
Diplomarbeit

Design and Implementation of a Trustworthy
File System for L4

Carsten Weinhold

23. März 2006

Technische Universität Dresden
Fakultät Informatik

Institut für Systemarchitektur
Professur Betriebssysteme

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Härtig
Betreuender Mitarbeiter: Dipl.-Inf. Alexander Warg

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 23. März 2006

Carsten Weinhold

Acknowledgments

I would like to thank Prof. Dr. Hermann Härtig for the opportunity to work on such
an interesting and challenging project. I also want to thank my tutor Alexander Warg
for his greatly appreciated support and guidance. Furthermore, my thanks go to Michael
Roitzsch, Thomas Friebel, and Björn Döbel for most helpful discussions and welcome dis-
traction, and to all other people in the Operating-System Research Group at TU Dresden
who supported me.

Contents

1. Introduction 1

2. Basics 5
2.1. Context of the Thesis . 5
2.2. Protecting Data in Untrusted Storage . 5
2.3. Attacker Model . 6

2.3.1. Software-based Attacks . 6
2.3.2. Hardware-based Attacks . 7

2.4. Platform Requirements . 7
2.4.1. General Requirements . 7
2.4.2. Authenticated Booting, Remote Attestation, and Sealed Memory . . 8
2.4.3. Infrastructure required for Recoverability 9
2.4.4. Random Numbers and Key Generation 10

3. Related Work 13
3.1. Protected Storage . 13
3.2. Backup and Recovery . 15
3.3. File Access on the L4 Platform . 16

4. Cryptography to Protect File-System Contents 17
4.1. Confidentiality . 17
4.2. Integrity . 18

5. Design 21
5.1. General Design . 21
5.2. Protecting Individual Files . 23

5.2.1. Confidentiality . 23
5.2.2. Integrity . 23
5.2.3. Recoverability . 24
5.2.4. Meta Data and Per-File Integrity Anchors 25
5.2.5. Summary . 25

5.3. Protecting Directories and Directory Structure 26
5.3.1. General Considerations . 26
5.3.2. Confidentiality . 27
5.3.3. Integrity . 28
5.3.4. Recoverability . 30
5.3.5. Summary . 30

5.4. Trusted File-System Wrapper . 30
5.4.1. Opening and Authenticating Files 30
5.4.2. Moving and Renaming Files and Directories 31

IX

Contents

5.4.3. Deleting Files . 32
5.5. Backup and Recovery . 32

5.5.1. Basic Backup Protocol and File-System Scanner 32
5.5.2. Extended Backup Protocol for Integrity 34
5.5.3. Communication Channel to Trusted Backup Server 34
5.5.4. Recovery . 35

5.6. Buffer Cache . 36
5.6.1. Requirements . 36
5.6.2. Looking up Cache Buffers . 37

5.7. Untrusted Block Server and Trusted Block-Server Layer 38
5.7.1. Untrusted Block Server . 38
5.7.2. Block-Server Layer of the Trusted Component 39
5.7.3. Virtual–Address-Space Consumption 39

5.8. Application Programming Interface . 39
5.8.1. Function Primitives of the Server Library 39
5.8.2. Low-Complexity API Front End . 39
5.8.3. Error Handling . 40

6. Implementation 41
6.1. Thread Structure . 41
6.2. File-System Wrapper and Organization of File Containers 41

6.2.1. Embedded-Tree Structure . 41
6.2.2. Loading Data Blocks into the Buffer Cache 42
6.2.3. Adapting Depth and Breadth of the Embedded Tree 44
6.2.4. Sparse Files . 45

6.3. Buffer Cache . 45
6.3.1. Replacement Strategy . 46
6.3.2. Making the Buffer Cache Aware of Parent–Child Relationships . . . 46
6.3.3. File-Handle Consumption Caused by the Buffer Cache 47
6.3.4. Flushing Single Cache Buffers . 47
6.3.5. Flushing Multiple Cache Buffers at Once 47
6.3.6. Flushing All Dirty Cache Buffers . 49
6.3.7. Flushing a Specific File . 49

6.4. Error Handling . 49
6.4.1. Types of Errors . 49
6.4.2. Server Library . 50
6.4.3. Client Library . 50

6.5. Reused Components . 51
6.6. Issues of the System Platform . 51

7. Evaluation 53
7.1. Performance . 53

7.1.1. Test Environment . 53
7.1.2. Throughput . 53
7.1.3. Page-Fault Resolution . 56
7.1.4. Opening Files . 58

7.2. Code Complexity . 59

X

Contents

8. Conclusion and Outlook 63
8.1. Current State of the Implementation . 63
8.2. Open Tasks . 63
8.3. Outlook . 64
8.4. Summary . 64

A. Glossary 65

B. Raw Data from Measurements 67
B.1. Page-Fault Resolution (Encrypted File Contents) 67
B.2. Page-File Resolution (Plaintext File Contents) 68
B.3. Performance Data for File-Open Operations (Cold Caches) 69
B.4. Performance Data for File-Open Operations (Warm Caches) 70

Bibliography 71

XI

List of Figures

1.1. TrustedFS based on the Nizza Secure-System Architecture. 2

2.1. TrustedFS based on the Nizza Secure-System Architecture using L4/Fiasco
and L4Linux. 5

5.1. Layered Architecture of the Trusted File-System Component. 22
5.2. Ensuring integrity on block level using a hash tree. 24
5.3. A great number of short hash sums in only few data blocks of a shadow

directory give hints regarding the position of a certain directory entry. . . . 29
5.4. The master hash file authenticates all files and shadow directories. 29
5.5. Hashed pathnames in the master entries after renaming a parent directory. 32
5.6. Mapping of cryptographically protected file-container contents into address

spaces. 38

6.1. Block layout of file containers. 42
6.2. Growing the embedded tree in a file container. 44
6.3. Shrinking the embedded tree in a file container. 45
6.4. Parent–child relationships among data blocks from the same file in the buffer

cache (clean and dirty buffers). 48

7.1. Throughput when reading a file (encrypted contents and plaintext contents). 54
7.2. Throughput when writing a file (encrypted contents and plaintext contents). 55

XIII

List of Tables

7.1. Throughput when reading and writing files. 55
7.2. Performance data of page-fault resolution. 57
7.3. Latency when opening files (cold and warm caches). 58
7.4. Source-code complexity of TrustedFS. 60

XV

1. Introduction

Motivation: Users store all kinds of data on their computers and mobile devices. The
spectrum ranges from contact information in address books over email correspondence and
digital photographs to highly critical data such as patient records. These data, and also the
necessary applications, may have different security requirements, nevertheless, users often
keep them on the same computer. Traditional commodity operating systems (OSes) such
as Microsoft Windows and Linux store the user’s data and applications in the file system
and protect them using built-in access control mechanisms. To ensure data confidentiality
even in case an attacker gains physical access to the computer, users can optionally utilize
file-system encryption software. I shall give an overview about existing solutions when
discussing related work in Chapter 3.

However, being based on isolation at the level of user accounts, these protection mech-
anisms may not be effective to protect sensitive data in the file system against spyware
and trojan horses, which often run covertly under the user’s account. Recent studies [1]
showed that the risk of computers to become infected with this kind of malicious software
is still real. Security reports [2] also document that not only commonly used OSes, but
standard software as well, contains vulnerabilities that attackers can exploit to break into
computers.

It is difficult to harden traditional commodity OSes and the various application programs
that users run. These software components consist of several million lines of code, yet the
user relies on their correctness with regard to the protection of his files. However, it is
generally observed that, as software gets more complex, it gets less secure, too. Functional
complexity is a major cause of software errors that can compromise security and error rates
are even higher for device drivers included in OSes [3].

Subject of the Thesis: Given this situation, it is hard for a user to trust in the ability of
the OS and its file-system implementation to protect his most critical data from attacks.
Therefore, it is the objective of my work to design and implement a file system that
consequently addresses the aforementioned problems.

The most important goal to reach is trustworthiness, hence, I chose the name TrustedFS
for the file-system implementation that is subject of my work. Trustworthiness here means
that a user, either a real person or an application program, can trust the file-system imple-
mentation to store data securely and reliably. Of course, the meaning of these adjectives
depends on the specific circumstances and on the data that is to be stored. In my work, I
shall focus on the protection goals (1) confidentiality, (2) integrity, and (3) recoverability.
I shall define these terms precisely in Chapter 2.

To make the implementation secure and reliable, and thus trustworthy, it is necessary to
keep its complexity low. However, if the overall complexity of the file-system implementa-
tion is to be minimized, it will most likely also have limited functionality. An alternative
approach that does not impose such a limitation is based on the observation that the
security-critical parts of an application often represent only a small fraction of its overall
code base. So, the general idea is to split the implementation of TrustedFS into two iso-

1

1. Introduction

lated components, of which one is small and trusted and the other one untrusted. The
former implements all functionality that is critical to security.

However, as I discussed previously, the complexity of the OS is relevant for overall
security as well. Therefore, I chose a system architecture as the basis of my work that
is specifically designed to minimize complexity. In the research paper The Nizza Secure-
System Architecture [4], Hermann Härtig and colleagues describe an architecture that
implements the previously mentioned split-application approach. The main objective of
the Nizza architecture is to minimize an application’s trusted computing base (TCB),
which comprises all code that is essential to meet certain functional and security-related
requirements.1

The foundation of the Nizza architecture is a small microkernel, which is supported
by a set of trusted server tasks that provide basic services. Thus, the complexity of
the underlying OS, which always belongs to the TCB of any application, is also small.
Another important aspect of this architecture is the possibility to run existing commodity
OSes (legacy OSes) on top of the microkernel.

Trusted Computing Base

Service
Basic

Service
Basic

Trusted App

Legacy Operating System

TrustedFS

(Untrusted Component)
TrustedFS

Small Microkernel

(Trusted Component)

Figure 1.1.: TrustedFS based on the Nizza Secure-System Architecture.

For TrustedFS, I decided on a design as illustrated in Figure 1.1, where a minimal
trusted component implements the security-critical functionality of the file system. This
trusted component can reuse services provided by an untrusted part of the implementation
through a trusted wrapper. The untrusted component runs on top of the legacy OS, thus,
it can reuse the already existing functionality of the legacy OS including its file system.
That is, the legacy OS can provide untrusted storage for all file-system contents.

For obvious reasons, the trusted component has to protect the contents of the file system
in untrusted storage, otherwise the user’s data could be subject to successful attacks
regardless of the splitting of the code base. It can ensure confidentiality and integrity using
cryptographic means such as encryption and collision-resistant hash functions. However,
an attacker who gained control over the legacy OS can still delete the encrypted data. To
make sure that the file system can be restored in such a case, TrustedFS must be able to
create backups.

1 For timing-critical applications, the TCB must also ensure timeliness.

2

Outline: In Chapter 2, I shall elaborate on the requirements that have to be met so
that TrustedFS can reach the aforementioned protection goals. I shall also discuss how
to leverage trusted-computing technology such as authenticated booting and sealed mem-
ory for this purpose. Related work and cryptographic basics are subject of Chapters 3
and 4. Chapter 5 will discuss the design of TrustedFS and how to use the cryptographic
algorithms. Chapter 6, gives more insight into important aspects of the implementation,
which I shall evaluate with regard to performance and complexity in Chapter 7. Finally,
I conclude my thesis with a summary of the achieved results after discussing future work
in Chapter 8.

3

2. Basics

2.1. Context of the Thesis

The starting point for my work on a trustworthy file system is the implementation of the
Nizza architecture that is being developed by the Operating-System Research Group at TU
Dresden. It is based on the L4/Fiasco microkernel [5], which supports L4Linux [6], a para-
virtualized Linux, running on top of the microkernel as a legacy operating system (OS).
As I already outlined in the introduction, the trusted component of the file-system imple-
mentation will take care of protecting file-system contents by using cryptography. The
untrusted component can reuse existing infrastructure provided by L4Linux. In particular,
it is a design goal to allow trusted L4 applications to reuse the file system of an untrusted
L4Linux instance through a trusted wrapper.

Trusted Computing Base

Basic
Service

Basic
ServiceService

Basic
Service
Basic

L4Linux

L4 App

L4 App

AppApp

TrustedFS
(Untrusted (Trusted

TrustedFSLinuxLinux

L4/Fiasco Microkernel

Component) Component)

Figure 2.1.: TrustedFS based on the Nizza Secure-System Architecture using L4/Fiasco and
L4Linux.

2.2. Protecting Data in Untrusted Storage

To be trustworthy, a general-purpose file system has to make sure that the following
protection goals can be reached:

Confidentiality: Only authorized users can access file-system data. Unauthorized
attempts to read the data must not reveal any useful information.

Integrity: Any data that the file-system implementation provides to the user is correct,
complete, and up to date. If the data lacks either of these properties, then the
implementation must be able detect this.

5

2. Basics

Recoverability: In case of a modifying attack or data loss after a system failure, the file-
system contents can be restored to a previous valid state. Changes to the file system
that were made after saving this state may be lost after recovery.

By ensuring confidentiality and integrity as defined previously, TrustedFS does not
impose any limitation on the type of data that it can store securely. However, the third
protection goal, recoverability, is weaker than the the more general goal availability. The
latter means that, with regard to file-system contents, an authorized user can access data
whenever he needs to. For obvious reasons, any design that uses untrusted components is
unsuited to ensure availability, because untrusted components may be subject to denial-
of-service attacks. So, the best that TrustedFS can achieve is recoverability, on which I
shall elaborate in Section 2.4.3.

