

An acceleration architecture for DOpE

Robert Wetzel

rw8@inf.tu-dresden.de

Dresden University of Technology

Operating Systems Group

31.08.2003

2

Contents

1 Introduction 5

1.1 XFree86 . 6

1.1.1 XAA . 6

1.1.2 DRI . 8

1.1.3 Utah-GLX . 8

1.2 OpenGL/ES . 8

1.3 DirectFB . 8

1.4 Conclusion . 9

2 Design 11

2.1 General Architecture . 11

2.1.1 A dedicated acceleration library . 11

2.1.2 Splitting into server and client . 12

2.1.3 Interface between server and client . 13

2.1.4 The IPC overhead . 15

2.2 Realtime support for DOpE . 15

3 Implementation 17

3.1 The client-server interface . 17

3.1.1 Gfx container . 17

3.1.2 Drawing primitives . 18

3.1.3 Mapping of gfx container data . 18

3.1.4 Mouse handling . 18

3.2 Modules . 18

3

4 CONTENTS

3.3 Dispatcher . 18

3.4 Configuration . 20

3.5 Drivers . 20

3.5.1 Driver initialisation . 21

3.5.2 Software fallback . 21

3.5.3 Caching . 22

3.6 The client library interface . 22

4 Evaluation 23

4.1 What to measure . 23

4.1.1 Line . 24

4.1.2 Filled rectangle . 24

4.1.3 Scaled image . 24

4.1.4 Measuring on server and client side . 24

4.2 Benchmark results . 24

4.2.1 IPC and marshalling . 25

4.2.2 Clipping . 26

4.2.3 Drawing primitives . 33

4.3 Models for predicting drawing times . 35

4.3.1 Clipping . 35

4.3.2 Destination colour-depth . 36

4.3.3 Drawing primitives . 37

5 Conclusions 41

Chapter 1

Introduction

The graphical user interface DOpE (Desktop OPerating Environment) is part of DROPS, the
Dresden Realtime OPerating System. A screenshot of DOpE is shown in figure 1.1.

Figure 1.1: Screenshot of DOpE, taken from [2]

DOpE runs under DROPS as well as under Linux. The latter is mainly used for faster
development and prototyping of new features. This work concentrates on the DROPS port
of DOpE.

Currently, DOpE draws all graphics by using software rendering. The performance bottleneck
in the rendering process is the data transfer between system memory and the local memory
of the graphics card (see [1], page 48, and 3.5.3 on page 22).

This work is directed at bringing hardware acceleration support to DOpE. A major problem
with changing the drawing methods is the change in their time behaviour. DOpE schedules
the realtime and non-realtime drawing tasks according to a prediction model. Having a dif-
ferent time behaviour, the new hardware accelerated drawing methods require new prediction

5

6 CHAPTER 1. INTRODUCTION

models, which are presented in chapter 4 of this thesis.

There are a number of projects and products aiming at hardware accelerated graphics sup-
port. A side-effect of the 3D acceleration of today’s graphics cards are advanced features like
transparent windows. With the increasing complexity of the graphics hardware, the interfaces
of the acceleration libraries grow as well (a nice example for this is DirectX, which evolves
with the new features of the hardware). Because the primary goal of this work is to accelerate
the output of DOpE, only a very small subset of these graphics functions are needed.

A selection of acceleration architectures is presented in the following sections.

1.1 XFree86

XFree86 is a free (open source) implementation of the X Window System. It is rather complex:
the source code is about 60 MB compared to about 2 MB for DOpE. Figure 1.2 visualises
the complexity by showing the different parts of XFree together with part of the data flow.
With version 4, a framework for 3D acceleration has been added to XFree86, complementing
the already available 2D acceleration support. Two parts of XFree86, XAA and DRI, and a
third-party module, Utha-GLX, are described further in the next sections.

1.1.1 XAA

The XFree86 Acceleration Architecture, abbreviated as XAA, offers a set of about 3 dozen
functions to accelerate 2D output (i.e. drawing lines, filled rectangles, bitblitting). Every
XAA graphics primitive has two functions in the interface, one to setup the hardware for the
primitive and another one to actually paint the primitive. The paint-function can be called
subsequently after setup has been done. For example, drawing a non-filled polygon results in
a call to the setup function which sets the line color, line style, and so on, while the drawing
function is called for every line the polygon consists of.

Attributes like line color, style, and so on are called context. The amount of data stored in
the context depends on the complexity of the drawing functions, i.e. if you want to paint not
only solid lines but also dashed ones you have to store the line pattern in the context.

DOpE only needs very basic variants, so most of the XAA primitives offer unnecessary features
which add superfluous complexity. For example, XAA offers to paint dashed or dotted lines
while DOpE only needs solid (but alpha-blended) horizontal and vertical lines. Due to the
very limited amount of context data required, DOpE does not need special setup functions.
All the necessary parameters can be handed directly to the drawing functions. Of course,
dividing the setup and drawing functions is still an option if more context data is needed.

Another interesting feature of XAA are the flags associated with each primitive. These flags
represent the capabilities of the hardware, like support of transparency in bitblits. This allows
the X server to recognise cases where it has to draw primitives in software rather than relying
on the hardware which is incapable of doing it.

1.1. XFREE86 7

Figure 1.2: Diagram showing the complexity of XFree86 version 4.X; a full explanation of
this diagram can be found at [5]

8 CHAPTER 1. INTRODUCTION

1.1.2 DRI

DRI stands for ”Direct Rendering Infrastructure” and ”is a software architecture for coor-
dinating the Linux kernel, X window System, 3D graphics hardware and an OpenGL-based
rendering engine.” [6]. All these components build up a quite complex piece of software.
OpenGL has a feature rich interface; the specification (version 1.4) contains more than 300
pages (without GLX and other supplementary specifications).

DRI has been introduced with the version 4 of the XFree86 system and offers a framework
to write new, modular device drivers. Older versions of XFree86 lacked the infrastructure
to support 3D directly. This led to the development of third party software like the below
described Utah-GLX.

If there will be 3D support for DROPS, DRI can serve as a good source of information; for
the current goal of accelerating DOpE it is rather useless.

1.1.3 Utah-GLX

Contrary to XAA and DRI Utah-GLX [7] is a third-party module for XFree86. Similar to
DRI, it adds OpenGL/GLX support to the X Window System. It can be used with older
XFree86 versions (3.3.x) as well as with XFree86 4.X. Unlike DRI, which runs only on Linux
and specific variants of BSD, it was intended to support all platforms XFree86 is running on.
This results in worse performance than DRI due to more indirection in the rendering process.
Nonetheless, it has the same goal: acceleration of 3D programs based on OpenGL/GLX.
Similar to DRI, it can be used as a source of information in case a 3D-API gets implemented
for DROPS.

1.2 OpenGL/ES

The progress in computer technology leads to more powerful and smaller devices. Todays
handhelds and other embedded systems are powerful enough to do 3D graphics. As the
resources are limited, compared to office and home PCs, a special specification for such
devices has been created: OpenGL/ES (ES stands for Embedded Systems) [8]. Compared
to OpenGL, it lacks more complicated features, keeping implementations of this specification
small and simple. Unless the full set of OpenGL features is required (many games will need it
for example), OpenGL/ES can be the starting point of a 3D-API implementation for DROPS.
It can be used in presentation graphics for example (3D-diagrams, visualisation of complex
architectures, etc.).

1.3 DirectFB

DirectFB (FB stands for frame buffer) is aimed at having have a small size and low memory
usage, so it can be used in embedded devices as well as on normal desktop machines. The
graphics acceleration part is focused on 2D and supports handling of windows (window stack,

1.4. CONCLUSION 9

event management, etc.), different layers, surfaces and subsurfaces.

Surfaces build the basis of DirectFB. A surface is a rectangular area containing pixel data.
In addition to the surfaces, DirectFB offers subsurfaces. A subsurface is a rectangular part
of a surface. Changing the subsurface results in changes to the associated surface.

To be able to handle hardware features like overlays (which are often used to display video
streams), DirectFB offers the layer-interface. Layers are screens located on top of each other
building a layer-stack. For example, the overlays are always located on top of the normal
screen.

