.Jobs completed
per minute depending on AIM load units.

at Carnegie Mellon University [6] and at OSF [4]: System
call traps are reflected to the calling process using a tram-
poline mechanism. The exception handler calls the Linux
server process using IPC. Interrupts are mapped to IPC to top
halves of device drivers running as threads. Driver threads
are subject to standard L4 scheduling. Synchronisation of
critical regions is done explicitly rather than by disabling
interrupts [10]. Memory resources are divided between the
L4Linux subsystem and the real-time side.

To measure the effect of running Linux as a user level pro-
cess and using explicit syncronisation we used the commer-
cial AIM Multiuser Benchmark Suite VII. It uses Load Mix
Modeling to test how well multiuser systems perform under
different application loads [1]. (The AIM benchmark results
presented in this paper are not certified by AIM Technology.)

For macrobenchmarks like AIM, the introduction of soft
interrupts doesn’t seem to have much effect. The average



slowdown of L4Linux compared to monolithic Linux is 3.8 %
while for a tame L4Linux server it is 3.9 %. Earlier measure-
ments [8] showed a penalty of 8.3 %. While analyzing the
exact penalties involved with L4Linux we found a missing
wakeup in our low-level interrupt handler leading to unnec-
essary idle times within the system. After fixing the bug the
performance penalty went down to 2 %–4 %.

Tamed Linux reduces worst case interrupt latencies to
about 20µs on the Intel architecture [10].

4.2 ATM Subsystem

A prime example of a DROPS component is its native ATM
protocol implementation. While ATM has been developed
with strong emphasis on deterministic high-speed communi-
cation, current operating systems and networking protocols
cannot yet fully utilize its potential. The DROPS component
resolves this dilemma by providing operating-system-level
mechanisms to allow for end-to-end guarantees on through-
put, delay and jitter.

Enforcement and restriction of real-time guarantees essen-
tially work as follows: Individual ATM connections have a
dedicated associatedworker thread. The worker has a certain
number of credits per period and uses them up while han-
dling incoming and outgoing packets. By suspending and
rescheduling threads, strict separation of connections and its
associated resources is achieved. The monitoring and polic-
ing scheme is based on dynamically configured measure-
ment intervals and associated credits.

A crude approximation of the needed resources is based
on the assumption that for a given packet size the CPU usage
is proportional to the bandwidth and the that the maximum
bandwidth on low end PCs is CPU limited. Then a given
fraction of the maximum bandwidth is assumed to need the
same fraction of the full CPU resource. Buffers for individ-
ual connection are sized depending on the requested class
of service, application-requested delay variation tolerance
and maximum packet size. Both, buffer space and estimated
CPU-time are reserved during admission control.

To obtain a first indication for the performance, we mea-
sured the overhead implied by the real-time extensions re-
sulted in a performance penalty of 1 %–2 %. For example,
maximum achievable throughput dropped from 130.7 Mbps
(traffic management disabled) to 128.5 Mbps (traffic man-
agement in effect).

Next, we looked at performance degradation imposed by
a high bandwidth ATM connection on the AIM multiuser
benchmark suite VII [1] running under L4Linux. Figure 7
shows the results. System performance degrades pretty close
to the prediction using the crude resource estimation algo-
rithm. Using its knowledge about CPU time needed for the
40 Mbps ATM connection, remaining system performance is
estimated to be about 69 %.

Then, the ability of the system to shield guaranteed ser-
vices from time-sharing services has been validated. Fig-

ure 8 shows that even under extreme load conditions, real-
time guarantees are preserved. Total test duration was about
22 hours with about 5000 measurement points, each con-
sisting of 10000 8kB-sized packets. After about 10 hours,
AIM ran until cross-over, at which point the test machine
started to run the RT-connection exclusively. In the exam-
ple, throughput for a 40Mbps reserved transmit connection
has been measured at a peer machine. Paradoxically, ATM
throughput increases under high load. We account this effect
to an anomaly in the L4 implementation we currently use.
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Besides an interface conforming to DROPS’ real-time
model (Section 2.2) it provides a standard BSD socket API
for portability and acceptance, no assumptions on applica-
tion’s ability to adapt, transparent usage by the time-sharing
subsystem and throughput preservation by the protocol. The
protocol provides an API which is aligned to Linux’ ATM
implementation [2] and work of the ATM Forum. Implemen-
tation of the protocol server runs stable and is transparently



being used by the time-sharing subsystem for all standard
services (e.g., TCP/IP over ATM) .