Other goals, such as real-time capability or confinement of information, are not subject
of my work. Being based on the reuse of untrusted components, the described design
does not even meet the necessary requirements. Neither can it ensure timeliness, which
is a prerequisite for real-time capability, nor is it possible to prevent unwanted flow of
information between trusted and untrusted components, as required for confinement.

With all file-system contents being stored in the untrusted storage provided by the
legacy OS, the trusted component is responsible for protecting this data with regard to
the protection goals. To ensure confidentiality, it must encrypt the contents of the file
system and keep the encryption key secret.

To detect unauthorized modifications of the file-system contents, the trusted component
uses collision-resistant hash functions, on which I shall elaborate in Section 4.2. This kind
of hash functions allows to calculate small checksums (hash sums) of large amounts of
data in such a way that even the slightest modification to the data is detectable with high
probability:

hash_sum := H(data)

Modifying the input data of the collision-resistant hash function H, for example manip-
ulating an encrypted file in untrusted storage, causes the hash sum to change. Thus, the
trusted component can ensure integrity, if it can store a reference copy of the correct hash
sum securely.

2.3. Attacker Model

2.3.1. Software-based Attacks

With regard to software, the Nizza architecture partitions the execution environment into
the trusted computing base (TCB) and untrusted code. Figure 2.1 on page 5 gives an
overview about trusted and untrusted components relevant for TrustedFS. Particularly,
the following components belong to the TCB:

• Microkernel

• Memory pagers

• Application loader

6

2.4. Platform Requirements

• Authenticated-booting, remote attestation, and sealed-memory services

• Trusted file-system component

Of course, the user must also trust the applications he uses to access the file system.
As TCBs are application specific, any other components running on the same system are
untrusted. Nevertheless, they may be part of the TCBs of other applications. In the
remainder of my thesis, I shall also use the term trusted domain to denote both the TCB
and trusted storage, whereas untrusted domain denotes untrusted software components
and untrusted storage.

Having two separate domains of trust only makes sense, if an attacker can be restricted
to the untrusted domain. Therefore, I assume that the attacker cannot penetrate the TCB
or access data in trusted storage. However, attacks can completely compromise untrusted
components, even the legacy OS and its kernel. For example, an attacker could gain
remote access to the L4Linux instance using a trojan horse. If he has physical access to
the computer, he might be able to circumvent Linux’ security barriers even more easily.
So, assuming that an attacker can do virtually anything inside the untrusted domain, the
following attacks on the file system have to be considered possible:

• Attacks on Untrusted Software Components: Untrusted components can be
modified to try to exploit weaknesses in trusted components, or they can be shut
down.

• Attacks on Untrusted Storage: Although all file-system data in untrusted stor-
age is protected by cryptographic means, an attacker who is in control of the
untrusted domain can modify or delete this data.

These attacks can happen at any time, even while the file-system implementation is
active. However, with the protection goals defined in Section 2.2 in mind, this attacker
model leaves an attacker operating in the untrusted domain with a denial-of-service attack
as his only way to cause damage.

2.3.2. Hardware-based Attacks

As I already indicated in the introduction, TrustedFS, and also the Nizza architecture
itself, relies on trusted-computing technology, which in turn requires a trusted platform
module (TPM) as specified by the Trusted Computing Group [7, 8]. In Section 2.4.2, I
shall discuss this requirement in greater detail. Regarding possible attacks on hardware
components, I assume that the TPM is tamper resistant1, which means an attacker cannot
compromise it without substantial effort.

Because the file system is also intended to be used in mobile devices, physical destruction
or theft of such a device must be considered a likely threat as well.

2.4. Platform Requirements

2.4.1. General Requirements

The concept of TCBs requires trusted software components to be isolated from untrusted
ones. Therefore, the trusted and the untrusted part of the file-system implementation

1 Apart from the TPM, other hardware components, such as the CPU and the memory subsystem, need
to be trusted, too.

7

2. Basics

must live in distinct address spaces. Nevertheless, they must still be able to communicate
with each other. Because both components need to transfer large amounts of data between
their address spaces, they also need to be able to share a certain amount of memory2 to
avoid unnecessary copy operations.

With regard to TrustedFS, trust is mutual. Not only the user must be able to put trust
in the file-system implementation, but the implementation needs to trust its users as well.
Otherwise, it cannot fulfill the user’s expectation to store data securely. Therefore, the
system platform must provide user-authentication infrastructure, so that only authorized
and thus trusted users can access the file system.

2.4.2. Authenticated Booting, Remote Attestation, and Sealed Memory

In Section 2.3, I derived an attacker model that is based on the assumption that any
software component or storage, except those in the trusted domain, can be subject to suc-
cessful attacks. This assumption will hold as long as the microkernel, the base services, and
the trusted file-system component and its user applications can withstand software-based
attacks originating from untrusted components. Address spaces and well-defined com-
munication interfaces allow for this kind of robustness, if the complexity of the trusted
software components is small enough, so that programmers can create a secure implemen-
tation.

However, an attacker who has physical access to the computer, either a desktop com-
puter or a mobile device, can modify the trusted software stack. He might even be able to
access sensitive data in trusted storage, such as the encryption key for the file system, if
it is not protected by additional measures. Furthermore, a legitimate user might, if he is
not aware of his computer being manipulated, disclose even more information, for example
passwords.

Authenticated Booting and Remote Attestation. To be able to protect trusted software
components, the system platform requires hardware support. Specifically, the Nizza archi-
tecture relies on a TPM, as these hardware components combine relatively low costs with
good security properties. The TPM is used as a basis to implement authenticated boot-
ing and remote attestation. Authenticated booting cannot stop the previously described
attacker from tampering with trusted software components.3 However, it allows, when
used in conjunction with remote attestation, for a user to determine whether a computer
indeed runs the software he expects.

In [9], Bernhard Kauer described design and implementation of a TPM-based infras-
tructure for L4, which provides authenticated booting, primitives necessary for remote
attestation, and sealed memory.

Sealed Memory. Being able to protect trusted software, which does not change often, is
not sufficient. TrustedFS, and other components as well, need to store frequently changing
data persistently. Although it uses untrusted storage for file-system contents, there is also
data that the trusted component cannot encrypt and store outside the trusted domain:

2 Memory that a trusted component shares with an untrusted component must not be used to store
unprotected data.

3 A similar technology, secure booting, can enforce that only certified software runs on a computer. How-
ever, secure booting makes the user completely dependent on hardware and software manufactures,
whereas authenticated booting allows him to decide for himself whether or not to trust a software stack.

8

2.4. Platform Requirements

• The secret encryption key that is used to ensure confidentiality.

• The cryptographic hash sum to verify the integrity of the file-system contents.

This data requires only little storage capacity, a maximum of 32 bytes each. To comply
with the aforementioned attacker model and with the Nizza architecture’s demand for
minimal TCBs, the system platform must provide sealed memory for this kind of data.
Sealed memory enforces access restrictions to stored data, so that only authorized appli-
cations running on top of an authorized OS can use it. Therefore, sealed memory can only
work with either secure booting or authenticated booting.

A sealed-memory implementation does not necessarily have to store data in nonvolatile
hardware-implemented storage. TPM-based solutions, such as the implementation men-
tioned in [9], encrypt all data using an application-specific encryption key, which is derived
from a key private to the TPM and trusted information about the running software stack
including the application itself. If an attacker modifies a component in the software stack,
the sealed-memory implementation can no longer decrypt sealed data, thus leading to
detectable denial of service.4

With this approach, applications can store private data of arbitrary size in untrusted
storage. For example, TrustedFS can easily use the legacy OS’s file system for this pur-
pose. However, encryption does not protect against replay attacks on sealed data. That is,
a trusted application cannot detect that it is using outdated data, if an attacker replaced
it with a previous version. The property that data is up to date is often referred to as
freshness [10, 11]. To allow for freshness guarantees, the sealed-memory implementation
can provide applications with per-application version numbers for sealed data. Provided
that these version numbers cannot be manipulated by an attacker, an application can
always verify whether it got an up-to-date version of its private data unsealed. In princi-
ple, a sealed-memory implementation could also encapsulate this functionality behind its
application programming interface.

For TrustedFS, the system platform must provide both an authenticated boot process
and sealed memory. The latter also needs to be resistant against replay attacks. Using this
technology, access to the most critical data, the file-system encryption key and the anchor
to ensure integrity, can effectively be restricted to a minimal TCB. Assuming a sufficiently
secure user-authentication mechanism, file-system contents are even secure, with regard
to confidentiality and integrity, if an attacker gains physical access to the computer.

2.4.3. Infrastructure required for Recoverability

Reusing the untrusted legacy OS’s file-system infrastructure allows to minimize TCBs,
however, it also leaves the file-system contents with cryptography as their only protection.
An attacker can still damage the data in untrusted storage, as this kind of attack on avail-
ability cannot be prevented by cryptographic means. To ensure recoverability, TrustedFS
must keep a backup copy of all file-system data in an external trusted storage.

I expect my file-system implementation also to be used in mobile devices, which can get
lost or stolen. So, the physical location of the trusted external storage has to be distinct
from that of the mobile device. Still, the backup copy in the external storage has to be
synchronized with the file-system contents on the computer. Nowadays, mobile devices

4 The TPM can only unseal the data, if its platform control registers contain the hash value of the software
stack’s accumulated binary code.

9

2. Basics

are connected to the Internet, so a trusted server seems like an optimal solution to provide
the required storage.

Now, the important question is: What kind of trust does a user have to put in the
server? A naive answer would be that this trust must be ultimate, because, in case the
device including the encryption key is no longer available, the server must store the backup
either as plaintext or in encrypted form together with the encryption key. However, the
trusted server would still have to ensure that only authorized users can retrieve a backup,
so all users were required to prove their authorization using a credential. For such a
credential, other means of backup would be required.5

I therefore assume the availability of an alternate backup mechanism for small amounts
of static data such as the aforementioned credential, or even for the file-system encryption
key. For example, the user could keep a backup copy on a CD or USB stick.

As a consequence, a user just needs to trust the server to store an encrypted backup
reliably, which means ensuring the backup copy’s availability. By using the same method
as to ensure integrity of file-system contents in untrusted storage, the trusted component of
the file-system implementation can also verify correctness and completeness of a recovered
file system. To make sure that the file-system contents are up to date, which is the third
requirement for integrity, it needs to store an additional hash sum for the latest backup
in sealed memory. If a file system needs to be recovered, and the data stored in sealed
memory is lost, too, a user also needs to trust the server always to offer the latest backup.

Again, the trust relationship between a user and the server, in which he puts his trust,
is mutual:

1. A user must trust the server to store backups reliably.

2. The server must trust the user to send only valid backups, otherwise it cannot fulfill
the first requirement.

The second requirement implies that only the trusted component of TrustedFS can be
allowed to send data to the server. Therefore, both sides need to authenticate each other.
In addition to exchanging credentials, mutual attestation of the software stacks running
on the server and the user’s computer can enhance security further.

Communication between the trusted component and the backup server requires a trust-
worthy communication channel. Based on the design principle of trusted wrappers, it is
possible to reuse untrusted network infrastructure for this purpose as well. However, in
the context of my thesis, I shall discuss neither the details regarding the communication
infrastructure, nor shall I elaborate on design and implementation of the trusted backup
server. Nevertheless, I shall specify interfaces and requirements that the aforementioned
components have to meet so that recoverability can be ensured.

2.4.4. Random Numbers and Key Generation

The degree of security that TrustedFS can offer does not only depend on its design and
implementation, but also on the quality of the encryption key being used. Cryptographic

5 Of course, the credential could also be a password, but then an attacker could compromise confidentiality,
integrity, and availability of the backup copy, if he knew this password. Because a significant number of
users choose relatively weak passwords, the trusted server, which is always exposed to any attacker who
has access to the Internet, would become the weakest link.

10

2.4. Platform Requirements

keys are generated from random numbers, so that they are hard to guess. Thus, to
generate the secret encryption key, the trusted file-system component needs a source for
high-quality random numbers. In [12], Hans Marcus Krüger investigated ways to provide
L4 applications with random numbers that can be used for cryptography. He designed
and implemented an L4 server that can, among other applications, be used for TrustedFS.

11

3. Related Work

3.1. Protected Storage

Existing solutions that provide cryptographically protected storage are based on var-
ious approaches. Low-level solutions, such as Linux’ Crypto Loop or its successor
dm_crypt [13], provide transparently encrypted containers. These containers can host
any file system supported by the operating system (OS). BestCrypt [14], which is also
available for Microsoft Windows, is one of many commercial solutions that work essen-
tially in the same way. However, none of the available solutions can ensure the integrity
of the encrypted data.

Another commonly used approach is to add a security layer on top of an existing file-
system implementation. The Cryptographic File System (CFS) [15] for Unix reuses infras-
tructure of the Network File System (NFS). Its main component is an NFS server that
runs on the user’s computer and transparently encrypts filenames and file contents. The
Transparent Cryptographic File System (TCFS) [16] is essentially a network file system.
It is implemented as a kernel-space NFS client, which provides access to encrypted files
on a, not necessarily remote, NFS server. In contrast to CFS, this file system can also
ensure data integrity by using cryptographic hash functions. However, it cannot detect
replay attacks on block or file level.

NCryptfs [17] and EncFS [18], which are only available for Linux, implement a more
direct approach, as they are wrappers for local file systems. The latter operates in user
space and can ensure confidentiality and limited integrity. That is, EncFS can detect mod-
ifications inside a block, but it will accept any block or even file that has been replaced by
an older version of itself. NCryptfs is a kernel-space extension that ensures confidential-
ity. In a technical report [19], the authors briefly describe how to ensure integrity using
cryptographic hash functions. However, I suspect that their implementation is susceptible
to replay attacks as well.