DirectFB is using the kernel frame buffer driver for setting up the video card, including the
access to the frame buffer memory and I/O space. For the actual drawing it uses its own
accelerated drawing functions, by disabling the drawing functions in the kernel driver, if
possible.

The drawing functions are located in the surface-interface of DirectFB, and most of them
are simpler than the corresponding functions in the XAA interface. For example, it does
not support dashed lines, only the normal ones, which is much closer to the requirements of
DOpE than XAA. Most of the drawing functions are exactly what DOpE itself needs. Other
features, like the window management, are handled by DOpE or another application.

1.4 Conclusion

There is other software which offers graphics acceleration, like DirectX, which is of no use
to this project as it is not available as source code (one can access the API documentation
though). Other projects are more or less similar to one mentioned above, offering 2D or 3D
(or both) acceleration.

Although 3D is a nice feature it is also highly complex. As DOpE needs only 2D drawing
functions, the most usable projects for this work are DirectFB, and, to some extend, XAA.
If 3D is required in the future without the need of full OpenGL compliance, an OpenGL/ES
implementation may be sufficient for non-gaming applications, like presentations, data visu-
alisation and so on.

While the separation of setup and drawing functions as done in XAA is not necessary for
DOpE, a common way of getting information about the capabilities of the used hardware
may be useful. Several capabilities, like whether bitblit is possible from right to left, too, are
not needed. This means that a single function for querying capabilities, e.g. support of alpha
blending or support of scaled bitblits, should suffice.

The API of DirectFB is a set of interfaces (actually a set of function pointers in C structs)
which contain references to the actual functions. This is similar to the module concept used
in DOpE. For the current work, the surface interface is the most interesting. Future features
of DOpE may require subsurface-like image handling.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Design

Before and during the design of the hardware acceleration support software, a set of goals has
been formulated which influenced the whole design process.

The major goal of adding hardware acceleration to DOpE also implies that a fast way to
access the actual drawing functions is required. Besides, the acceleration architecture has
to support DOpE in the matter of realtime by supplying DOpE with information about the
predicted and the real drawing times.

Like DOpE itself, the software will be divided into modules. This allows a better transition
to dynamically linked libraries and more readable and structured source code.

Another goal is the support of multiple graphics adapters at the same time, which has an
impact on how the drivers for the hardware have to be written (e.g. splitting of code and
data). Additionally, drivers should be easy to write nonetheless, which means most of the
data bookkeeping has to be done by a driver framework. This keeps the the drivers clean,
easily readable, and replaceable.

2.1 General Architecture

There are many different ways to accelerate the graphics output of DOpE. The simplest
solution is a replacement of the current drawing methods. I have done this for a prototype
for Matrox G400 compatible cards. Especially in high resolutions, the performance gain was
clearly recognisable. Additionally, it supports colour depths of 16 and 32 bit, while the original
DOpE only supports 16 bits. The effort of adding the 32 bit mode was small compared to
adding software drawing functions for 32 bit to the original DOpE.

2.1.1 A dedicated acceleration library

The good news about the above mentioned solution is its simplicity and the direct way of
accessing the hardware (short path between DOpE and the actual drawing functions). The
bad news is the hardwired code for one specific graphics card.

11

12 CHAPTER 2. DESIGN

This problem can be solved by using an abstract interface between DOpE and the drawing
functions similar to the surface-interface of DirectFB. This interface can be implemented by
different drivers which support different graphics hardware. During startup, the hardware is
detected and the corresponding driver is loaded.

Supporting multiple screens and graphics cards at the same time requires a more abstract
interface, together with a set of general functions to organise the handling.

Today’s graphics hardware is not suited for handling accesses from different clients. A medi-
ating software has to block all direct access to the graphics card(s), while offering an interface
for synchronised access to the hardware.

A library with acceleration support allows one application to use the hardware. If another
application needs hardware accelerated graphics, it has to synchronise the requests with the
first one. An example of two different applications using hardware acceleration are DOpE
running on one screen, while a video is drawn to a second screen at the same time (and the
controls of the video program are shown in DOpE).

2.1.2 Splitting into server and client

While DOpE could function as a proxy to hardware accelerated drawing functions, it is not
intended to be used like that, and would become much larger in size than it currently is.

A solution to this problem is the partitioning of the accelerator framework into two pieces:
A server, which controls the access to the hardware, and a client library, which offers an
interface to the applications.

Big client, small server

During the design of the architecture, there turned up several possibilities for dividing the
work between the server and the client. The server is a task on its own, while the client is
a combination of the actual application (e.g. DOpE), together with a library which is doing
the communication with the server.

One approach is to put all the drawing functions into the client, while the server manages the
resources. The idea behind this is to have fast access to the drawing functions, while the server
controls the resources (frame buffer, I/O ports, IRQ) and offers the necessary functionality
for the synchronisation between the clients.

Synchronisation is the biggest problem with this concept. If it is done by the clients, a single
malicious or bug-prone client can wreak havoc, without any possibility to stop it. A server-
controlled synchronisation does not work either, as the drawing functions are still on the client
side (which means they can access the graphics hardware directly).

Furthermore, every client has the same set of drawing functions and no dynamic binding.
This will increase the memory usage of the whole system with every accelerated application.

2.1. GENERAL ARCHITECTURE 13

size in dwords used cycles time in µs

4 4888 8.146
8 4927 8.211

Table 2.1: Time usage of long IPCs, benchmarked with pingpong on a PIII 600MHz

Small client, big server

The severe disadvantage of clients being able to cause havoc leads to a different setup of
server and client. This setup has a small client side library (mostly for the communication
with the server) and a big server, which contains not only the resource management, but also
the drawing functions.

As every call to the drawing functions is delayed by interprocess communication, this ap-
proach is slower than the client-based-drawing functions. On the other hand, the server can
synchronise every incoming draw-request and prevent clients from messing with data they are
not allowed to access.

Splitted Server

One problem of having the graphics card drivers in the server is the possible unstable be-
haviour of these drivers. This may lead to a total server fault. A way to capsule drivers is
to put every single one of them into an own process. While this prevents the general fault of
the server in case of an erroneous driver, it introduces another IPC in the path from client to
actual drawing function. Table 2.1 shows the cycles spent for a long IPC together with the
respective time usage for the test system. If one call to the server results in another one from
the server to the driver, the time spent in communication doubles. The maximal possible
amount of calls to the server halves for the same amount of time, if the requests are handled
one after another. So the idea has been scratched in favour of speed.

Figure 2.1 shows the general design of the chosen approach, together with some internal
structure of the server. Every client application uses the ”libVideo”-library to communicate
with the server in the figure. As the important things are handled by the server (the library
only offers an interface to the application and does some data transformation and caching),
multiple clients can access the server at the same time. The communication is done between
the library and a dedicated communication module on the server side. This module distributes
the incoming calls to the various other modules.

2.1.3 Interface between server and client

As the design has been chosen to be a client-server based architecture, the next important
problem is the communication between client and server. Regardless of which way the data
is transfered (simple IPC or by using a streaming interface like DSI), there are a couple of
possibilities to handle the data:

14 CHAPTER 2. DESIGN

Client
"libVideo"

Application

"DOpE"

Client
"libVideo"

"XYZ"

Application

3D−Accel

2D−Accel

Init

2D−Software

3D−Software

Server

I/O & MEM

Manager

Interface

Comm−

"Flashback"

Client
"libVideo"

Application

"benchmark"

card #1 card #2

Init with

VESA info

Figure 2.1: Chosen concept of the client and server and how they interact

Predefined interface

There is a predefined interface between server and client, which offers an ”abstract” set of
drawing functions. These drawing functions are not bound to any special hardware. Thus,
every drawing function has to be translated into the necessary hardware commands by each
driver in the server.

The upside of this approach is the abstract way of handling graphics. This gives clients a
set of graphics functions which they can rely on. Furthermore, it allows easy handling of
hardware features like multiple screens.