The multi-threaded protocol server—as opposed to a
single-threaded version with packet scheduler, implies sev-
eral beneficial side-effects:

� Highly accurate rate control.

� Per-connection priorities to bound processing delays.

� Implicit flow control up to application level.

� Scalability of the traffic management schemes.

� High performance, since the techniques developed map
well to the underlying microkernel’s mechanisms.

Other design features include a zero-copy data transfer
mechanism, based on DROPS’ timed fbufs and cooperation
with the ATM hardware driver’s real-time capabilities.

Thus, it has been demonstrated that the mandatory
operating-system-level support for guaranteed communica-
tion is possible. A novel approach using thread manipula-
tion techniques allow for a efficient and low-overhead im-
plementation in a microkernel environment. To the best of
our knowledge, this yields the first end fully functional end
system implementation of a predictable ATM-based protocol
stack.

A detailed description of design and implementation of the
DROPS ATM component is contained in [3].

4.3 The SCSI and File-System Compo-
nents

The file system component offers three principle interfaces:

� a real-time interface as briefly described in section 2.2
to access a real-time file in real-time;

� a time-sharing interface to access a non-real-time file in
a non-real-time fashion, i.e., without any known prop-
erty with regard to bandwidth and allocation;

� a time-sharing interface to access a real-time file in a
non real-time fashion, i.e., without guaranteed band-
width but so that in write operations the file is allocated
such that a later real-time access is enabled.

The SCSI component offers a real-time and a non-real-time
interface.

To enable bandwidths greater than that of a single disk
drive, files are striped across multiple drives. To enable reser-
vations and guarantees for open files with a certain requested
bandwidth the following scheme is employed:

Requests to the SCSI subsystem are issued such that the
SCSI bandwidth can be fully exploited by dividing SCSI
time into slots where the size of slots is determined by the
worst case seek times of drives. To make a reservation for

a file with a given requested bandwidth, the required num-
ber of slots are reserved. They may consist of either the slot
belonging to a single drive or slots for several drives. If the
requested bandwidth is low than every second or third slot or
so (called subslots) belonging to drives is reserved.

B

C

A

Slot

time

file 2, 9:00 -14:00

file 3, 12:00 - 17:00

file 1, 9:00 - 22:00

Figure 9: Reservation in the SCSI driver

Reservation is maintained by marking the period of time
for which a slot is dedicated to an open file.

Reservation is enforced by maintaining a similar data
structure for the actual I/O-requests. Slots that are reserved
for a given file are marked as reserved and hence can only be
occupied by I/O-requests that carry a capability for the slot.
Free slots can be occupied by non-real-time I/O-requests.

time

A

B
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Slot

reserved subslot for file 1

reserved subslot for file 3

reserved subslot for file 2

free subslot

Figure 10: Scheduling of I/O-requests in the SCSI driver

The file systems maintains buffers to satisfy the requested
duration for which the file must be present in the consumers
address space.

4.4 A Resource Manager for 2nd-Level
Caches

We have implemented a virtual memory management server
for L4 which allows separating the 2nd-level memory cache
working sets of real-time and time-sharing tasks into sepa-
rate partitions so that time-sharing applications cannot dis-
rupt the cache working sets of real-time applications. This
allows the worst-case execution times of real-time programs
to be bound to a significantly lower level. The cache parti-
tioning is accomplished by coloring the main memory pages
and controlling which colors of pages can be allocated by a
given task set. [12, 14]

This leads to a significantly better predictable worst case
behaviour for some applications. In one of our experiments,



a 64� 64 matrix multiplication, the slowdown induced by
introducing a cache-intensive secondary workload could be
reduced by 74 % when partitioning the 2nd-level cache. [12]

The L4Linux server running with a partitioned cache suf-
fers a performance degradation. For instance, when using
only one half of the cache, L4Linux runs a simple compila-
tion application at 9.8 % penalty. More details can be found
in [10].

5 Conclusion

The essential techniques as described in the former sections
are resource reservation that includes CPU cycles, memory
management and the driver level. It has been demonstrated
that realtime components can be effectively shielded from
one another and from non realtime load. An example in-
cluded a component to guarantee bandwidth for an ATM
connection.

Neither reliable bandwidth reservation for file systems or
network bandwidth nor CPU reservations for driver pro-
cesses can be achieved without core-OS support. Hence,
middleware needs to allocate enormous resources to achieve
similar goals and it cannot achieve it reliably.
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