The general idea of extending an existing file-system implementation with cryptographic
security mechanisms is similar to the trusted-wrapper approach that I chose for TrustedFS.
However, the aforementioned solutions do not meet all security requirements that I set for
my implementation.

Microsoft Windows 2000 has been the first release of Windows with built-in support for
cryptographic file protection. However, the Encrypting File System (EFS) only takes care
of transparent encryption. The upcoming Windows release, Windows Vista, will offer two
features called BitLocker and Secure Startup [20]. The former implements transparent
encryption of the system partition, whereas the latter intents to ensure the integrity of
the boot process. Using secure booting based on a trusted platform module (TPM),
Secure Startup protects the master encryption key, and thus the EFS keys as well, and
the integrity of the boot loader. The available documentation [20] vaguely mentions that,
once the boot loader passed control to the validated OS, the OS will check the integrity

13

3. Related Work

of each executable that is to be run. However, the documentation does not specify any
details.

BitLocker and Secure Startup only address off-line attacks. In contrast, TrustedFS is
designed to handle on-line attacks on untrusted storage as well.

There are also solutions that, just like TrustedFS, have been designed specifically to
operate on untrusted storage. The Protected File System (PFS) [21] is an in-kernel exten-
sion for existing journaling file systems. It can ensure integrity, but not confidentiality,
of user and meta data. PFS is intended for use on servers that store file systems in an
external untrusted storage, such as a storage area network. It is vulnerable to replay
attacks.

The Secure Untrusted Data Repository (SUNDR) [10] is a network file system that
stores data on untrusted remote servers. It ensures confidentiality as well as integrity of
the file system, including meta data. SUNDR guarantees relative freshness of file-system
contents. That is, it allows a user to view all changes made by other users of the distributed
file system, or, if the server misbehaves, no changes at all.

SiRiUS [11] is another network file system operating on untrusted remote storage. It
implements access control using cryptographic means and it can ensure confidentiality
and integrity. SiRiUS also guarantees the freshness of meta data. That is, it can detect
replay attacks.1 Under certain circumstances, when multiple clients wrote to the same
directories, an extended version called SiRiUS-U is able to ensure freshness of user data
in these directories as well.

PFS, SUNDR, and SiRiUS operate on remote storage and assume the local system to
be fully trusted, whereas TrustedFS only relies on the integrity of the microkernel-based
OS, but not on the legacy OS. Being based on traditional commodity OSes and platforms,
the security that any of the aforementioned solutions can provide is limited:

1. All previously mentioned solutions are designed for traditional monolithic OSes.
Thus, they rely on large trusted computing bases (TCBs) in the magnitude of several
million lines of code. Because of their enormous size, it is likely that the TCBs
contain exploitable weaknesses, which an attacker can use to penetrate the system,
and thus compromise file-system security.

2. Solutions that purely rely on traditional local storage, such as NCryptfs and EncFS,
cannot ensure freshness. They have no way to store integrity information in such a
way that it is secure from software-based attacks, in this case replay attacks.

TrustedFS consequently addresses these problems. The Fiasco microkernel and the
base services of the Nizza architecture consist of merely tens of thousands of lines of
code.2 With the trusted component itself being minimal, it is much more realistic that
the TCB can be made secure. By storing integrity information in sealed memory, as I
specified in Section 2.4.2, TrustedFS can detect replay attacks, and thus ensure freshness
of file-system contents.

1 The freshness of the meta data is essential to prevent users from regaining previously revoked access
rights, which are granted by per-user encrypted keys included in the meta data. These keys are necessary
to decrypt file contents or to generate valid signatures upon write accesses.

2 These figures appear in The Nizza Secure-System Architecture [4].

14

3.2. Backup and Recovery

The Trusted Database System (TDB) [22] addresses the aforementioned problems
regarding small TCBs and secure storage for critical data as well. It operates on untrusted
storage and ensures confidentiality and integrity of all user and meta data. TDBs integrity
guarantees also include freshness, for which the design explicitly requires a small tamper-
resistant storage.3 This storage contains a single hash sum that authenticates the root
node of a hash tree [23], which in turn authenticates the whole database. To protect
itself from software-based attacks, TDB also requires a trusted processing environment.
In the TDB paper [22], Maheshwari and coworkers mention a dedicated CPU and memory,
however, a TPM-based solution using authenticated or secure booting can ensure similar
protection.

TDB does not provide functionality as rich as offered by other database systems. In
contrast, TrustedFS implements a trusted wrapper, which allows it reuse as much as
possible of available legacy infrastructure, so that it can offer rich functionality with a
minimal TCB.

The Trusted Computing Group (TCG) [8] currently works on a specification for trusted
storage devices. At the time of this writing, the TCG Storage Work Group [24] has not
yet published this specification. Among others, it is expected to cover use case such as
(1) protection of sensitive data, (2) encryption of data for a specific host, (3) logging for
forensic purposes, and (4) secure firmware upgrades.

3.2. Backup and Recovery

TDB performs incremental backups of the database in untrusted storage. It creates con-
sistent snapshots including integrity information that it can use for recovery. However,
the backup storage is untrusted as well and it must be permanently available during
operation. An attacker could delete data in both storages to destroy the database. In
contrast, TrustedFS creates consistent snapshots on a trusted backup server as described
in Section 2.4.3. Thus, it can ensure recoverability.

SUNDR uses an untrusted server to store file-system contents and relies on the server
operator to take care of backups. Upon recovery, SUNDR can also restore parts of the file
system from client-local caches, if the restored backup on the server is too old. SiRiUS
relies on server operators to create backups as well, for example using standard backup
software. Nevertheless, both SUNDR and SiRiUS make no explicit assumptions on avail-
ability or recoverability.

pStore [25] is a secure peer-to-peer backup system using storage provided in a network
of untrusted peers. It uses cryptographic means to ensure confidentiality and integrity
as well as to implement access control and per-user name spaces. pStore splits files into
chunks that are replicated on a certain number of peers. Only authorized users, who are
in possession of a secret key, can create valid chunks in their name space or delete existing
ones from it. In the pStore paper [25], Batten and coworkers performed a reliability
study of their work. It showed that, when distributing four copies of each chunk among
the remote peers, at least 25 out of 30 nodes need to be available to reach one hundred
percent recoverability. Although increasing the number of copies will allow for more nodes
failing, it also means increased bandwidth requirements for backup.

3 Alternatively, TDB can use tamper-resistant hardware-implemented version counters to check whether
integrity information is up to date.

15

3. Related Work

The Distributed Internet Backup System (DIBS) [26] stores backups in a peer-to-peer
network as well. It assumes storage provided by peers to be untrusted with regard to con-
fidentiality and integrity. DIBS encrypts and digitally signs files, which it then distributes
to all participating peers. It bases its recoverability guarantees on Reed–Solomon error
correction [27]. Each peer receives a differently encoded chunk of a file, such that it is
possible to reconstruct the whole file, if at least half of the originally distributed chunks
are available at recovery time.

The DIBS approach requires less network bandwidth than pStore-like solutions. Never-
theless, distributed backup strategies require a significant number of peers to be available
for both backup and recovery. These approaches might be well suited for peers in a local
area network. However, because a backup and recovery solution in the context of my work
would need to ensure full recoverability for mobile devices as well, the reachability of a
critical mass of peers could be a relevant problem. The solution using a dedicated trusted
backup server that I chose for my work also requires less network bandwidth.

TPM key backup is a problem on a lower level, nevertheless, it is related to my work
because TPM-based authenticated booting, remote attestation, and sealed memory are
prerequisites for my file-system implementation.

A TPM has only a small nonvolatile storage, which cannot store all cryptographic keys
and all sealed data that are needed by the OS and the applications. Therefore, most of
these keys and the sealed data remain, cryptographically protected by root keys residing
in the TPM, in an untrusted persistent storage. Obviously, it is necessary to back up the
data in this storage as well. Furthermore, it must be ensured that the encrypted keys
and the sealed data can be recovered even if the TPM containing the root keys is no
longer available. The TCG conceptually solved this problem by allowing TPM keys to be
migrated to other TPMs, or to be exported for backup purposes. In the Interoperability
Specification for Backup and Migration Services [28], the TCG specifies means for key
backup.

Regarding sealed application data that does not change often, the user can maintain
backup copies in a safe place. For example, he might keep the sealed encryption key for
the trustworthy file system on commodity backup media, which he can lock into a vault
or give to a trusted person.

3.3. File Access on the L4 Platform

The L4 Virtual File System (L4VFS) [29] implements an input–output infrastructure
with POSIX-like semantics. It consists of a set of client-side libraries and servers, which
provide objects in a hierarchical name space. Applications can access files provided by
L4VFS file servers using functions like open() and read(). Currently available file servers
allow either read-only access to persistently stored files or read–write access to temporary
files residing in main memory. However, these servers cannot ensure confidentiality and
integrity. Nevertheless, the L4VFS infrastructure is suitable to allow existing applications
to use the trustworthy file system, if the implementation provides the necessary L4VFS
server interface.

16

4. Cryptography to Protect File-System
Contents

4.1. Confidentiality

Almost all the storage solutions that I presented in Section 3.1 use a symmetric block
cipher, such as the Advanced Encryption Standard (AES) [30], Blowfish, Twofish, or
Triple-DES, to keep data confidential. These algorithms have been subject to extensive
review and are considered secure. However, block ciphers can only operate on small data
blocks, usually with a length of 128 bit. To overcome this limitation, you can use the block
cipher in cipher-block–chaining mode (CBC mode), which is also what most encrypting
storage systems do. Disk sectors, or file-system blocks, are divided into n cipher blocks
that are encrypted as follows:

c0 := Ek(p0 ⊕ iv)
c1 := Ek(p1 ⊕ c0)
c2 := Ek(p2 ⊕ c1)
. . .
cn := Ek(pn ⊕ cn−1)

ci is the ciphertext block created by encryption algorithm E using key k. The input data
of each iteration is the result of the xor operation applied to the plaintext block pi and
the previous ciphertext block ci−1. For the first iteration, an initialization vector (IV) is
used instead of the previous ciphertext block, which would be part of the previous sector.
Decryption works reversely.

If the IV being used is of high quality1, a block cipher in CBC mode allows to securely
encrypt any data block with a size that is a multiple of the cipher-block size. However,
many implementations of encrypting storage systems use weak IVs. For example, the
widely used Linux–Crypto-Loop implementation encrypts disk sectors using their plain sec-
tor numbers as IVs, thus making itself vulnerable to related-IV attacks2 such as watermark
attacks [31]. By placing a number of bit patterns (watermarks) in a file, an attacker can
detect the presence of that file in an encrypted container with high probability, although
he does not know the encryption key.

To prevent related-IV attacks, an encrypting storage system can make use of a crypto-
graphic hash function to calculate IVs. Hashing not only the sector number n, but also
a secret salt s, makes it impossible for an attacker to predict the IV for a certain block
based on its sector number:3

iv := H(s ‖ n)

1 Ideally, an initialization vector is used only once, so that encrypting the same data several times always
results in different ciphertexts.

2 Related-IV attacks are based on the knowledge, how IVs change from one encryption run to another.
3 Hash functions take byte streams as their input data. The ‖ sign denotes concatenation.

17

4. Cryptography to Protect File-System Contents

If the cryptographic hash function has the Avalanche Property4, an attacker who does
not know the secret salt s is also unable to tell how one IV differs from another, thus he
cannot mount a related-IV attack. Newer versions of the Linux-dm_crypt implementation,
which is the successor of Crypto Loop, use this approach with the secret salt being the
encryption key.

For TrustedFS, I decided to use the CBC mode in conjunction with the IV-generation
method described previously and with AES as the block cipher. AES is widely accepted,
considered both secure and fast, and there are open source implementations available.
Another important reason is that hardware vendors started to implement instructions to
accelerate basic AES operations into their processors, creating the potential for a consid-
erable performance gain.

AES officially supports key sizes of 128, 192, and 256 bits. Guidelines published by the
U.S. NIST in [32] recommend any of these key sizes to be used for encryption for at least
the next ten years.

4.2. Integrity

The attacker model that I derived in Section 2.3 implies that the encrypted file-system
contents in the untrusted storage cannot be protected from unauthorized tampering. The
only protection the trusted component of the file-system implementation can achieve, is
that it detects any unauthorized modification, so that falsified data will not be used.

To confirm the authenticity of any data that is read from untrusted storage, the trusted
component must calculate a checksum of the data and check whether it matches a reference
copy. The reference copy is critical to provide integrity, therefore, it must be stored in
a secure nonvolatile storage, such as sealed memory. I discussed this requirement in
Section 2.4.2.

With the reference checksum being stored securely, an attacker operating outside the
trusted domain cannot exchange it. However, it is also necessary to ensure that he cannot
modify file-system contents in such a way that the resulting checksum remains unchanged.
Collision-resistant hash functions being used to calculate the checksum meet this require-
ment. Another approach to detect unauthorized modifications of file-system data would
be to use digital signatures [33]. However, the main advantage of digital signatures, allow-
ing to identify the party that issued a signature, is not relevant in my work. Also, because
digital signatures are based on asymmetric cryptographic algorithms, they have higher
run-time costs in terms of CPU time. Therefore, I decided to use a collision-resistant hash
function to ensure file-system integrity.

Specifically, I chose SHA-1 [34] from the Secure Hash Algorithm family. SHA-1 provides
good performance and it is widely used and well studied. At the moment, it is consid-
ered to be secure, however, there have been reports about a successful attack on SHA-1.
In [35], Wang and colleagues claim to have developed a collision attack5 that has a lower
computational complexity than a brute force attack. For the purpose of authenticating

4 In cryptography, the avalanche effect means that small changes in a cryptographic algorithm’s input
data cause its output to change significantly. The Strict Avalanche Criterion requires that a one-bit
change in the input data results in each bit of the output to change with a probability of 0.5.