The downside is the limited interface. As long as all the needed features are supported, that
does not pose a problem, but with the more and more complex graphics hardware, additional
functionality has to be added to the interface. In the case of 2D the changes are minimal (e.g.
addition of alpha-channel); the changes in the area of 3D are by far greater (latest addition
are pixel shaders and programmable GPUs). Thus, a generic interface is suitable for 2D (and
the goal of accelerating DOpE), while 3D needs an extensible interface.

Hardware specific interface

To access all the fancy features of today’s graphics hardware, a hardware specific interface
can be established between server and client. That way, the drivers in the server do not have
to translate the incoming requests, which allows for faster handling of the requests. If the
drivers just stream the requests through to the graphics hardware, the clients have indirect
access to the graphics hardware (which is bad because one reason for the distinction between
server and client is to prevent this). Unfortunately, the client library must contain all the
hardware specific code. The result is a more ”big client, small server” like architecture, even
with the actual drawing functions located on the server side.

2.2. REALTIME SUPPORT FOR DOPE 15

Mixed interface

To counter the problem of only hardware specific protocols, the interface has to be generic or
abstract. Hardware specific functions have to be added via an extension mechanism.

One way to do this is to capsule the hardware specific data into a ”container”. Every time
non-generic data has to be transfered, such a container is used.

A different way is used by OpenGL, which offers additional function calls for non-generic
hardware features. Some of these have become common, while others are highly specific to
a certain hardware. There exist meta-functions to retrieve information about the extensions
and what functionality is available.

For the time being, the first (predefined interface) will be used, as there is no need for hardware
specific acceleration functions. It is meant as 2D acceleration support; interfaces to support
3D are far more complex and probably need a full server redesign, including the interface.

2.1.4 The IPC overhead

A major factor which influenced the design of the different interfaces and data protocols
between server and client is the overhead introduced by the IPCs (InterProcess Communica-
tion). I assumed the overhead (additional time consumption) to have serious impact on the
total time used for the drawing operations.

In the simplest case, every call to a drawing function results in an IPC. With the above
mentioned assumption it is usable for a first prototype. For later development steps other
possibilities should be found though.

One possibility is to create a batch of drawing calls, which are delivered as a single request to
the server, reducing the amount of IPC calls compared to the one-IPC-per-drawing-function
scenario. The server can optimise the execution of the batch as it knows what is coming next.

2.2 Realtime support for DOpE

To schedule the realtime and non-realtime drawing tasks, DOpE uses predictions about the
time needed to draw objects like buttons, realtime content (e.g. videos), labels, window
borders, and so on. The prediction has to be done by the server, because the underlying
prediction models may differ not only between graphics cards, but also between different
drawing primitives.

DOpE uses a simple, yet effective way to predict the time for a drawing operation: It assumes
a fixed amount of time is required for every drawn pixel that must be carried over the (PCI
or AGP) bus to the graphics card. If it has to draw a box of the size 300x300 and this box
is clipped to 100x100, it predicts the time costs on the basis of the 100x100 pixels, because
other pixels are not drawn. Furthermore, it assumes a linear dependency between amount of
drawn pixels and the respective used time (e.g. if 1 pixel needs N seconds, 100 pixels need
100*N seconds). This turns out to be a valid assumption for software graphics routines, as
the bus bandwidth dominates the output performance.

16 CHAPTER 2. DESIGN

This model may become obsolete, or is only half of the truth, if graphics hardware is used to
draw. There are a number of factors which play an important role:

• Graphics hardware may or may not clip intelligently by calculating the area to be drawn.
A simpler way is by checking every pixel to be drawn or not. In some cases (like 3D
with Z-buffer), this is the most effective way to do it, while in 2D it is a waste of time.
The check for a pixel to be drawn or not does not need as much time as to check and
then draw the pixel. So the model needs information about how many pixels are drawn
and how many pixels are clipped.

• Drawing scaled and alpha blended images relies on the texturing unit of graphics cards.
The drawing speed depends not only the the texture size, but also on the resulting size,
the speed of the texturing unit, and the memory bandwidth between the texturing unit
and the memory where the texture is stored. Additionally, it is influenced by optional
parameters, like the filtering method, which has impact on the resulting image quality.

• By using advanced features like AGP, bus mastering (the graphics card issues data
read/write commands on the PCI/AGP bus instead of the CPU) the time prediction
models get even more complicated. In a highly optimised driver, the time used to draw
a primitve may depend not only on the parameters of the primitive itself, but also on
the previously drawn primitive(s).

• The hardware optimises memory accesses by loading several pixels at once (e.g. 32
byte at once). Sizes which do not fit into this alignment may need additional cycles to
get handled correctly, thus decreasing performance. This leads to a trade-off between
performance and memory usage, which is influenced by many things, like how much
memory is available, whether the performance has influence the user experience, and so
on.

Chapter 3

Implementation

While the previous chapter was focused on the concepts and ideas for the acceleration ar-
chitecture, this chapter highlights some aspects of the actual implementation. First, the
client-server interface will be discussed, followed by some selected aspects of the guts of the
server itself.

3.1 The client-server interface

As discussed in the last chapter, the implementation is based on a predefined, fixed interface.
Additional functionality may require changes to the interface. For the specific task of sup-
porting DOpE with accelerated drawing functions the need will most likely not aris, as the
set of the needed functions is known.

3.1.1 Gfx container

During the development of the interface, the concept of ”gfx containers” was introduced (gfx
as abbreviation for graphics). It has similarities to the surfaces used in DirectFB [4].

Gfx containers contain some sort of graphics, mostly rectangular pixel areas (e.g. images,
screens,, etc.), but can also contain a font or a palette. With drawing functions, the content
of the gfx containers can be manipulated, including the possibility to draw the contents of an
image gfx container into another one (e.g. painting a picture on a screen).

Every gfx container has to be allocated before it can be used. A successful allocation returns
an identification number, an ID. This ID is used in all other functions.

Behind the stage, the server associates the client task which allocated the gfx container
with the container ID. This enables the server to check for access violations. A client using
”random” container IDs will not be allowed to draw to foreign containers, as the calling client
task is checked for access rights to the respective container.

17

18 CHAPTER 3. IMPLEMENTATION

3.1.2 Drawing primitives

To draw to the gfx containers, the interface offers a set of drawing primitives:

• solid line

• solid filled rectangle

• gradient filled rectangle

• scaled image

• printing text

As an improvement over the original DOpE, all drawing primitives have an alpha parameter
for transparency effects.

3.1.3 Mapping of gfx container data

Due to the limited set of drawing primitives, they are often not very useful (e.g. for palettes
or fonts) or not sufficient (e.g. for real time animations). In this case, clients can get the gfx
container data mapped into their address space, so they can draw into them in any way they
want. As the server does not know about the changes of the data, the client must send an
update-call.

3.1.4 Mouse handling

Additionally to the set of functions for management and handling of gfx containers, there
exist two more, which manage the hardware based mouse pointer. While one function sets a
new shape of the mouse cursor, the other allows setting the current mouse cursor position.

3.2 Modules

Like DOpE, the acceleration server is built out of modules [1]. Every module has a defined
calling interface. An instance of this interface is stored together with the module name at the
module manager. The naming allows a lookup of specific module interfaces. A small example
is illustrated in figure 3.1.

During startup, the module manager initialises all modules. Because the module manager
itself needs to access modules during startup, there is a special bootstrap handling for these
modules (common memory management and hashtable management for the lookup table).

3.3 Dispatcher

As already shown in picture 2.1 on page 14, there is a module, implementing the above
described server interface, which is visible to all clients. This module is called ”dispatcher”.

3.3. DISPATCHER 19

Module#2 1

2

Module#1

Module−Manager Lookup−Table

Figure 3.1: Modules and the module manager – (1) module 2 calls the module manager to look
up the interface for module 1 (2) after module 2 retrieved the interface it calls the methods
in module 1 it needs to get the work done

dispatcherclient−library module#2

module#1

client server

module#3

Figure 3.2: Role of the dispatcher

20 CHAPTER 3. IMPLEMENTATION

get_config()

(["variable#1" : value#1,

"variable#2" : value#2,

...])

Module#1

(["module#1" : (["variable#1" : value#1,

])

Config

"module#2" : ([...]),

...