5 In a collision attack, an attacker tries to find two different messages that have the same hash value.

18

4.2. Integrity

file-system contents, it is important that the hash function in use is not vulnerable to
preimage attacks.6

Currently, the aforementioned attack does not seem to weaken SHA-1 with regard to
preimage attacks. Also, to mount a preimage attack, an attacker must be able to choose
the whole message he wants to fake. However, if the message also consists of a secret
part that is unknown and inaccessible to the attacker, preimage attacks are no longer
possible. This construction effectively turns SHA-1 into a keyed hash function similar to
HMAC [36].

In Section 5.2.2, I will present a design for the cryptographic part of the trusted file-
system component that uses SHA-1 in this way to ensure integrity. SHA-1 also has all
the properties that are necessary so that the trusted component can use it to calculate
initialization vectors as described in Section 4.1.

Should further research point out additional weaknesses in SHA-1, it is recommended
to replace it with a stronger hashing algorithm, possibly SHA-256, SHA-384, or SHA-512.
However, all currently available trusted platform modules also use SHA-1. So, at the
present time, using a more secure algorithm for the TrustedFS would not enhance security
in general.

Using two different algorithms to provide for confidentiality and integrity, for example
AES in CBC mode (AES-CBC) and SHA-1, is often referred to as the generic-composition
approach. But there also exist modes of operation for block ciphers that take care of both
encrypting and authenticating the processed data. These authenticated encryption modes
can be divided into two classes: (1) One-pass modes and (2) Two-pass modes. They repre-
sent an alternative to generic composition, nevertheless, I decided not to use such a mode
in the implementation of TrustedFS for various reasons. Two-pass modes are slower than
AES-CBC and SHA-1, as they double the number of block-cipher operations. One-pass
modes, such as Offset Code Book (OCB) mode can outperform an implementation based
on generic composition, but most of them are patented. Galois/Counter mode (GCM) is
free of such intellectual property claims, but its performance is comparable to AES-CBC
and SHA-1.

I also came to the conclusion that authenticated encryption modes provide less flex-
ibility than the generic-composition approach, which allows encrypting and hashing to
be performed independently from each other. For example, if the contents of a certain
file do not need to be kept confidential, the generic-composition approach allows to omit
encryption and decryption, thus improving performance significantly.

6 In a preimage attack, an attacker tries to find a message that, when hashed, results in a given hash
value. Preimage attacks are more difficult than collisions attacks, in which any two messages with the
same hash value constitute a collision.

19

5. Design

5.1. General Design

Splitting the implementation of TrustedFS into a trusted and an untrusted part is vital
to minimize the trusted computing base (TCB). The untrusted component can provide all
functionality that is not critical for maintaining security. To take advantage of existing
legacy software, it should also reuse as much of the available infrastructure as possible. The
trusted component, on the other hand, is responsible for ensuring confidentiality, integrity,
and recoverability, as stated in Section 2.2. That is, it must (1) encrypt and decrypt
file-system contents, (2) be able to detect unauthorized modifications to the file system,
including replay attacks, and (3) it must send backups to the trusted backup server. It
should not implement functionality that is not necessary with regard to these requirements.
However, file-system performance cannot be ignored, so every design decision is also a
tradeoff between a minimal TCB and reasonable performance.

Untrusted Component: Currently, L4Linux is the only legacy operating system (OS)
available on the L4 platform.1 Processes running inside an L4Linux instance and L4 tasks
can communicate using L4 inter-process communication (IPC). Therefore, I decided to
implement the untrusted component, the untrusted block server, as an L4Linux process.
Thus, it can reuse the Linux file system as untrusted storage.

Trusted Component: To allow TrustedFS to be used for a variety of purposes, I chose to
encapsulate the implementation of the trusted part in a server library. A front end, which
is not part of the library itself, provides a specific application programming interface (API).
The library can be used as the basis of an L4 server and it is even possible to link the
library directly into an application, giving it exclusive access to the file-system contents.2

Figure 5.1 gives an overview of the trusted component’s layered architecture. As indi-
cated in this figure, the trusted component also implements a buffer cache. It adds consid-
erable complexity to the TCB, but these costs cannot be avoided. A buffer cache holding
decrypted and authenticated data can reduce the number of data transfers between the
trusted and the untrusted domain to a great extent. Thus, it allows to reduce the run-
time overhead introduced by the cryptographic operations, which need to be performed
whenever data enters or leaves the trusted domain. Nevertheless, a cache is also necessary
to reduce the run-time costs to ensure integrity to an acceptable level, as I shall explain
in Section 5.6.1.

Reusing Untrusted Storage: The probably most important design decision is the one
regarding the way how the untrusted storage is to be used. There is a whole spectrum of

1 Unmodified legacy OSes can run inside virtual machines, as provided by L4VM, but there is currently
no way for L4 tasks to communicate with processes running in such a virtual machine.

2 In this scenario, access control is enforced by the authenticated boot process. Controlling access to the
files provided by a separate file server requires additional measures.

21

5. Design

Buffer Cache

Block −Server Stub

File System

ApplicationApplication

Untrusted Domain

Storage

Cryptography

(Confidentiality and Integrity)

Backup

(Recoverability)

Front End / API

Trusted Domain

Untrusted

Block Server

Untrusted

Figure 5.1.: Layered Architecture of the Trusted File-System Component.

design alternatives. The following two approaches are extremes, of course, other solutions
that are a mixture of both exist as well:

1. Complete File System in the Trusted Component: The trusted part imple-
ments all functionality needed to provide files and directories, which are stored in
a single container in the untrusted domain. The legacy OS only takes care of per-
sistently storing the container on disk, thus only its disk driver is reused. Such a
solution is similar to Linux’ Crypto Loop or dm_crypt [13].

2. Minimal File-System Wrapper in the Trusted Component: A file-system
wrapper in the trusted part only ensures confidentiality, integrity, and recoverability
of the file-system contents. The legacy OS takes care of how to store files and
directories and may also provide file lookup routines. This alternative is much like
the approach taken by EncFS [18] on Linux.

Any of the design alternatives uses encryption and cryptographic hash sums to ensure
confidentiality and integrity. The first approach requires only the file system container
to be protected, whereas the second one has to provide confidentiality and integrity for
indiviual files and also for the directory structure.

It is a complex task to design and implement a new file system, especially, if it is expected
to provide high performance. By adapting an existing code base instead, you can reduce
the amount of time that is needed. However, both size and complexity of the trusted
component will grow considerably, if it contains a complete file-system implementation.

Reusing the file system of the legacy OS according to the second approach will result
in a less complex trusted component. Such a design still allows efficient read and write
accesses to files and it is also possible to reuse existing functionality for directory handling
and file lookup. On the downside, the number of files is revealed, as well as their sizes and
location in the directory hierarchy. Special care must also be taken to ensure the integrity
of the directory tree itself.

Reusing the untrusted legacy OS including its file-system infrastructure via a trusted
wrapper seems more promising with regard to the goal of minimizing the TCB. Therefore,

22

5.2. Protecting Individual Files

I chose to use a design that is close to this approach as the basis of TrustedFS. In the
following sections of this chapter, I shall examine to which extent the legacy OS can be
reused and where limitations prevent reuse of certain functionality.

5.2. Protecting Individual Files

TrustedFS allows files to have an arbitrary size, so they cannot always fit into the buffer
cache. Thus, the trusted file-system component must be able to cache just parts of a file,
while it still needs to ensure confidentiality and integrity. To meet these requirements,
TrustedFS treats file containers in untrusted storage as chains of data blocks, which, when
decrypted and authenticated, can be stored in cache buffers.

5.2.1. Confidentiality

By using a block cipher in CBC mode, as described in Section 4.1, the trusted component
can securely encrypt and decrypt data blocks independently from each other. However,
the method to calculate IVs must be adapted for use with multiple files. Basically, there
are two ways to do that, either by making the secret salt s a per-file secret, or by making
block numbers unique among files.

Introducing per-file secrets would increase file-creation costs, because the trusted com-
ponent would need to obtain a high-quality random nonce for each newly created file.
Alternatively, the secret can remain global for all files, but instead of just using the block
number to make an IV unique, you also hash a unique file number u:

iv := H(s ‖ u ‖ n)

These file numbers have to be unique among all files ever created, so they must not be
reused once a file has been deleted.

I chose the second alternative because of its simplicity. It is easy to make sure that IVs
are unique, for example by incrementing the assigned file number for each newly created
file. This approach ensures the same degree of resistance against related-IV attacks as the
original IV-calculation method described in Section 4.1.

5.2.2. Integrity

Ensuring integrity of file contents is more difficult. Because file-system data in untrusted
storage can be subject to unauthorized tampering at any time, the trusted component has
to ensure the integrity of each data block it reads from a file container. To verify that data
is indeed unmodified, the trusted component makes use of the hashing method described
in Section 4.2. Particularly, the following requirements have to be met:

• Modifications inside a data block or replacing a data block with an older version of
itself must not go unnoticed.

• Moving data blocks, adding new ones, or deleting them must not go unnoticed.

The trusted component needs to know where each data block belongs to and which
hash sum its content is supposed to have. This information must be trustworthy, however,
sealed memory cannot provide sufficient storage capacity, as the number of data blocks in
a file system is virtually unlimited. Therefore, the untrusted file container must store all

23

5. Design

information regarding data-block integrity in such a way that a single hash sum suffices
to authenticate all data blocks. In Section 5.3.3, I shall elaborate on how to ensure the
integrity of a file container’s contents using these per-file hash sums.

As calculating a single hash sum that authenticates all data blocks at once is not possible,
there remain two alternatives for block-level integrity:

1. Authenticate Data Blocks In Place: Per-block hash sums authenticate a block’s
content and its location, which is the tuple consisting of the unique file number, the
block number, and a version number. The version number is necessary to prevent
replay attacks on block level. By hashing the total number of blocks in the file con-
tainer and all version numbers, the trusted component can meet all aforementioned
requirements for block-level integrity.

2. Authenticate Data Blocks Using a Hash Tree: Data blocks in a file container
are nodes in a self-protecting hash tree [23], as illustrated in Figure 5.2. Starting at
the root node, all nodes along a path authenticate their child nodes. Leaf nodes at
the lowest level of the tree finally store the user’s data. The hash sum of the root
node is sufficient to authenticate all data blocks that are part of the tree.

Root Node (Authenticates
its Direct Child Nodes)

(User Data)
Leaf Nodes

Internal Nodes
(Authenticate
Leaf Nodes)

Figure 5.2.: Ensuring integrity on block level using a hash tree.

The first solution is extremely simple and therefore tempting. Unfortunately, authenti-
cation costs scale linearly with a file’s size. Before it can load any data block, the trusted
component has to load and authenticate all version numbers. Although this approach
allows for an extremely small TCB because of its simplicity, it is also limited to use cases
in which only small files with large block sizes are needed.

Therefore, I chose the second alternative as it is better suited for a general-purpose file
system. However, it is also more complicated, because it induces parent–child relations
among data blocks. As parent nodes authenticate their child nodes, the trusted compo-
nent’s block-server layer cannot read a child node before its parent is in the buffer cache.
In Section 5.6.1, I shall discuss this difficulty in detail.

5.2.3. Recoverability

The decision to embed a self-protecting hash tree into file containers also has advantages
with regard to recoverability. To allow recovery in the first place, the trusted file-system
component must send backups to the trusted server, as explained in Section 2.4.3. With
mobile devices in mind, I must assume that the network connection to the server is not

24

5.2. Protecting Individual Files

permanent, expensive in terms of money, and that bandwidth is limited. Therefore, it is
crucial that only the differences made since a previous backup (checkpoint) are sent to the
server.

With regard to files, the trusted component must keep track of all data blocks that
were modified after creating a certain checkpoint. It can easily identify those, if both data
blocks and checkpoints are assigned version numbers. Therefore, the trusted component
stores a block’s version number in its parent node, whereas the trusted server takes care
of the checkpoint’s version information.

Assuming that n is the checkpoint version, each data block with a version less than
or equal to n has not been modified. Thus, to create a new checkpoint, the trusted
component needs to send all blocks that have a version greater than n to the server. After
synchronizing the backup copy with the primary copy on the user’s computer, the server
sets m as the version of the newly created checkpoint, where m is the highest version
number that exists in the primary copy as reported by the trusted file-system component.
When the user’s actions cause data blocks to be modified after the new checkpoint has
been created, the trusted component will tag all those blocks with version m + 1.

In Section 5.5, I shall elaborate on the complete backup protocol.

5.2.4. Meta Data and Per-File Integrity Anchors

Regarding meta data, such as file size and time stamps, the trusted file-system compo-
nent cannot rely on the untrusted legacy OS. It is not even possible to hide this kind of
information from an observing attacker who has access to the file containers.3

To provide client applications with trustworthy meta data, the trusted component must
implement the necessary functionality. Meta data itself has to be stored in the file con-
tainers, however, storing it inside the embedded tree is infeasible. Therefore, I decided to
reserve the first data block of each file container for it.

To ensure the integrity of the meta data, the trusted component must hash it, too.
For practical reasons, I decided to use this hash sum to authenticate all contents of a file
container. To fully establish the chain of trust, I added the hash sum of the embedded
tree’s root node to the meta data, as well as information on where to find the reference
hash sum for the file container in the first place.

To be able to calculate IVs, the trusted component also requires the unique file number
to be included in the meta data.4

5.2.5. Summary

Using the measures that I described in the previous sections, TrustedFS can provide files
with arbitrary sizes. With a minimal TCB, it can take care of all desired protection
goals and it reuses already existing untrusted infrastructure. Thus, it does not need to
take care of low-level file handling, such as block allocation, fragmentation avoidance, or
storing data persistently on a hard disk.

3 If unused bytes in the last block of a file container are not truncated, an attacker can only learn that a
file fits into a certain number of fixed-size blocks.

4 For the first data block containing the meta data, the trusted component does not need to know the
unique file number in advance. Instead, the plaintext meta data can be prepended by a precalculated
IV itself.

25

5. Design

5.3. Protecting Directories and Directory Structure

5.3.1. General Considerations

The idea of a trusted wrapper reusing untrusted legacy infrastructure works well for indi-
vidual files. However, the question whether a wrapper can also be useful to implement
trustworthy directory handling and lookup is not trivially answered.

Storing each file that belongs to the trustworthy file system in its own untrusted file
container already imposes limitations on confidentiality, because the number of files and
the file sizes cannot be hidden. Even more, reusing directory-handling and lookup func-
tionality of the legacy OS will disclose the directory structure. Nevertheless, the filenames
of file containers can still be encrypted.

The second critical protection goal in this context is integrity. On file and directory
level, the trusted wrapper would have to meet the following requirements (the terms file
and filename also apply to directories):

1. Performing a filename-based operation must always result in accessing the correct
file. Replay attacks on files must be detectable.

2. Files that never existed, or that the user deleted previously, must not be accessible.

3. It must be detectable, if a file is inaccessible due to an attack (e.g., because its file
container has been deleted).

4. Reading directory contents must result in a correct, complete and up-to-date list of
filenames.

Pure Wrapper. If the trusted file-system component reuses the legacy OS’s lookup func-
tionality as outlined previously, it can fulfill the first two requirements with little additional
infrastructure. Particularly, it needs trustworthy information to verify content and loca-
tion of each file in the file system. The trusted component can store this information in
a special file, which in turn is protected by its hash sum being stored in sealed memory.
This kind of infrastructure is necessary in any case.

Requirements 3 and 4 depend on a redundant trustworthy list of filenames for each
directory, because the legacy OS’s routines, in this case L4Linux’ open(), stat(), and
readdir() functions, cannot be trusted to provide correct information.

Wrapper with Complete Name Service. So, the pure-wrapper approach requires direc-
tory functionality to be duplicated in the trusted component. Also, reusing untrusted
lookup routines necessitates the disclosure of the directory structure.

Thus, to overcome the limitations regarding confidentiality, I considered the possibility
of implementing a trusted file-lookup mechanism as well. Based on such a design, the
trusted component could reuse L4Linux’ file system as a flat name space. For example,
it could use plain numbers, which are unrelated to the the real directory structure in the
trusted domain, to name file containers.

However, I had to realize that even this approach cannot always ensure the desired
degree of confidentiality. After all, an attacker can still observe access patterns regarding
individual data blocks in the naming database. Whenever the trusted component has
to resolve a pathname, it must access at least one of these data blocks to look up each

26

5.3. Protecting Directories and Directory Structure

path element. So, it is not possible to avoid disclosing information about the directory
structure.

In any case, an implementation of a complete naming infrastructure in the trusted
component would be complex. Although a simple solution to do file lookups will enlarge
the TCB only moderately, a competitive implementation has to satisfy stronger demands.
I identified the following key requirements:

• Naming Database: The whole naming database, which contains the tree of file-
names, must be stored in a single file container. Using per-directory containers is
infeasible because opening such a directory file to look up each path element is too
expensive.

• Fragmentation Avoidance: With the contents of all directories stored in a single
file container, fragmentation becomes a relevant problem when reading directory
contents and, depending on the search strategy, when performing lookups.

• Efficient Lookup: Resolving a pathname causes a filename lookup for each path
element, so lookup performance is critical. The lookup algorithm should avoid
unnecessarily loading data blocks from the naming database, because decrypting
and authenticating them is expensive. For example, the implementation could use
B-Trees5, which offer logarithmic lookup complexity, or hash tables.

Given the time frame for my thesis and the little gain in secrecy, I could not justify
the engineering costs for such an implementation. Instead, I decided on the pure-wrapper
approach, which allows to reuse at least parts of the highly-optimized naming infrastruc-
ture provided by L4Linux. It is also more interesting from a scientific point of view, as it
allows to test to which extent the design principle of trusted wrappers can be applied in
practice.

Nevertheless, a solution that fully implements naming in the trusted component should
be subject of a future work.

5.3.2. Confidentiality

As each file is stored in its own file container, untrusted components are able to do lookups
based on a filename. So, if it assigns encrypted filenames to the file containers, the trusted
component can make use of L4Linux’ optimized lookup routines and directory caches.

Reusing the legacy OS’s functionality in this way requires the names of the file containers
in untrusted storage to reflect the directory structure in the trustworthy file system. As I
shall explain in Section 5.3.3, the trusted component does not need to be able to decrypt
filenames that are used in the untrusted domain. Therefore, it is possible to use a collision-
resistant hash function to conceal plaintext filenames from unauthorized parties.6 Doing
so makes sure that all encrypted filenames have the same length.

Hashing only the filename is insecure, because an attacker can still guess the plaintext
filename and then calculate its hash to verify whether his guess was correct. To prevent
such known plaintext attacks, you can use a method similar to the one used for calculating
initialization vectors:

5 B-Trees are often used for file systems and databases, for which, due to slow storage, the costs for
accessing a node are significantly higher than those for searching within a node.

6 In theory, it might happen that hashing two distinct filenames results in identical encrypted names,
however, the probability for such a collision is extremely small.

27

5. Design

encrypted_name := H(s ‖ plaintext_name)

Again, s is a secret salt unknown to the attacker, so he is no longer able to verify the
correctness of a guessed plaintext filename.

Unfortunately, hashing identical plaintext filenames, even in different directories, will
always result in the same encrypted filename. Using per-directory salts would solve this
problem, but this solution is equivalent to fully implementing file lookup in the trusted
component. The only remaining solution that reuses the legacy OS’s lookup infrastructure
is to make the encrypted filename of each path element dependent on all preceding path
elements. For example, the path /dir/subdir/file would be encrypted as follows:

encrypted_name := H(H(H(s ‖ ”dir”) ‖ ”subdir”) ‖ ”file”)

This solution would even allow to store all file containers in a single directory of the
untrusted storage, because they would have distinct filenames. So, it seems that the real
directory structure could be hidden entirely. However, with this approach, renaming a
directory will invalidate all encrypted filenames in the sub tree below this directory. Thus,
all affected file containers would have to be renamed as well, which would not only cause
severe performance degradation, but it would also reveal to an observing attacker that all
these files belong to the same sub tree.

Therefore, this approach to encrypt filenames is only feasible, if a file-system implemen-
tation does not allow to rename or move directories. However, I consider this limitation
to be too restrictive for a general-purpose file system, so I decided to use the first hashing
method to keep filenames secret.

Nevertheless, the hash sum of all path elements is useful to ensure one of the require-
ments for file-level integrity. In Sections 5.3.3 and 5.4.2, I shall discuss this aspect in
greater detail.

5.3.3. Integrity

Shadow Directories: As I already mentioned in Section 5.3.1, the trusted component
has to maintain redundant lists of directory contents to ensure integrity. These lists
(shadow directories) do not need to be referenced just to open a file or to resolve its
pathname. However, the trusted component needs to read from a shadow directory, if a
client application wants to scan directory contents. Also, if an open() operation fails, the
trusted component must consult the relevant shadow directory, so that it can determine
whether the file indeed does not exist, or whether an attacker deleted the corresponding
file container.

Obviously, creating new files or removing existing ones from the trustworthy file system
necessitates shadow directories to be updated. Also, whenever the trusted component
creates a file, it has to make sure that the filename given by the user is not already in use.
Thus, an efficient lookup mechanism for shadow directories would be beneficial.

Nevertheless, to keep the TCB small and the implementation costs in terms of time low,
I decided on a simple solution. I chose to represent shadow directories as unsorted lists
that are stored in per-directory file containers. As the trusted component needs to touch
at most one shadow directory per file operation, I consider the overhead for opening its
file container acceptable.

Unfortunately, this approach also means that creating a new file requires the trusted
component to do a linear search in the shadow directory. However, in practice, I still

28

5.3. Protecting Directories and Directory Structure

Directory entry
Truncated Hash Sum of the Filename
in the corresponding Directory Entry

Figure 5.3.: A great number of short hash sums in only few data blocks of a shadow directory
give hints regarding the position of a certain directory entry.

expect acceptable performance. Because it is necessary to hash the filename anyway, a
shadow directory can also contain truncated hash sums (e.g., 32 bit in length) that are,
densely packed, stored in only few data blocks. Using these truncated hash sums, the
trusted component does not need to load all blocks of the shadow directory into the buffer
cache just to look for a certain filename. This solution is extremely simple, but also most
efficient for directories with lots of entries, when considering the high costs of loading data
blocks into the buffer cache. Figure 5.3 illustrates this idea.

Master Hash File: Per-file hash sums authenticate the contents of file containers, includ-
ing shadow directories. These hash sums have to be stored in untrusted storage, as it is
not possible to keep all of them in sealed memory.

Therefore, I introduced the master hash file, which I briefly mentioned in Section 5.3.1.
It contains data records (master entries) that serve as per-file integrity anchors. A master
entry contains the hash sum that is needed to authenticate a file container’s first data
block, which in turn contains the hash sum to verify the integrity of the embedded tree.

The per-file hash sums allow to detect modifications inside a file, as well as replay
attacks on file level. However, the trusted component must also be able to detect, whether
the untrusted block server indeed opened the correct file container. Therefore, a master
entry also contains data describing a file’s location. I decided to encode this information
by hashing the file’s full pathname, as I described in Section 5.3.2. Just the hashed
pathname is not sufficient in all situations, therefore additional information is necessary.
I shall elaborate on it in Section 5.4.2.

Dir Dir

DirFile FileFile

File

Root Dir

Master Hash File

Master Hash

Sealed Memory

Figure 5.4.: The master hash file authenticates all files and shadow directories.

29

5. Design

With its own hash sum being stored in sealed memory, the master hash file can ensure
the integrity of all file-system contents, as illustrated in Figure 5.4.

5.3.4. Recoverability

During the backup procedure, the trusted component sends only data that is newer than
the checkpoint stored at the trusted backup server. To allow it to detect efficiently, whether
a file has indeed been modified, I added a per-file backup version to each master entry.
In Section 5.5.1, I shall discuss the strategy to find modified files based on their master
entries in greater detail.

5.3.5. Summary

The pure-wrapper approach allows to implement directory-handling and lookup function-
ality with a minimal TCB. It reuses existing infrastructure of both the legacy OS and
the trusted component itself, as it implements shadow directories and the master hash
file using self-protecting file containers. It fully ensures integrity and, with limitations as
described in Sections 5.3.1 and 5.3.2, confidentiality.

5.4. Trusted File-System Wrapper

5.4.1. Opening and Authenticating Files

Any design approach that reuses file containers in the untrusted storage requires the
trusted component to perform additional integrity checks after the untrusted part of the
implementation opened the file container. It must test the following conditions:

1. Are the File Container’s Contents Valid? The trusted component must decrypt
the meta data from the first data block, lookup the corresponding master entry using
the information in the meta data, and compare the reference hash sum in the master
entry with the hash sum of the previously decrypted meta data. If the hash sums
do not match, the trusted component must assume an integrity violation.

2. Is the File Container the Requested One? According to the pure-wrapper
approach, the trusted component must calculate the hash sum of the full pathname
used for lookup and compare it with the hashed pathname that is stored in the
master entry.

If a directory has been moved or renamed, the second test may fail for files in that
directory or one of its subdirectories, even if file-system integrity has not been compro-
mised. I already discussed the cause of this problem in Section 5.3.2. In Section 5.4.2,
I shall present an efficient solution, which allows hashed pathnames to be used to ensure
integrity nonetheless.

The untrusted component may also fail to open the requested file container in the first
place. With the pure-wrapper approach, there are two possible causes for such an error
condition:

1. The file does not exist.

30

5.4. Trusted File-System Wrapper

2. The file container does not exist or the untrusted component did not provide its
contents for other reasons.

To determine the real cause of the lookup error, the trusted component must recursively
look up each element of the full pathname in the corresponding shadow directories.7 If
it encounters a sub path that does not exist based on the information in the shadow
directories, the file does indeed not exist. However, if the filename of a path element
is listed in the corresponding shadow directory, the trusted component must report an
integrity violation to the client application. Integrity has also been compromised, if the
trusted component could not open any of the shadow directories in the path and finally
fails to open the root directory, which must always exist.

5.4.2. Moving and Renaming Files and Directories

To move or rename a regular file, the trusted component must update shadow directo-
ries and it must instruct the untrusted component to move or rename the file container
accordingly. Additionally, it has to update the hashed pathname in the master entry (path
hash) to reflect the file’s new location. However, I already explained in Section 5.3.2 that
moving or renaming a directory invalidates all path hashes that point into this directory.

For performance reasons, it is infeasible to update all affected path hashes immediately
when renaming or moving a directory. However, the trusted component can also recon-
struct the correct pathname of a file that has been moved implicitly when opening it.
That is, it can lazily revalidate the path hash of any file that changed its location in the
directory tree because of a directory being renamed or moved. Particularly, each master
entry must contain the following information in addition to the path hash:

• Parent Pointer: The parent pointer specifies the master entry of the shadow direc-
tory that represents the file’s parent directory.