...
]),

"variable#2" : value#2

Figure 3.3: Interaction between a module and the config module

Whenever the dispatcher receives an incoming IPC, it calls different other modules to ac-
complish the task (”dispatching” the incoming call). Instead of having a lot of modules call
each other, the dispatcher calls one after another, collecting data from one and giving it to
the next. This way, these modules stay independent of each other. This simplifies not only
debugging, but also rewrites of modules or reengineering of the code. Figure 3.2 shows where
the dispatcher fits in the overall structure.

Because the dispatcher contains the handling of every call to the server from the beginning to
the end, a modification can change the way how the server handles incoming calls. Further-
more, this design allows easy addition of time measurement of the drawing functions needed
by DOpE for its realtime handling.

3.4 Configuration

During the implementation of the server, an increasing number of variable parameters piled
up. These parameters should be configurable, either during startup or at runtime. Thus, I
created a central point where all this data is stored, the configuration manager.

This configuration manager is responsible for fetching parameter data from the command line
(or configuration files in the future) during startup. It allows other modules to retrieve this
data, and change their behaviour according to it.

The configuration data is stored in a two level hashtable-tree, which is similar to the way
.ini-files of Windows(tm) store their data. Every module has a set of key-value associations,
which is stored under the name of the module in the top-level hashtable (see figure 3.3).

Additionally to the raw configuration data, the configuration module stores the module ini-
tialisation order. This information is used by the driver manager (see below for further
information) to initialise the modules in the given order.

3.5 Drivers

A main part of the acceleration server are the drivers. They all provide the same interface
to the server while managing different graphics hardware. Concerning the drivers there are
three important concepts, which are explained below.

3.5. DRIVERS 21

 ...

 if (driver−>draw_image == NULL) {

draw_image(screenid, ...) {

 screen = driver−>get_address(screenid);

 fallback−>draw_image(screen, ...);

 }

dispatcher

interface {

 draw_line,

 draw_image

}

fallback

interface {

 draw_line,

 NULL,

 get_address

}

driver

Figure 3.4: Fallback mechanism for software rendering methods

3.5.1 Driver initialisation

A special driver manager collects all the necessary information about the ”hardware” (pointers
to PCI information of installed VGA devices, multiboot information block which contains
VESA information, etc.). When a driver module gets initialised, it registers with the driver
manager. The driver manager subsequently calls a certain function in the driver for every
dataset of ”hardware” information found. This driver function checks the dataset for the
hardware it can support and returns an ”ok” or ”not ok” to the driver manager.

The driver manager does not instantly call this driver function. The whole initialisation
process is ordered according to data collected by the configuration module. Currently this
means the drivers are initialised in the order they appear on the command line. Drivers not
mentioned there are not initialised at all.

The driver function not only checks if the hardware information fits one of the supported
hardware, it also allocates all the necessary resources of the hardware (like I/O ports and
frame buffer) in case it is the hardware it supports.

After the hardware has been initialised, the driver manager gets the number of physical
screens the hardware supports and builds up a mapping between the screens and the drivers.
This way, the server knows which driver to call, when a specific screen has to be initialised.

3.5.2 Software fallback

Not every hardware supports all of the required drawing functions. To ease the work of driver
programmers, these functions can be left out in the calling interface (set to NULL in the
interface struct). The dispatcher checks for these missing functions every time and invokes
the respective software fallback drawing function instead.

As the drivers keep the information about the address of the frame buffer to themselves, they
have a function which returns the address of the screen to be drawn to.

22 CHAPTER 3. IMPLEMENTATION

The whole process is visualised in figure 3.4.

3.5.3 Caching

A very difficult topic is the caching of image data. Even today’s hardware does not support
every possible image format. Those pictures or font images have to be converted to a format
the hardware can handle.

The fastest access to image data for a graphics card is to store this data in the local memory
of the graphics card. Otherwise, the image data has to be transfered over the PCI/AGP bus,
which is much slower (about 45MB/s for writes from CPU to Matrox G550 memory, while
the G550 can access its own memory with a couple of Gigabytes per second). Thus, every
image handled by the graphics card should be stored in the card’s local memory.

One problem with the caching is the information where to cache the image. If a client allocates
an image, the server does not know on which card (if there are more than one present) it is
going to be displayed. In this case, the caching will be delayed until the first call to the image
drawing function.

The other option is to store every image on every graphics card’s RAM. As long as both
screens always show the same (maybe in different resolutions) this is fine; otherwise, it is a
waste of memory. Also, with different amounts of available memory, not all pictures which
can be stored on one card can be so on another. These problems led to the above mentioned
approach, although it will increase the drawing time by the delay introduced through the
caching. With use of advanced features like busmastering, AGP, and write-combining this
delay can be reduced compared to a non-accelerated CPU-based write.

Images can be mapped into the address space of clients. This allows them to freely edit
the contents of the images. To inform the server about changes done, the client sends an
update-message. With the informations sent, the server can update all cached incarnations
of the updated image.

3.6 The client library interface

Applications using the acceleration server are linked against the client library interface. This
interface is copied almost one to one from the client-server interface making it a mere wrapper
around the client-server communication. This results in a very small client library. Further-
more, it allows to change the client-server-interface, while preserving the one to the applica-
tion. This can be used to optimise the whole server and the client-server-interface for speed
without the need to rewrite the applications based on the client-library.

Chapter 4

Evaluation

This chapter continues the discussion of realtime support for DOpE started at the end of
chapter 2. Recalling the content of this section, there were two main goals: Adding time
measurement to server and client as well as defining models for precalculation of the time
needed for certain operations.

The first part was rather easy to implement using functions from the l4util package. As the
interface between server and client has been designed with time measurement in mind, there
have been no changes to it.

The second, and more important, point, namely defining models for time usage precalculation,
is rather complex. I created a special client which does several benchmarks. Based on the
outcome of the benchmark, a model of the underlying graphics hardware could be made.

4.1 What to measure

Today’s graphics cards offer a lot of image processing features. The Matrox G550 is based
on the Matrox G400, which offers alpha blending, bilinear filtering, different filtering for up-
or downscaling, Gouraud shading and so on. Not every drawing primitive uses all of these
features. In fact, most of these are only used in conjunction with drawing textures (used for
drawing scaled images).

Most of these features are not needed by DOpE, or can be treated as optional (like bilinear
filtering), and have not been used during the benchmarks. Only the alpha blending has found
its way even into the client-server-interface, as it will probably used later on by DOpE (for
transparent windows).

More important is the way graphics cards are benchmarked. The more intelligent the hardware
is, the more effort has to be put into the chip design. Additionally, it increases the chip size
because more sophisticated algorithms require more transistors for the chip (resulting in a
higher price, too). This means that not all operations are handled in an optimised way.
For example, the clipping can be handled in a line by line or pixel by pixel way instead of
precalculating all the borders.

23

24 CHAPTER 4. EVALUATION

4.1.1 Line

DOpE only uses horizontal and vertical lines, which makes them a subset of filled rectangles
with a height or width of 1, respectively. Anyway, if measured on their own, the following
parameters have to be taken into account:

• start and end point, resulting in the total amount of pixels (DOpE needs horizontal and
vertical lines only)

• clipping rectangle, resulting in clipped and non-clipped pixels

• screen colour depth

4.1.2 Filled rectangle

Drawing filled rectangles with alpha blending has the following parameters:

• width and height, resulting in a total amount of pixels

• clipping rectangle, resulting in clipped and non-clipped pixels

• screen colour depth

4.1.3 Scaled image

Drawing scaled images with alpha blending is the most complex of the drawing primitives
required by DOpE. This shows up in the parameter list used for benchmarking:

• width and height of scaled image, resulting in total amount of pixels

• width, height and colour-depth of original image

• clipping rectangle, resulting in clipped and non-clipped pixels

• screen colour depth

4.1.4 Measuring on server and client side

For DOpE, the measured times on the client side are interesting. These include marshalling,
the IPC and the server-side handling of the request. The measurement on the server-side
eleminates the time overhead introduced by marshalling and IPC.