• Hash Sum of the Filename: The hashed filename that the trusted component
provides for lookup of path elements in the untrusted domain must also be stored in
the master entry.

It is trivial to provide this information. The trusted component can use it to determine,
whether the untrusted part of the implementation indeed opened the correct file container.
Using the parent pointers, it retrieves the hashed filenames for each path element from
the corresponding master entries and compares them with those used for lookup. If the
hash sums match for all path elements up to the root directory, the trusted component is
indeed using the correct file container. Otherwise, it must report an integrity violation. In
case the hashed pathname in the requested file’s master entry, or those of any subdirectory
in the path, has just gotten out of date, the trusted component can update them once it
established the validity of the pathname.

For example, assuming that the user created a file with the pathname /A/B/C and later
renamed the directory B to X, the master entry for C would contain an outdated path hash
still specifying /A/B/C instead of /A/X/C as C’s location in the directory tree. So, when
opening C using the new pathname, the trusted component would compare the hashed
filenames in the encrypted path with those found in the master entries of C, X, and A.
Figure 5.5 illustrates this example.

7 For performance reasons, the trusted component should do this lookup in reverse order, because often
only the last path element is invalid.

31

5. Design

Master Hash File

H(H(H(A) | B) | C)

H(C)

H(H(A) | X)

H(X)

H(A)

H(A)Root
/

Figure 5.5.: Hashed pathnames in the master entries after renaming a parent directory.

As an optimization, the trusted component can also determine the validity of a sub path
instead of checking all path elements up to the root directory. It can do so by calculating
the path hash for the sub path as well and comparing it with the hashed pathname in
the corresponding master entry. That is, in the previous example, the hashed pathname
for C’s parent directory /A/X is already up to date, so the trusted component can stop
revalidation at this point.

Unfortunately, there is one case left that leaves the possibility of a successful attack from
the untrusted domain. For example, opening the previously mentioned file C using the
invalid pathname /A/B/C might trick the trusted component into accepting the file, if it
did not yet update the path hash in the master entry. For this attack to be successful, the
untrusted component would have to open the previously moved or renamed file container,
even though it should report a lookup failure instead.

To prevent this kind of attack, the trusted component must consider hashed pathnames
in the master entries to be out of date after renaming or moving a directory. To enforce
this behavior, it can assign version numbers to them. Whenever it moves or renames a
directory, it increases the current version number, so that it can detect an out-of-date
path hash and revalidate it using the method that I described previously.8 This solution
causes increased latency when opening a file for the first time after renaming or moving a
directory. However, with the pure-wrapper approach, it is necessary to ensure full integrity
even if client applications try to access files using invalid pathnames.

5.4.3. Deleting Files

To delete a file, the trusted component must remove the filename from the shadow direc-
tory. The untrusted component has to delete the file container. However, it is even more
important to invalidate the file’s master entry, so that future attempts to authenticate the
file will fail in the open phase.

5.5. Backup and Recovery

5.5.1. Basic Backup Protocol and File-System Scanner

In Sections 5.2.3 and 5.3.4, I described how the trusted file-system component can use
version numbers to keep track of changes made to file-system contents. These version
numbers are a critical requirement for minimizing the amount of data that needs to be
transferred to the trusted backup server. Especially with regard to mobile devices, which
most likely cannot rely on high-bandwidth Internet connectivity, it is important that
TrustedFS only sends a small set of changes.

8 In this case, revalidating a path hash also involves updating its version number.

32

5.5. Backup and Recovery

To be able to identify all differences between the primary copy of the file system and
the backup, the trusted component needs to know the version number of the checkpoint
stored on the backup server. Such a checkpoint does not necessarily have to be the most
recent one. In Section 5.5.2, I shall discuss this aspect of the protocol in detail.

Again, to keep the TCB small, I decided on a simple protocol to communicate file-system
changes to the trusted backup server:

• Modified Files: Prefixed by the encrypted pathname, the file length in data blocks,
and the encrypted meta data, all modified blocks and their block numbers are sent
to the server. If the file in the backup copy is larger than the communicated length,
the backup server can decide on its own where to truncate it.

If a file has been moved or renamed after creating the last checkpoint, it is necessary
to transmit all data blocks.

• New Files: New files can be treated the same way as modified files, so no special
care must be taken.

• Deleted files: The file system itself does not keep information about files that
have been deleted after creating a previous checkpoint.9 However, the backup server
cannot learn about obsolete file containers or even subdirectories on its own, because
all shadow directories are encrypted. Therefore, the trusted component needs to send
a current list of all file containers in a specific directory, whenever it detects that the
corresponding shadow directory has been modified.

To find modified files in the first place, the trusted component could scan the whole
directory tree recursively. However, I decided not to do so for various reasons:

• Efficiency: There is no efficient way to propagate the highest backup version num-
ber in a sub tree of the file-system hierarchy into directory entries in upper-level
directories. Therefore, the trusted component would have to open all shadow direc-
tories, because it cannot know whether a subdirectory contains modified files or
not.

• File-Handle Consumption: When scanning shadow directories recursively, the
scanner would require one file handle for each element of a full pathname. If the
user decides to create a new backup checkpoint while client applications still have
files opened, there may not be enough file handles to descend to deeper levels of the
directory tree.

• Unnecessary Enlargement of the TCB: Because untrusted components are
responsible for file-container lookup, the implementation of a recursive directory
scanner would only be used for backup tasks.

To solve these problems, I chose an alternative scanning strategy. The trusted compo-
nent can scan all entries of the master hash file. By evaluating the backup version number
of each master entry, it can find modified files more efficiently. It can easily reconstruct
the full encrypted pathname using the method that I described in Section 5.4.2. Such a
scanner is easier to implement and it requires only one file handle to be available.

9 The run-time costs for maintaining a list of deleted files are unacceptable. Because a new file can have
the same name as a previously deleted file, this list would have to be updated whenever creating or
deleting a file.

33

5. Design

5.5.2. Extended Backup Protocol for Integrity

Obviously, a checkpoint stored on the trusted backup server must not be damaged, even
if the server received a corrupted or incomplete change set. So, with unstable network
connections in mind, the communication protocol must provide robustness against unex-
pected network failure. But even with a stable connection, the trusted component might
be forced to abort the backup procedure. For example, because it detected that the file
system’s integrity has been compromised.

In consequence, the server must write all data that it receives from the user’s computer
or mobile device (the client) to a temporary log. It must not modify the backup copy,
before the client verified that the server received all data.

To make sure that the server will only commit a correct change set, I decided to let
both the client and the server calculate the hash sum of the transferred change set. If the
server can reply with a correct hash sum, the client can be sure that the peer successfully
received all data.

After requesting the current checkpoint version number from the backup server, the
client can start sending data, while both peers calculate the hash sum of the transmitted
data stream. When the client sent all data, the following steps have to be executed:

1. The client instructs the server to send the calculated hash sum.

2. If both the server’s hash sum and the one calculated by the client match, the client
sends a COMMIT message including the version number of the new checkpoint.
Otherwise, it sends an ABORT message to the server and communication ends.

3. The server commits the change set in the temporary log, updates the checkpoint
version number, and sends a COMMITED message back to the client. If an error
occurs during commit, it sends an ABORT message and communication ends. To
ensure availability of a valid checkpoint, the server must perform a rollback of the
partly applied change set.

4. If the client receives a COMMITED message, or no message, it increases the backup
version number that is used for future changes to file system.10 Communication
ends.

The described protocol ensures that the backup server will not create invalid checkpoints,
even if communication is interrupted, or if the client cannot send a complete change set.

As the only state regarding checkpoints on the client’s side are version numbers as
described in Sections 5.2.3 and 5.5.1, the client can generate valid change sets to upgrade
any previously created checkpoint. Thus, it is also possible to bring a backup copy up to
date, if, for example due to system failure, the latest checkpoint on the server has been
lost. A user can also switch to another trusted backup server, if it becomes necessary.

5.5.3. Communication Channel to Trusted Backup Server

In section 2.4.3 I already discussed the necessity of mutual authentication between the
client device and the trusted backup server. Design and implementation of the required
10 If the client does receive neither a COMMITED message nor an ABORT message, it cannot know

whether the server committed the change set. So, for a future attempt to create a new checkpoint to
succeed, the client must use a new version number for any changes made to the file system after the
possibly failed backup attempt.

34

5.5. Backup and Recovery

infrastructure, including the network communication channel, is out of the scope my the-
sis. Nevertheless, I shall specify the functionality and interfaces that are required for
TrustedFS.

The communication channel between client and server must be bidirectional. Preferably,
this channel should have semantics similar to the Secure Socket Layer (SSL) [37, 38]. How-
ever, because all data blocks that need to be sent to the server are encrypted, it does not
need to ensure confidentiality. In principle, the previously described communication proto-
col could even be implemented, if the communication channel can only ensure integrity and
authenticity of independently transmitted messages. However, such an approach would
be impracticable with regard to remote attestation and it is likely that other applications
require SSL-like semantics anyway.

Particularly, I assume the availability of an interface providing the following communi-
cation primitives:

1. Handshake and Open: During handshake both client and server identify them-
selves using credentials and they mutually attest their software stacks via remote
attestation. If both accept the other’s identity and software stack, the communica-
tion channel is opened.

2. Sending/Receiving: Both client and server can securely send and receive data,
either as a byte stream or as packets of user-defined size.

3. Shutdown: The communication channel is closed.

Regarding the client side, the trusted file-system component requires an interface to
obtain the following information for the handshake and open phase:

• A credential, for example a certificate including the private signing key.

• A public key to validate the server’s credential.

• A specification for a valid software stack on the server.

The trusted backup server must have access to equivalent information.

5.5.4. Recovery

If data in untrusted storage has been damaged, it will not pass the integrity tests when
the trusted component tries to authenticate it at a later time. Thus, the data becomes
useless. However, depending on the extent of the damage, other parts of the file system
might still be accessible. In this situation, the user has the following options:

1. Full Recovery: The user can request the file system’s contents to be reverted to the
latest checkpoint that is available on the trusted backup server. All changes made
after creating the checkpoint will be lost. However, to minimize data loss, the user
can manually copy files that are still intact to another storage, for example another
file-system instance, before reverting the file-system state.

If not only untrusted file containers, but also the encryption key in sealed memory,
the client’s credential, or the authentication keys that I mentioned in Section 5.5.3
are lost, additional recovery measures must be taken.

35

5. Design

2. Partial Recovery: As long as the master hash file is still intact, it is also pos-
sible to repair the file system by replacing damaged files with their backup copies.
TrustedFS has to retrieve undamaged versions of the affected file containers and
the corresponding version of the master hash file from the trusted backup server.
With these file containers being stored in a separate area of untrusted storage, it is
possible to create a second instance of the file system containing just the recovered
files, which the user can copy to the original file system.11

To recover files using the backup copy on the trusted backup server, TrustedFS needs
to manipulate untrusted storage. Therefore, it is possible to leave the retrieval of file
containers entirely to the untrusted component.12 In principle, you can even reuse existing
file-transfer software, such as rsync [39], to synchronize the data in untrusted storage with
the encrypted backup copy.

Nevertheless, the trusted component must still be involved. With regard to full recovery,
which implies replacing the master hash file, the trusted component must inform the user,
when it detects that the master hash file has been reverted. Otherwise, an attacker could
successfully perform a replay attack by replacing the data in untrusted storage with the
latest checkpoint on the backup server.

Partial recovery is more complex and it might also require the user to make decisions
based on the specific situation. For example, he might prefer to extract at least parts of
valuable data from a damaged file, instead of replacing it with an out-of-date backup copy.
Therefore, support for partial recovery should be implemented as a separate trustworthy
utility program that uses primitives provide by the trusted file-system component. The
details regarding an implementation supporting partial recovery are subject to future work,
especially the question how to deal with damaged shadow directories, which are the only
source for trustworthy information on directory contents.

5.6. Buffer Cache

5.6.1. Requirements

In essence, the buffer cache has to manage a pool of cache buffers, which hold decrypted
and authenticated data from files. Each of these cache buffers stores exactly one data
block. Apart from the usual requirements for a cache implementation, such as efficient
lookup of cached objects, additional demands arose in the context of my work.

It quickly turned out that it is necessary to map the parent–child relationships among
the data blocks in a file container to the cache buffers that contain these data blocks.
Because it must ensure integrity on block level, the trusted component cannot load a data
block from untrusted storage into the cache, unless it knows the reference hash sum of the
data block. Therefore, the corresponding parent node, the data block that contains the
hash sum, must already be in the cache.

If the cache flushes a dirty buffer, it is even more important for the trusted component
to have the parent node cached, as this operation requires the reference hash sum to be

11 The user must delete the damaged files first, because overwriting them might fail due to integrity errors.
12 Because all data that is stored on the trusted backup server is protected by strong encryption, user

authentication is not strictly necessary to retrieve the backup copy. Nevertheless, restricting access to
authorized users can at least make denial-of-service attacks against the backup server harder. For exam-
ple, the backup server could ask for a password or a one-time credential, which the trusted component
could acquire prior to recovery.

36

5.6. Buffer Cache

updated. Of course, the cache must also flush dirty buffers, if there are no more free
buffers available. If the parent node is not in the cache at this time, it would have to be
read from the file container, which would require another buffer to be made available just
to be able to free the first one. The same problem can occur there as well, it might even
be necessary to load all nodes along a path in the embedded hash tree into the cache.
Obviously, the resulting loss of performance is unacceptable.

A second major requirement is that the trusted component must be able to flush all
dirty buffers that are allocated to a specific file. I shall elaborate on the reason for
this demand in Section 6.3.3. In Section 6.3.2, I shall discuss the implications for the
buffer-cache implementation regarding the aforementioned necessity to respect parent–
child relationships.

5.6.2. Looking up Cache Buffers

The unique file number and the block number, when being used as a tuple, form a unique
name for a certain data block. Hence, they can be used as a key for finding any block in
the cache. However, the name space containing these keys is huge. In my implementation,
each key has a length of 128 bits, so a simple array of buffer addresses with a key being
used as array index cannot be used. The common solution to look up an object in a cache
is to use a hash table or a search tree. For example, the Linux page cache uses a Radix
Tree [40] for finding physical page frames.

When choosing an efficient cache lookup mechanism for TrustedFS, the special require-
ments in the context of my work have to be taken into account:

1. Key collisions cannot be allowed, because they can cause arbitrary data blocks to
be evicted from the cache.

2. Finding all data blocks or those belonging to a specific file has to be efficient. Prefer-
ably the logical order of the retrieved blocks should be preserved.

3. The TCB is to be kept small.

The first requirement intents to make sure that no data block is evicted as long as there
are any of its child nodes still in the cache. The second one is there, because it must be
possible to flush buffers belonging to a specific file. With these demands in mind, a hash
table would not be a good choice, because it does not meet the second requirement.

Search trees, such as radix trees and binary search trees, can accommodate all these
demands. Fortunately, there exists an efficient implementation of a self-balancing binary
search tree, which is already part of the TCB of L4Env-based applications. The L4 Region
Mapper package uses an AVL tree [41] to determine, which dataspace manager it must
call to resolve a page fault in a specific virtual-memory region. With modifications in the
order of approximately one hundred lines of code, both the region mapper and the buffer
cache can use the AVL-tree implementation.

An AVL tree, just like any other self-balancing tree, may require rebalancing when keys
are inserted or removed. Therefore, these operations are often slower when compared to
a radix tree, or tries13 in general. However, the influence on the overall performance of
TrustedFS is negligible, because the cryptographic operations that need to be performed

13 A trie, unlike a binary search tree, does not explicitly store keys in its nodes. Instead, the key encodes
the path that has to be taken to reach the desired node.

37

5. Design

when loading a block into the cache, or when evicting a block from it, take considerably
more time. The AVL tree’s lookup performance is comparable to a trie in this scenario,
because the keys are simple integer numbers. So, in favor of a small TCB, I decided to
adapt the existing implementation of the AVL tree.

5.7. Untrusted Block Server and Trusted Block-Server Layer

5.7.1. Untrusted Block Server

The discussions in previous sections of this chapter already showed that large parts of
the legacy OS’s infrastructure can be reused for TrustedFS. Thus, the untrusted compo-
nent only needs to implement high-level functionality to handle file containers and, most
importantly, it must provide an interface to access data blocks.

Although the trusted component implements its own buffer cache, the block-server inter-
face has influence on the overall performance, too, especially regarding throughput when
reading or writing large amounts of data. An early prototype implementation used L4
IPC to coordinate the transfer of single data blocks in a shared memory buffer. However,
this solution does not provide for optimal performance. A main reason are high IPC costs
between the trusted component and the untrusted block server, which is an L4Linux pro-
cess. IPC between native L4 tasks and L4Linux processes is not only expensive because of
address-space switches, but also because of the L4Linux process’s alien status.14

Trusted File−System Component

(Address Space)

Block Server

(Address Space)

mapped

File−ContainerFile−Container

mappeddecrpyted and

authenticated File Container

Contents Contents

Cache

Figure 5.6.: Mapping of cryptographically protected file-container contents into address spaces.

To allow for maximum performance, I decided on a design as illustrated in Figure 5.6.
Instead of using read() and write() to move data blocks between the file container and
the shared-memory buffer, the block server maps a file container’s contents into its address
space. The trusted component, in turn, maps the contents of the file container from a
dataspace-provider thread in the untrusted block server.

The block server can implement optimizations, such as paging in data blocks in advance
based on observed access patterns. It can give hints to the trusted component regarding
which data blocks in the mapped file container are probably needed next. The trusted
component can use these hints to request the block server to map the corresponding
memory pages in a single operation, thus saving expensive IPC calls to the L4Linux process.

14 L4Linux tasks that perform a native L4 system call cause the Fiasco microkernel to reflect exceptions
into the L4Linux server task. By evaluating these exceptions, L4Linux can prevent the calling thread of
the L4Linux process from being scheduled while the thread is blocked in the L4 system call.

38

5.8. Application Programming Interface

5.7.2. Block-Server Layer of the Trusted Component

In contrast to the block server itself, the block-server layer of the trusted component is part
of the TCB. However, I consider the enlargement of the TCB due to an implementation
as described in Section 5.7.1 acceptable. The L4 Region Mapper already provides the
necessary infrastructure to map dataspaces into the trusted component’s address space.
Only little additional code is necessary to map file-container contents, to make use of the
block server’s hints, and to unmap a dataspace when the trusted component eventually
closes a file.

5.7.3. Virtual–Address-Space Consumption

Unfortunately, mapping the contents of all currently opened file containers requires plenty
of virtual address space. It is likely that, even with a small number of client applications,
the address spaces of both the block server and the trusted component cannot provide
enough room for all mappings. It is also conceivable that a single file is larger than the
virtual address space.

Therefore, it must be possible to map just parts of a file container. However, the decision
on which parts to map can be left to the untrusted block server. Using the aforementioned
hinting mechanism, it can inform the trusted component about advantageous mappings.

5.8. Application Programming Interface

5.8.1. Function Primitives of the Server Library

The core of the trusted component is the server library, which encapsulates all basic file-
system functionality. In essence, it is a wrapper for the POSIX file-system interface [42],
so it is also based on the same well-understood primitives. Thus, it provides open()
and close() as well as functions that behave like fstat(), rename(), unlink(), and
readdir().

However, because the trusted component implements its own buffer cache, there is no
need to force client applications to use a certain method to access file contents. The library
merely provides mechanisms to change the size of a file and to access its contents on block
level. A front end can offer higher-level methods, for example using read() and write()
functions. For maximum performance, a front end can also map cache buffers containing
file data directly into a client application’s address space, because cache buffers are the
same size as memory pages.

To support memory-mapped file access, the buffer-cache implementation must know
whether a certain buffer is mapped into another address space. I shall discuss this aspect
of the implementation in Section 6.3.

5.8.2. Low-Complexity API Front End

Although it is possible to link the server library into an application binary, its public
interface is not designed to be used directly by applications. To offer programmers a more
convenient API, a front end is necessary.

39

5. Design

I decided not to use L4VFS as the primary front end, because just its client-side infras-
tructure would add about 2,900 lines of code to the TCB.15 However, the server library
already provides an interface that could be used by client applications, if it were comple-
mented by mechanisms to conveniently access file contents. Thus, I chose to implement
a minimal-complexity front end that basically wraps the server library’s public functions
using IDL-implemented L4 IPC. The server task, which implements the trusted file-system
component, also supports memory-mapped file access using a separate dataspace-provider
thread. To map those files into an address space, the client-side library reuses existing
infrastructure of the L4 Region Mapper.

In the API documentation generated from the library source code, you can find a com-
prehensive description of all functions and data types that are available to client applica-
tions.

5.8.3. Error Handling

Because TrustedFS relies on untrusted components that can be subject to attacks, error
handling by both the trusted component and its client applications is extremely important.
Particularly, the trusted component must immediately inform a client application, if it
detects that the integrity of data in untrusted storage has been compromised.

I consider it a crucial design requirement that client applications do not crash in case
of errors, not even integrity errors. They should be given the chance to report errors to
the user or to recover gracefully.

All functions of the previously described client API, as I outlined in Sections 5.8.1
and 5.8.2, operate synchronously. Therefore, error conditions can be reported trough
their return codes. By consequently evaluating those return codes, an application can
meet the aforementioned stability requirement. However, it is much more difficult for an
application to handle error conditions gracefully, if the server task cannot resolve a page
fault due to an integrity error.

During implementation, I discovered that the L4 Region Mapper already provides a
mechanism to handle unresolvable page faults. Based on a callback function, it is possible
to implement a simple and yet powerful exception handling. With this mechanism, which
I shall discuss in detail in Section 6.4.3, client applications can handle errors that occur
while accessing contents of memory-mapped files.

15 The L4VFS name server accounts for about 1,500 lines of code and runs in its own address space. The
remaining L4VFS code implements functionality that is already implemented in the trusted file-system
component, so that it can function as a wrapper.

40

6. Implementation

In this chapter, I shall give insight into the implementation of TrustedFS. Particularly, I
shall discuss implementation details regarding file containers, the file-system wrapper, and
the buffer cache. I shall also elaborate on the application programming interface (API)
and reuse of already existing source code.

6.1. Thread Structure

The implementation of the trusted file-system component, including the front end
described in Section 5.8.2, uses three threads:

• API Thread: The API thread performs synchronous operations, such as opening
files.

• Dataspace-Provider Thread: The dataspace provider supplies mappings for
client applications to resolve page faults in virtual-memory regions that represent
files.

• Flush Thread: The flush thread is responsible for writing back dirty cache buffers
asynchronously.

Because all these threads may use functions offered by the server library’s public API
concurrently, the implementation must be thread safe. For the time being, I implemented
mutual exclusion in the front-end layer using a single lock for all API functions. However,
fine-grained locking is subject to future work.

6.2. File-System Wrapper and Organization of File Containers

In this section, I shall discuss important aspects of the implementation with regard to
file containers and the file-system wrapper. I shall give an overview about the structure
of embedded trees in file containers and I shall elaborate on the algorithms to use and
manipulate these trees.

6.2.1. Embedded-Tree Structure

File-Container Layout: In Section 5.2.4, I discussed the need for an extra data block
that contains the meta data of a file. Meta data is stored in the first data block. User
data and data blocks that belong to higher levels of the embedded tree are stored right
behind it.

I decided on a static structure as illustrated in Figure 6.1, where parent nodes are
followed by a fixed number of direct child nodes. As the trusted component must load
parent nodes first, this layout allows for optimal performance when reading user data from
consecutive data blocks. However, when writing data, the trusted component must first

41

6. Implementation

Data
Meta

Level 1

(Root Level)
Level 2

Level 0
(Leaf Level)

(Logical Block Numbers)

N N
Internal Node of the Tree
(Physical Block Number N)

Leaf Node containing User Data
(Physical Block Number N)

3 5

2

4

6

7 9

10

11

0 21 3 5 6

1

Figure 6.1.: Block layout of file containers.

write all child nodes before it can update the parent node. In practice, this strategy does
not necessarily cause a performance problem, because the legacy operating system (OS),
or even the hard disk itself, caches encrypted data blocks and it is most likely able to write
them consecutively.

Logical and Physical Block Numbers: Nodes that are not on the lowest level of the tree
(leaf level) are unknown to client applications. That is, the trusted component completely
hides the embedded tree. Hence, data blocks on the leaf level that ultimately contain user
data are assigned logical block numbers that differ from their physical block numbers.

Nevertheless, the layout of data blocks allows to calculate physical block numbers easily.
For a tree with maximum depth d and m children per node, you can use the following
formula to map a logical block number l to a physical block number p:

p := 1 + (d− 1)︸ ︷︷ ︸
Offset

+
d∑

h=0

b l

mh
c

The offset accounts for the first data block containing the meta data and the nodes
leading to the left-most leaf, which has logical block number 0. The sum specifies the
number of higher-level nodes that are interleaved with user data that is stored in front of
the leaf with logical block number l. The depth d is a maximum, therefore, the offset is
fixed. Thus, depending on the actual depth of the tree, there may be unused data blocks
at the beginning of a file. This layout allows the embedded tree to grow in height as
needed, I shall elaborate on this aspect in Section 6.2.3.

6.2.2. Loading Data Blocks into the Buffer Cache

To load a data block from a file container into the buffer cache, the trusted component
must know the reference hash sum to check the data block’s integrity. Retrieving the hash
sum for the root node of the embedded tree is trivial, as it is part of the meta data.1

1 Although a file’s meta data is stored in its own data block, it requires only a fraction of the storage
capacity that is available in there. Such a solution is acceptable for file containers in untrusted storage,

42

6.2. File-System Wrapper and Organization of File Containers

However, to load any other data block, the trusted component has to make sure that
the corresponding parent node is already in the buffer cache. There are two strategies to
ensure that:

1. Top-Down Approach: For each data block that is to be loaded into the buffer
cache, the trusted component descends in the embedded tree. Starting at the root
node of the file container, it looks up all nodes along the path and, if the lookup
fails, it reads the missing node from untrusted storage and authenticates it using the
hash sum found in the direct parent node.

2. Backward-Recursive Approach: Once data blocks are in the buffer cache, their
contents have been authenticated. The trusted component optimistically tries to
exploit this fact by assuming that the parent node of the requested data block is
already present in the cache. Starting with the direct parent node, it recursively
looks up nodes along the path up to the root node. Recursion ends if either a node
is found in the cache or after processing the embedded tree’s root node. The trusted
component loads nodes that are not yet cached in top-down order when unwinding
the recursion stack.

The first approach is a simple and naive solution that illustrates the general idea. How-
ever, it does not provide good performance, because it requires many unnecessary buffer
lookups.

In favor of efficiency, I decided on the second alternative, which is only moderately
more complex. To load any data block that has been requested by a client application, the
trusted component must calculate the corresponding physical block number as described in
Section 6.2.1. To retrieve the authenticating hash sum, it needs the following information
about the parent node:

• The physical block number of the parent node.