4.2 Benchmark results

The benchmarks have been taken with the following hardware:

4.2. BENCHMARK RESULTS 25

primitive non-clipped time usage in µs IPC overhead per call
painted 20000 times client side server side in µs relative

rectangle (100x100) 988400 805114 9.16430 22.76%
rectangle (300x300) 7294479 7102544 9.59675 2.70%
image (100x100)a 2068985 1865234 10.18755 10.92%
image (400x400)a 16310597 16101382 10.46075 1.30%

a

texture size 300x300

Table 4.1: IPC overhead in for selected primitives

• PIII (Katmai) 600MHz

• Intel 440BX chipset based mainboard (QDI P6440BX/B1)

• 448 MB SDRAM 100MHz

• Matrox G550 AGP with 32MB SD/SG(?)-RAM

• ATI Radeon VE (7000) AGP with 64MB DDR-RAM

The current drivers do not use any special features like AGP, write-combining and so on.
Currently, this only has impact on how fast the image data is loaded into the local memory of
the graphics board and on how fast the command stream of the Radeon driver can be served
(the Matrox is programmed via MMIO, Memory Mapped I/O). Drawing primitives, like lines
or filled rectangles, does not need any pixel data which is not already present in the local
memory of the graphics card.

The drivers for the G550 and the Radeon do not necessarily need to wait for the card to finish
the drawing process. They can send commands to the graphics cards while the graphics
hardware is still busy with a previously initiated drawing operation. This feature can be
disabled by waiting for the graphics hardware to become idle after a drawing operation has
been started. In the following text this feature is called “idle-wait” and is assumed to be used
per default. The drivers allow to change this behaviour during compile time.

L4’s scheduling supports priorities which has an impact on the measured values. The server
as well as the benchmarking client have both been started with the default priority for every
benchmark.

4.2.1 IPC and marshalling

During the design phase, IPCs have been assumed to be costly. With the measurement of
the times on server and client side, it is possible to give more accurate statements about the
absolute and relative costs of marshalling and the IPCs.

Both drawing functions contain more parameters than a short IPC can take on a x86 archi-
tecture (6 respective 7 32 bit integers versus 2 32 bit integers for a short IPC), which means
long IPCs have been used for every call. While the absolute time is about 9 to 11 µs per call
(complete IPC with return value; the image drawing function needs one 32 bit integer more),

26 CHAPTER 4. EVALUATION

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

visible areas (clipping rectangle)

fixed
height

variable width

Figure 4.1: Clipping test 1 – test the behaviour before and after passing the clipping rectangle

the relative overhead in relation to the drawing operation itself varies. Especially operations
on small sizes (e.g. for drawing button backgrounds, icons, etc.) have a much higher relative
loss in time than huge drawing operations (e.g. realtime content, like video playback).

The overhead introduced to IPC and marshalling is not measured in the other following
benchmarks. This eliminates some inaccuracy, as the overhead is not exactly the same every
time (as shown in the table above).

4.2.2 Clipping

To show the effects of clipping, both cards had to paint filled rectangles with enabled hardware
clipping. Every card had to pass 3 different tests:

The first test depicted in figure 4.1 draws clipped bars with a variable width or height, while
the other dimension remains at a fixed size. The picture shows this for a fixed height and
a variable width. This test shows the behaviour before and after the clipping rectangle has
been passed.

The second test is aimed at an unbiased comparision between the variable width and the
variable height case. The clipping rectangle is put into the top left corner, as shown in figure
4.2, so in both cases the graphics card has to deal with the same clipping rectangle.

In the third test, the clipping rectangle does not intersect any of the filled rectangles and by
this removes the need to draw anything. Picture 4.3 illustrates this.

There are two basic ways of implementing clipping:

Scanline based clipping. While drawing the primitive, at the start of every (scan)line there
is a check if this line fits into the clipping rectangle or not (checking with y-boundaries

4.2. BENCHMARK RESULTS 27

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
��������������� �������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

fixed
height

variable width

visible area (clipping rectangle)

Figure 4.2: Clipping test 2 – comparision between variable width and variable height case

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

fixed
height

variable width

 rectangle)
(clipping

visible area

Figure 4.3: Clipping test 3 – behaviour in fully clipped case

28 CHAPTER 4. EVALUATION

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

1.2e+06

1.3e+06

1.4e+06

1.5e+06

1.6e+06

1.7e+06

1.8e+06

1.9e+06

2e+06

2.1e+06

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

box variable size in pixels (fixed size: 128 pixels)

128 x height: G550
width x 128: G550

128 x height: Radeon VE
width x 128: Radeon VE

Figure 4.4: Clipping test 1 – G550 and Radeon VE in comparision

of the clipping rectangle). In case it lies between these boundaries, every pixel on
this line is checked for containment in the clipping rectangle. This concept is very
good for highly complex structures which are drawn in one pass, but inefficient with
simple primitives like rectangles. DOpE only needs these simple primitives (lines are
technically rectangles with a width or height of 1, filled rectangles and scaled images
have a rectangular shape as well). Thus, precalculated clipping is a much better choice,
as described below.

Precalculated clipping. Unlike the scanline based algorithm, the parameters for the actual
area to be drawn are precalculated. For solid filled rectangles only the new start- and
end-point have to be calculated. For lines the intersections with the resulting draw area
have to be determined. In the case of scaled images, there are two calculations to be
done. First, the drawing area has to be calculated in the way it is handled as with
filled rectangles. Secondly, the start- and end-vertex in the original texture must be
determined, as the clipping shows only a part of the whole texture.

Clipping test 1

There are a number of interesting things to see in the figure 4.4:

• With respect to the drawing speed, the Radeon VE is slower than the G550. The reason
is most probably the memory bandwidth. While the Radeon VE can access the data in
2x64 bit, the G550 has the double bandwidth of 256 bit to its local memory. Both cards
draw alpha blended filled rectangles. Thus, the speed shown includes both the read and
write speed from and to memory (source and destination pixels have to be blended).

• The time required for precalculated clipping can be modeled with a constant function,
t(x) = const. The constant value depends on the time needed to do the precalculation.

4.2. BENCHMARK RESULTS 29

Figure 4.4 shows four cases of a constant clipping time. Only one of these originates
from the G550. The other three show the clipping of the Radeon VE.

• The other four cases show increasing time usage while clipping is performed at the
begin and the end of the curves. This can be interpreted as scanline based clipping, but
both cards show the effect of precalculated clipping as well. Further investigation with
idle-waiting switched off brought up a different picture, which is shown in figure 4.5.
Especially in the clipped off area at the beginning, the G550 seems to do precalculated
clipping without idle-waiting. This can be a wrong assumption though, as the G550 can
still be busy with clipping, while already accepting the next command. Interestingly,
it still shows a slightly increasing slope at the end of the variable-height-no-idle-wait
curve, while in all other no-idle-wait cases the slope is zero.

• In the first figure (4.4) for clipping test 1 the curves show some other strange things,
too:

– In the variable width curves of the G550, there is an instant rise of the time usage,
which I can only assume has its reason in the number of lines to be drawn. As the
G550 renders at least the graphics scanline based, there is an overhead for every
line. Thus the instant rise in the curve, as one pixel has to be drawn on each of
the 128 scanlines at a total box with of 129.

– The Radeon VE shows a spike at the beginning of the actual drawing process of
the variable height curve. This spike shows up on other curves as can be seen
below. As in the above case, I can not give any explanation for this behaviour.

– There are stairs in both the variable width and variable height curve of the Radeon
VE. These stairs may have their reason in the caching of pixel data in the 3D
pipeline, minimising the accesses to the local memory of the Radeon VE. When
the work on one block of pixels has been done, the next block has to be loaded,
increasing the amount of time used, which results in the jumps (“stairs”). These
effects show up more clearly with a higher amount of drawn pixels (e.g. increasing
the number of calls or increasing the size of the drawn area).

Clipping test 2

As said above, this test is meant to compare both the variable width and variable height case
on both cards. Figure 4.6 depicts how the G550 and Radeon VE handle it.

Although the clipping of the G550 in the variable width case is done better, the behaviour
during the drawing process is much more erratic than in the variable height case. Both cases
need about the same time to draw the visible rectangle. In the variable height case, the
clipping needs an increasing amount of time, having a difference of about 0.06 seconds in the
end.

The curves associated with the Radeon VE clearly show the above mentioned optimisation
caused by the pixel cache, as well as the spike at the start. Unlike the G550, both cases need
a different amount of time in total, there is a difference of about 0.15 seconds up to about
0.18 seconds between the 512 pixels wide and 512 pixels high rectangle case.

30 CHAPTER 4. EVALUATION

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

box variable size in pixels (fixed size: 128 pixels)

128 x height: G550 no idle-wait
width x 128: G550 no idle-wait

128 x height: G550 idle-wait
width x 128: G550 idle-wait

Figure 4.5: Clipping test 1 – G550 with and without idle-waiting

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

1.2e+06

1.3e+06

1.4e+06

1.5e+06

1.6e+06

1.7e+06

1.8e+06

1.9e+06

2e+06

2.1e+06

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

box variable size in pixels (fixed size: 128 pixels)

128 x height: G550
width x 128: G550

128 x height: Radeon VE
width x 128: Radeon VE

Figure 4.6: Clipping test 2 – comparision of variable height and variable width case under
same clipping conditions

4.2. BENCHMARK RESULTS 31

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

box variable size in pixels (fixed size: 128 pixels)

128 x height: G550
width x 128: G550

128 x height: Radeon VE
width x 128: Radeon VE

Figure 4.7: Clipping test 3 – behaviour in the fully clipped case

Both cards have an instant increase in the drawing time in the variable width case, which
seconds my assumption about the scanline based rendering process mentioned above. Both
variable height curves have a much smaller starting offset when the first scanline is drawn.

Clipping test 3

In the last clipping test, the visible area was outside the area the rectangles were drawn to,
so not a single pixel had to be drawn at all. The resulting curves are shown in figure 4.7.

The noise on the curves are mostly due to measurement errors and effects of the scheduling
(at least for the G550, as it waits in an poll-loop for the G550 to become ready again; the
Radeon VE does the idle-wait in hardware).

The Radeon VE always needs the same time to handle the clipping, at about 3.8 µs for a call.
The G550 handles the clipping in the variable width case even faster than the Radeon VE at
about 3 µs.

The big difference is in the variable height curve of the G550. This curve shows a scanline
based clipping algorithm:

• The curve can be split into three parts, where the first and the last one have about the
same slope, whereas in the middle part the time usage increases much faster.

• The first part of the curve slowly increases until it intersects with the variable width
case at about 128 pixels height, where the same rectangles are drawn.

• The higher increase in time usage during the height of 129 to 256 pixels is caused by
the fact the lines match the y-boundaries of the clipping rectangle. Thus, every pixel

32 CHAPTER 4. EVALUATION

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

1.2e+06

1.3e+06

1.4e+06

1.5e+06

1.6e+06

1.7e+06

1.8e+06

1.9e+06

2e+06

2.1e+06

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

box width in pixels (fixed height: 128 pixels)

width x 128: G550 with hardware clipping
width x 128: G550 with software clipping

width x 128: Radeon VE with hardware clipping
width x 128: Radeon VE with software clipping

Figure 4.8: Software clipping vs. hardware clipping shown with clipping test 1, variable width
case

on these lines has to be checked if it gets displayed or not. After the y-boundaries have
been passed, the slope is similar to the one at the beginning.

The three tests yield some interesting results:

• The G550 seems to do scanline-based clipping. Tests with the idle-waiting switched off
show otherwise, but this might be a result of the pipelined architecture and the FIFO(s)
used to buffer incoming requests.

• Contrary to the G550, the Radeon VE probably does precalculated clipping, which is
slower for smaller structures (as can be seen in the last test (figure 4.7)). The advantage
is the easy predictability of the clipping.

• The partially strange behaviour of both cards, as well as the overall flaw of the clipping
of the G550, lead to the conclusion that a predictable clipping method must be used
which is based on precalculated clipping.

Software clipping

With the very dissatisfying results of the hardware clipping, especially from the G550, I tested
how software clipping performs. The result turned out to be very interesting; two examples
are shown in the figure 4.8.

In general, the software clipping was much faster than done in hardware, regardless of the
algorithm used in hardware. Secondly, the overall time usage decreased. In this special, case
the performance gain for the G550 is about 150% for full width rectangles (width = 512
pixels).

4.2. BENCHMARK RESULTS 33

Although hardly to be seen, the software clipping uses a very small amount of time to calculate
the clipping. It is about 0.3 to 0.4 µs, compared to about 4 µs for the hardware based clipping.

In the remarks about the clipping tests, I wrote about the instant rise of the time usage in the
variable width clipping test 1 of the G550. Interestingly, this jump is much less with software
clipping, compared to the hardware clipping case.

The effects on the Radeon VE are much smaller; especially during the drawing process both
curves are more or less identical. The differences between hardware and software clipping
show up at the beginning and the end of the curve, gaining a bit of performance over the
hardware clipped case.

As a conclusion all drivers should use software clipping. Because the software is really fast
at it I doubt even today’s graphics cards are able to outperform it. Furthermore, modern
processors are even faster than the one used in the test computer.

This brings up the question why hardware clipping is used at all. While simple primitives,
like rectangles and lines, can easily be precalculated, complex 3D sceneries increase the effort
for clipping drastically. Under these conditions I guess the hardware clipping is much more
efficient than any software clipping, besides the technical problems to implement this.

4.2.3 Drawing primitives

Filled rectangles

These tests have been done on both the Radeon and the Matrox card, which allows an
additional comparision of the drawing speed. To measure the drawing speed, the cards had
to draw a variable width, non-clipped rectangle with a height of 512 pixels at 16 bits per pixel
and at 32 bits per pixel colour-depth.

The results are shown in figure 4.9. In comparision, the G550 paints the alpha blended solid
filled rectangles much faster than the Radeon VE (about three times faster). This is mainly
caused by a twice as wide data bus to the local memory (256 bit vs. 2x64 bit of the Radeon
VE) and probably different clock cycle speeds (no data about the G550 available) as well as
the type of used RAM on the graphics cards.

Clearly visible are the optimisations done by the Radeon VE (pixelcache in 3D-pipeline), but
also some regular anomalies in the behaviour of the G550. The overall dependency between
the amount of pixels and the time used to draw them is linear, though. This is modified by
a factor influenced by the colour-depth of the destination.

Scaled images

The major difference between the filled rectangle and the scaled image primitive is the tex-
ture required for the latter one. Thus, additional data has to be transfered from memory,
influencing the time required to draw the scaled image. For the benchmarks, the textures
have been stored in the local memory of the graphics card for fastest possible access.

Figure 4.10 shows the time usage for the variable width case. Noticeable are the spikes,

34 CHAPTER 4. EVALUATION

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

2.4e+07

2.6e+07

2.8e+07

3e+07

3.2e+07

3.4e+07

3.6e+07

3.8e+07

4e+07

4.2e+07

4.4e+07

4.6e+07

4.8e+07

5e+07

5.2e+07

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

box width in pixels (fixed height: 512 pixels)

width x 512: Radeon VE to 32bpp
width x 512: Radeon VE to 16bpp

width x 512: G550 to 32bpp
width x 512: G550 to 16bpp

Figure 4.9: Fill test with G550 and Radeon VE in 16 and 32 bpp

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
8e+06

8.5e+06
9e+06

9.5e+06
1e+07

1.05e+07
1.1e+07

1.15e+07
1.2e+07

1.25e+07
1.3e+07

1.35e+07
1.4e+07

1.45e+07
1.5e+07

1.55e+07
1.6e+07

1.65e+07
1.7e+07

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

scaled texture width in pixels

width x 128 x 16bpp to 16bpp
width x 256 x 16bpp to 16bpp
width x 512 x 16bpp to 16bpp

Figure 4.10: Scaled image time consumption based on a 128x128x16bpp texture (G550),
variable width case

4.3. MODELS FOR PREDICTING DRAWING TIMES 35

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

4.5e+06
5e+06

5.5e+06
6e+06

6.5e+06
7e+06

7.5e+06
8e+06

8.5e+06
9e+06

9.5e+06
1e+07

1.05e+07
1.1e+07

1.15e+07
1.2e+07

1.25e+07
1.3e+07

1.35e+07
1.4e+07

1.45e+07
1.5e+07

1.55e+07
1.6e+07

1.65e+07
1.7e+07

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

scaled texture height in pixels

128 x height x 16bpp to 16bpp
256 x height x 16bpp to 16bpp
512 x height x 16bpp to 16bpp

Figure 4.11: Scaled image time consumption based on a 128x128x16 bpp texture (G550),
variable height case

indicating much longer drawing times than usual. With the exception of the spikes, the
drawing time increases linearly. There is a change in the slope at the beginning, which is
better visible in figure 4.15 on page 39. The different curves shown in figure 4.10 are linearly
dependent, including the spikes.

Unlike the variable width case, changing the height while keeping the width constant results in
linear curves without any spikes as shown in figure 4.11. This explains the linear dependency
between the variable width curves above.

Drawing to different pixel depths (e.g. 16 or 32 bpp) results in different drawing speeds,
similar to the filled rectangle primitive.

4.3 Models for predicting drawing times

The different benchmarks showed the differences of the drawing speed behaviour, not only
between two different graphics cards, but also between different drawing primitives. As a re-
sult, there is no general model for all possible combinations without making really pessimistic
predictions.

4.3.1 Clipping

Although the graphics cards support hardware based clipping, the tests have shown a sig-
nificant gain in performance and predictability while using software based clipping. Because
it needs a constant time to handle clipping in software it, can be added as an offset to the
calculated time usage.

36 CHAPTER 4. EVALUATION

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06
1e+07

1.1e+07
1.2e+07
1.3e+07
1.4e+07
1.5e+07
1.6e+07
1.7e+07
1.8e+07
1.9e+07

2e+07
2.1e+07
2.2e+07
2.3e+07
2.4e+07
2.5e+07
2.6e+07
2.7e+07
2.8e+07
2.9e+07

3e+07

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

scaled texture width in pixels

width x 512 x 16bpp to 16bpp
width x 512 x 32bpp to 16bpp
width x 512 x 16bpp to 32bpp
width x 512 x 32bpp to 32bpp

Figure 4.12: Scaled image time consumption based on a 128x128x16 bpp texture (G550),
variable width at different depth

card depth time in µs

G550 16 bpp 3.9
G550 32 bpp 6.5
Radeon VE 16 bpp 11.6
Radeon VE 32 bpp 20.1

Table 4.2: Approximated drawing time per pixel in different colour-depths; data based on
filled rectangle benchmark

Under the mentioned hard- and software conditions, the clipping calculation needs about 0.3
to 0.4 µs for a call. In relation to the time needed for hardware clipping (3 to 4 µs and more
per call), and the delay introduced by IPC (9 to 11 µs) this is a rather short time.

4.3.2 Destination colour-depth

As shown with filled rectangles and scaled images, the destination colour-depth plays an
important role in the total time used to draw a primitive. The prediction models should be
matched to one colour-depth.

Because the drawing speed in different colour-depths is influenced by the hardware architec-
ture of the graphics card, the model for the different colour-depths is specific for each card.
Table 4.2 shows some approximated drawing times for different colour-depths.

4.3. MODELS FOR PREDICTING DRAWING TIMES 37

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

1.7e+07

1.8e+07

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

filled rectangle height in pixels

128 x height
128 x height (modeled)

256 x height
256 x height (modeled)

512 x height
512 x height (modeled)

Figure 4.13: Model for G550, filled rectangle at 32 bpp, original and modeled time usage for
variable height

4.3.3 Drawing primitives

The figures of the benchmarks show differences between the way primitives are drawn by one
graphics card. This ranges from a more or less linear dependency between the amount of
pixels to be drawn to a segmented function depending on a couple of parameters with the
scaled image primitive.

Filled rectangles

Filled rectangles depend mainly on three parameters: width, height, and colour-depth. Be-
cause the clipping time has been reduced to a very small constant, I will not include it in the
formulas here. Thus, the resulting function can be denoted as

trectangle(w, h, bpp),

where w and h denote the width and the height of the rectangle, respectively.

With a constant width the time usage raises linear, with a constant height it is the same.
Thus the resulting function is:

trectangle(w, h, bpp) = a(bpp) + b(bpp) · w + c(bpp) · h + d(bpp) · w · h

Based on the benchmark data for different widths and heights the following prediction function
has been found for the G550 via trial and error:

trectangle(w, h, 32bpp) = 10µs + 6.33ns · (w + 27) · h

38 CHAPTER 4. EVALUATION

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

1.7e+07

1.8e+07

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

filled rectangle width in pixels

width x 128
width x 128 (modeled)

width x 256
width x 256 (modeled)

width x 512
width x 512 (modeled)

Figure 4.14: Model for G550, filled rectangle at 32 bpp, original and modeled time usage for
variable width

The resulting curves are shown together with the data determined by the benchmarks in
figure 4.13 and 4.14.

Scaled images (G550 only)

Figure 4.15 shows a variable width case for a 2048x2048 texture. Three different parts of
the curve are highlighted. Part 1 and 2 are linear functions, while part 3 has a linear lower
bound but a random looking upper bound caused by many spikes. The overall time usage is
increasing though.

As already shown in figure 4.11, the dependency in the height is linear, leaving the variable
width case as the main influence to the resulting model.

The time prediction model is based on a bilinear function similar to the one for filled rectan-
gles. Because of the visible changes in the slope of the variable width curve this results in a
composite function.

A pessimistic approach results in two different bilinear functions. One models the time usage
from point A to point B while the other does so from point B to point D:

tscaledimage(w, h, bpp) =

{

Awidth ≤ w ≤ Bwidth : a + b · w + c · h + d · w · h

Bwidth < w : l + m · w + n · h + o · w · h

where a to d and l to o depend on bpp similar to the bilinear function shown for filled
rectangles.

This model suffices for small texture sizes. Bigger textures like 2048x2048 can be modeled
with three different bilinear functions, one from A to B, the second from B to C and the last

4.3. MODELS FOR PREDICTING DRAWING TIMES 39

B

C

D

A

E2

E1

1

2 3

2048x2048x32bpp to 32bpp

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

tim
e

us
ag

e
fo

r
10

00
0

ca
lls

 in
 m

ic
ro

se
co

nd
s

scaled image width in pixels (height = 128 pixels)

Figure 4.15: Prediction model for G550 scaled images

one from C to D:

tscaledimage(w, h, bpp) =

Awidth ≤ w ≤ Bwidth : a + b · w + c · h + d · w · h

Bwidth < w ≤ Cwidth : l + m · w + n · h + o · w · h

Cwidth < w : p + q · w + r · h + s · w · h

The location of Bwidth and Cwidth can be calculated as follows:

Bwidth =
widthtexture · bpptexture

32
Cwidth = 2 · Bwidth

where bpptexture is denoted in bytes per pixel. The G550 can load up to 32 byte at once from
its local memory. If the texture is scaled down, not every pixel will be used to display the
resulting image. Only one or even no pixel is taken into account if the scaled image width is
below or equal to Bwidth. Compared to the case where more than one pixel is contained in a
32 byte block the drawing speed is much lower.

40 CHAPTER 4. EVALUATION

Chapter 5

Conclusions

The primary goal of the presented acceleration architecture is to speed up the drawing primi-
tives of DOpE. This is done by using the hardware accelerated drawing capabilities of graphics
cards.

Graphics hardware on the PC is aimed mainly at the entertainment market. It is not built for
supporting realtime or multitasking, but for having the best possible average performance.
The different benchmarks made this visible.

While the drawing itself has to be done in hardware (this is the purpose of this work), other
things are not forced to rely on the graphics hardware. This has been done with the clipping.
Tests with hardware based clipping resulted in hard to predict time usage functions. Out
of curiousity software clipping has been tested. Surprisingly, it performed much better than
hardware clipping. Furthermore, it can be modeled with a simple time prediction model based
on a constant time usage.

Determining a model for the actual drawing methods is complicated, because the hardware
optimises some tasks, but performs bad in others. At least for both tested graphics cards, it
can be assumed the line drawing is based on a linear function, filled rectangles and gradient
drawing can be modeled with a bilenear function while drawing scaled images is based on a
composite function built up from several bilinear functions.

Calculating specific parameters for the models presented in the last chapter is difficult. To
be sure the model is the pessimistic case for all combinations, the whole set of combinations
has to be checked against the model. This leads to two conclusions:

• There should be a program which benchmarks a certain primitive for all possible combi-
nations. This is possible to do for the solid lines and filled rectangles. In case of scaled
images the number of benchmarks explodes: For every possible texture size (max. tex-
ture size for Radeon VE and G550 is 2048x2048) the drawing speed has to be checked
for every scaling size and different bit depths of the screen.

• Based on the data collected from the benchmarks and the model given to the program
it calculates the parameters and outputs a function similar to the one shown for filled
rectangles.

41

42 CHAPTER 5. CONCLUSIONS

drawing routine time used

G550 0.27 ms
Radeon VE 0.75 ms
DOpE 5.67 ms
SW-fallback 149.19 ms

Table 5.1: drawing times for one 512x128 filled rectangle at 16 bpp; DOpE without IPC, all
others include IPC; the DOpE routine does not support alpha blending

The presented models have to be checked for validity if a driver for not yet supported hardware
is written.

An instance of a model is bound to specific hardware. Changing the speed of the graphics
processor, the local memory on the graphics card or other components may result in a different
instance of a model. A benchmark during startup of the server can initialise the model
instances.

The same applies for IPCs. Using a different CPU may result in a different amount of time
needed for the communication between client and server.

For the used test system, the IPCs are fast enough to still have a performance gain compared
to the old DOpE drawing routines. Table 5.1 shows this. The drawing time for the software
fallback supports alpha and works directly on the frame buffer of a graphics card. The alpha-
blending requires reading from the frame buffer, which is very slow compared to writing. For
example, using software the frame buffer of the G550 can be written with about 45 MB/s
while reading only with about 7 MB/s.

The low data transfer rates between system memory and graphics card memory can be im-
proved by using techniques like write-combining, AGP and bus mastering. There are a number
of more things, which can be done in the future:

• Currently the VESA driver is based on the software fallback routines. Improving their
performance will be useful for all graphics cards without hardware acceleration support.

• For now, only the Matrox G400 and compatible as well as all Radeon 7000 compatible
cards have driver support. Adding more chipsets to the supported-list should be one of
the long-term goals.

• The server supports multiple graphics cards at once. As a result there are multiple
screens available. They can be used independently; for more advanced features like
combining two screens to one or displaying part of one screen on another the necessary
interface definition is still missing.

• For the time being all drivers have to support the full functionality. Thus, an inter-
face which allows to get information about the capabilities of the graphics hardware
is required. This allows DOpE and other applications to enable or disable optional
features.

• DOpE needs to be changed so it accesses different models depending on the used hard-
ware and drawing primitive.

43

• Besides the above mentioned performance optimisations there are more possible:

– Lets assume the system has two graphics cards installed. If one of these cards
is busy but the incoming request is directed at the idle card, this request can be
executed even while the other card is still busy. This holds true unless both cards
paint to the same memory area (AGP/PCI memory).

– If a card does not support all primitives and the missing functionality has to be cov-
ered by software rendering, soft- and hardware rendering can work independently
as long as they do not paint to the same memory area.

– If clients are not allowed to access other clients graphics data, requests from dif-
ferent clients can be handled in parallel.

– The communication between server and client can be optimised by using DSI.
Collecting drawing tasks on a stack and sending the whole stack at once can be
combined with DSI.

• There already have been questions about the 3D support. It requires a rewrite of the
server architecture and needs much more complex drivers. The first prototype could
implement an OpenGL/ES conform interface, which can be improved step by step to a
full featured OpenGL interface later on.

44 CHAPTER 5. CONCLUSIONS

Glossary

AGP Accelerated Graphics Port. As the name suggests, it was created to speed up the data
transfer between a host system and the graphics card in comparision to the previously
used PCI bus.

API Application Programmers Interface. The software interface offered by frameworks, li-
braries and so on.

bitblit Operation which moves a rectangular graphics area in memory. Graphics hardware
supports different kinds of bitblits, e.g. bitblit with transparency or bitblits with colour
expansion, which is used to draw non-antialiased characters. Additionally, the source
and the destination can be combined with a raster operation.

bus mastering On data buses like PCI and AGP one device is the master, initiating bus
transfers and regulating the traffic. In case of software based rendering, the CPU is the
master. But PCI and AGP devices can be programmed to take the bus master role.
While the devices manage the data transfer, the CPU is free to do other stuff.

DOpE Desktop Operating Environment. It is a graphical user interface with realtime sup-
port. It is part of DROPS. See [1].

DMA Direct Memory Access. See bus mastering.

DRI Direct Rendering Infrastructure. Part of XFree86 4.X.

DROPS Dresden Realtime Operating System. See [3].

DSI Direct Streaming Interface. To speed up the interprocess-communication, DSI manages
a shared memory area. This memory area is used to store the data transfered between
two tasks. This saves the time which is normally spent by copying this data during the
IPC-call.

frame buffer Local memory on the graphics card. It is mapped into the address space of the
system, so the CPU and other PCI devices can access this memory. The data transfer
speed to this memory is limited by the bus the graphics card is connected to. See AGP.

GLX The “glue” between OpenGL and X so one can execute OpenGL applications remotely
and still run them accelerated.

GPU Graphical Processing Unit. Based on the term CPU. It is the core of most graphics
cards and can perform graphical computations.

45

46 CHAPTER 5. CONCLUSIONS

IPC Interprocess Communication.

IRQ Interrupt request. This is a way for hardware to notify the CPU that an event occured.

MMIO Memory Mapping Input Output. Hardware like PCI and AGP cards map their
programmable registers into the memory space of the CPU, so they can be accessed via
normal memory write and read operations.

OpenGL A specification for a 3D API. See http://www.opengl.org/ for further informa-
tion.

OpenGL/ES OpenGL for embedded systems. This specification defines a subset
of the OpenGL specification, so it can be used in embedded systems. See
http://www.khronos.org/ for more information.

PCI Peripheral Component Interconnect. PCI is a bus for local perihperals in a computer
which is widely used in current PC hardware. It was developed as a replacement for
the now outdated ISA bus.

VESA Video Electronics Standards Association. See http://www.vesa.org/.

VGA Video Graphics Array. It was developed by IBM and supports 640x480 with 16 colours
and 320x200 with 256 colours. It has no builtin hardware acceleration features.

write combining Instead of initiating one data cycle for every access to a PCI or AGP
card, up to 32 subsequent bytes get cached in the CPU and sent in one burst. The
overhead for preparing a data cycle on the PCI or AGP bus is reduced to one time per
burst, instead of up to 32 times if single bytes are transfered. Write combining has to
be enabled for a certain memory area by configuring the MTT registers accordingly.

XAA XFree86 Acceleration Architecture. Part of XFree86 (see http://www.xfree86.org/.
The documentation for XAA can be found in the XFree86 sources.

Bibliography

[1] Norman Feske. DOpE – a graphical user interface for DROPS. diploma thesis, Dresden
University of Technology, Operating Systems Group, 17.10.2002

[2] http://os.inf.tu-dresden.de/ nf2/dopescreens.html

webpage containing several screenshots of DOpE

[3] http://os.inf.tu-dresden.de/drops/

homepage of the DROPS project

[4] http://www.directfb.org/

Homepage of DirectFB

[5] http://dri.sourceforge.net/doc/dri control flow.html

DRI control flow diagram

[6] http://dri.sourceforge.net/doc/DRIintro.html

Introduction to DRI

[7] http://utah-glx.sourceforge.net/

Utah-GLX homepage

[8] http://www.khronos.org/

OpenGL/ES homepage

47

48 BIBLIOGRAPHY

Erklärung

Ich erkläre, daß ich die vorliegende Arbeit selbständig, unter Angabe aller Zitate und nur
unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Dresden, den 31. August 2003