• An index to find the required hash sum inside the parent node.

An internal node of the embedded tree, that is, a node that can be parent node, contains
only a vector of data records that describe each of its child nodes. Vector indices correspond
to the relative location of the child nodes. For a data block on the leaf level, it is easy to
calculate the index i based on its logical block number l:

i := l mod m

Again, m is the number of child nodes that a node of the embedded tree can have.
Using the data block’s physical block number p and the index i, you can easily calculate
the physical block number of the parent node:

pparent := p− i− 1

In generalized form, the trusted component can use these formulae to precisely calculate
the location of all per-node authentication data along the path in in the embedded tree:

i := b l mod mh+1

mh c pparent := p− i · (m + 1)h − 1

In these formulae, the parameter h is the height in the tree, where h = 0 specifies the
leaf level. This calculation method allows to retrieve parent lookup information iteratively
in a tree of any depth.

however, allocating a cache buffer for about one hundred bytes of meta data is not. Therefore, the
trusted component keeps meta data of currently opened files in a dedicated array in memory.

43

6. Implementation

6.2.3. Adapting Depth and Breadth of the Embedded Tree

The required depth of an embedded tree depends on the size of the file. Non-leaf nodes
store a 20-Byte hash sum and an 8-Byte backup version number for each of their child
nodes. With each data block having a size of 4 KB, which is the hardware page size on
IA-32 hardware, a node can have no more than 146 children. Thus, a tree of depth 3
would suffice for files with a size of about 12 GB. Some use cases might require more than
that, so a depth of 4 is the minimum for a general-purpose file system.

However, a vast majority of files is much smaller, in the order of tens or hundreds of
kilobytes. Using a tree of depth 4 would mean considerable overhead with regard to the
number of required cache buffers and latency upon opening files. For example, opening
a short file such as a shadow directory would require that the trusted component loads,
decrypts, and authenticates four data blocks.

Unfortunately, TrustedFS cannot know in advance how large a file will eventually be.
That is, it cannot decide on the optimal depth of the embedded tree when creating a new
file. Therefore, I implemented support for growing and shrinking embedded trees at run
time based on the file size set via the API function tfs_set_file_size().

(Child Node already exists)

0 1 2

Preallocated Data Block

Active Child Record

Unused Child Record

Child Record (Authenticating
Old Root Node)

(New Root Node)

Figure 6.2.: Growing the embedded tree in a file container.

Growing Embedded Trees: As I already mentioned in Section 6.2.1, the trusted com-
ponent pre-allocates a number of data blocks at the beginning of a file container. These
data blocks are nodes in the left-most path of the tree that, depending on the tree’s actual
depth, may be unused. To grow an embedded tree that has not yet reached its maximum
depth, the trusted component adds one or more of these nodes on top of the old root node.
That is, trees grow from the leaf level, as illustrated in Figure 6.2. This solution has the
major advantage that the block numbers of already existing, and possibly cached, data
blocks do not change. The Trusted Database System (TDB) [22] uses the same approach.

Shrinking Embedded Trees: To shrink an embedded tree, the trusted component
removes the nodes in the left-most path down to the new root node of the shrunk tree. All
other nodes that have a greater physical block number than those in the shrunk tree will
be removed as well. That is, the trusted component instructs the untrusted block server
to truncate the file container behind the right-most node that should remain in the tree.
It must also invalidate all truncated data blocks in the buffer cache. However, finding
these data blocks based on their unique file number and block number is efficient. The
cache provides suitable lookup functionality, on which I shall elaborate in Section 6.3.5.

44

6.3. Buffer Cache

Active Child Record

Child Record to be cleared

Unused Child Record

(Child Node exists)

0 1 2 3 4

Data Block to be removed

Figure 6.3.: Shrinking the embedded tree in a file container.

Removing higher-level nodes only makes the tree shrink vertically. To reflect reduction in
breadth as well, the trusted component traverses all nodes along the right-most path of the
remaining tree and clears all child records that belong to truncated nodes. Similarly, when
growing the tree vertically, the trusted component creates new nodes with all their child
records invalidated, except for those leading to the old root node of the tree. Figures 6.2
and 6.3 also illustrate this aspect.

Unfortunately, the code to grow and shrink embedded trees is quite complex. Although
the concept is simple, the implementation must handle several corner cases, which mainly
result from the tight coupling between the file-system wrapper and the buffer cache. Nev-
ertheless, I consider the complexity added to the TCB to be justified, as this solution
improves performance for short files significantly.

6.2.4. Sparse Files

If the trusted file-system wrapper encounters an invalid child record in a parent node, it
will not try to read the node from untrusted storage. Instead, it simply allocates a cache
buffer and clears its content.2 Invalid child records can also appear at locations other
than the right-most path in the tree. In such a case, they mark a gap in the file. Thus,
TrustedFS supports sparse files.

Sparse-file support is necessary to allow memory-mapped file access. Because client
applications can write to pages representing a mapped file in random order, files can, at
least temporarily, have holes. However, the trusted component leaves the most difficult
task, namely allocating file-system blocks, to the untrusted legacy OS.

6.3. Buffer Cache

In this section, I shall elaborate on the implementation of the buffer cache. I shall discuss
requirements that arose from the necessity to ensure integrity and from the use of file
containers in untrusted storage. I shall also give insight into the replacement and flushing
strategies.

2 Invalid child records can occur for both internal nodes and leaf nodes. An internal node with zeroed
content implicitly contains invalid child records.

45

6. Implementation

6.3.1. Replacement Strategy

I chose the second-chance algorithm as the buffer cache’s replacement strategy. The algo-
rithm itself is simple and its implementation enlarges the TCB by only 50 lines of code.
Nevertheless, its efficiency is acceptable and it has been used in various Unix-like OSes,
for example in Linux 2.4.

The second-chance algorithm requires information on whether a certain cache buffer has
been referenced or not. The front end can provide this information to the buffer-cache
implementation, whenever it requests a data block using the _tfs_get_block() function.
However, pages containing cache buffers can also be mapped into other address spaces.
On most hardware architectures, the required information is available at little costs in
form of a reference bit in the corresponding page-table entry.

When I implemented the buffer cache, the stable version of the Fiasco microkernel
could not provide applications with reference-bit values. Therefore, I decided on a user-
level solution, which is implemented in a similar way in L4Linux as well. The buffer cache
uses software-implemented reference bits. Clearing these bits also involves unmapping the
corresponding buffer page from other address spaces. Clients implicitly provide reference
information when the file-system server is asked to restore a mapping upon a page fault.

Future versions of Fiasco that implement the L4.Sec Interface Specification [43, 44] pro-
vide a mechanism to read reference bits from hardware page tables. The experimental
X2 Interface [45] provides similar functionality. Although these interfaces will not accel-
erate the buffer-cache implementation itself, they can at least save the client applications
unnecessary page faults.

6.3.2. Making the Buffer Cache Aware of Parent–Child Relationships

To make the buffer cache aware of the parent–child relationships among data blocks, I
added additional attributes for each cache buffer. I introduced a reference counter for
each buffer to make it possible to keep track of all child blocks that are present in the
cache. The buffer cache will not free a buffer unless its reference counter is zero. A
parent pointer, which I also added for each buffer, allows the cache implementation to
find a buffer’s parent. Thus, updating reference counters requires only minimal run-time
overhead.

A second reference counter prevents buffers from being flushed (without evicting data
blocks) while there are any child buffers with their dirty flag set. Flushing such buffers
would cause unnecessary input–output traffic, because the buffer’s contents would have to
be written back again, once all its child buffers got updated. Also, flushing parent buffers
does not guarantee the consistency of the data in untrusted storage, unless all nodes along
a path in the embedded tree and in the master hash file are flushed as well. Finally,
the master hash sum in sealed memory would have to be updated, too. Obviously, the
even further increased input–output load caused by such an approach would be beyond
acceptable limits.

The first reference counter effectively pins parent nodes as long as there are child nodes
in the cache. This approach implicates an important constraint regarding the replacement
strategy. Pinned data blocks must not be chosen for eviction. Their number is relatively
small, less than one percent for files larger than 2 MB, although this ratio increases for files
that are only a few kilobytes in size. Nevertheless, I decided to omit a test for the number
of child buffers from the replacement algorithm. Instead, the function alloc_buffer()
keeps calling the second-chance search function until it returns a buffer that contains a

46

6.3. Buffer Cache

node without cached children. The run-time costs for this simple solution are negligible
compared to the overall costs of evicting a possibly modified data block.3

6.3.3. File-Handle Consumption Caused by the Buffer Cache

As every file in the trusted file system corresponds to a file container in the untrusted
storage, it is unavoidable that the trusted and the untrusted component share a common
file handle for each opened file container. Thus, the maximum number of open files is
also limited by the legacy OS. Running multiple client applications can cause the number
of available file handles to deplete, however, tweaking the legacy OS or running several
instances of the untrusted block server can solve this problem.

Unfortunately, even a single client making small changes to a sufficiently large number
of files in a short time can cause the file-system wrapper to run out of file handles. For
each of these files, the cache will contain at least one dirty buffer that is associated with
a distinct file handle. However, although the client application may have closed all files
properly, the trusted file-system component cannot free the file handles while the cache
still contains modified data from these files.

If the trusted file-system wrapper runs out of file handles in such a situation, it must
instruct the buffer cache to flush dirty buffers, so that a file handle becomes available.
The buffer cache can easily flush buffers of a specific file using the approach that I shall
describe in Sections 6.3.5 and 6.3.7.

6.3.4. Flushing Single Cache Buffers

Each cache buffer contains a single data block. Both data blocks and cache buffers are
exactly the same size as a memory page. If the contents of a buffer have been modified,
the trusted component must write them back to untrusted storage eventually. For each
buffer, this flush operation is performed in three steps:

1. If the buffer is mapped into other address spaces, the cache revokes write permissions
for all these mappings.

2. The block-server stub calculates the authenticating hash sum of the cached data
block, writes it to the data block’s parent node, updates the backup version number
in the parent node, and encrypts the data block.

3. The block-server stub transmits the encrypted data block to the untrusted block
server.

These steps are performed atomically with regard to the server library’s API and page-
fault resolution.

6.3.5. Flushing Multiple Cache Buffers at Once

If the cache runs out of free buffers, it must evict data blocks. In such a situation, the
second-chance algorithm chooses the buffers that are to be evicted. Thus, it can hap-
pen that the cache quickly flushes many data blocks that come from various locations in

3 The trusted file server never maps internal nodes of an embedded tree to client applications, thus, it does
not need to perform an expensive unmap operation when clearing the software-implemented reference
bit.

47

6. Implementation

untrusted storage. However, random write access to file containers is slow. To improve
performance, the cache flushes dirty buffers in advance while the file-system implementa-
tion is idle. Doing so decreases latency when it becomes necessary to evict modified data
blocks from the cache at a later time.

For maximum performance, even during idle periods, the cache must write back data
blocks in their natural order. Nevertheless, it must respect the parent–child relationships
among data blocks. To allow the cache to find the buffer that needs to be flushed next
efficiently, I implemented a dedicated scanning routine that is based on a special lookup
function for the AVL tree.

I extended the AVL-tree implementation by adding the function avlt_find_greater().
It finds the node with the smallest key that is greater than the key given as the function’s
argument. As I explained in Section 5.6.2, tuples of the form (u, n) uniquely identify data
blocks, where u is the unique file number and n the block number. Given a greater-than
relation that is defined on these tuples as follows, it is possible to use them as keys for the
AVL tree:

(u1, n1) > (u2, n2) ⇔ (u1 > u2) ∨ ((u1 = u2) ∧ (n1 > n2))

The aforementioned scanning routine uses avlt_find_greater() to find the, not nec-
essarily immediate, successor of a given data block, which may also be the first data block
of another file according to the defined order.

Level 1

(Root Level)
Level 2

3 5

1

2

4

6

7 9

10

11

dirty Child Buffers)clean Child Buffers)
Cache Buffer (dirty, Cache Buffer (dirty,Cache Buffer (clean)

Level 0
(Leaf Level)

Figure 6.4.: Parent–child relationships among data blocks from the same file in the buffer cache
(clean and dirty buffers).

Additionally, the implementation skips data blocks that do not need to be flushed
because they were not modified. As I explained in Section 5.6.1, the parent–child rela-
tionships among data blocks directly map to the cache buffers that contain these data
blocks. Because a clean cache buffer can, by construction, never have dirty child buffers,
the scanning routine can use avlt_find_greater() to skip whole sub trees of clean nodes.
Figure 6.4 illustrates the idea. Originating from the current node, the scanning routine
decides on where to continue based on the following three cases:

1. Current Node is a Leaf Node: If the current node’s buffer is marked as dirty,
the cache flushes the buffer. The scanning routine will continue with the successor
of the current node.

2. Current Node has Only Clean Child Nodes: If the current node’s buffer is
marked as dirty, the cache flushes the buffer. The scanning routine will skip all child
nodes.

48

6.4. Error Handling

3. Current Node has at Least One Dirty Child Node: The cache does not flush
the current node’s buffer. The scanning routine will continue with the successor of
the current node.

If the buffers that need to be flushed form trees with a maximum depth of d, the
scanning routine must be executed at most d times to flush all buffers. In each pass, the
implementation will flush the lowest level containing dirty buffers of each tree or sub tree.

6.3.6. Flushing All Dirty Cache Buffers

Flushing all dirty cache buffers during idle periods is the responsibility of a dedicated
thread. This thread periodically looks for dirty buffers using the scanning routine that
I described in Section 6.3.5. It starts scanning with the first block of the master hash
file, which has the lowest unique file number, and continues until avlt_find_greater()
returns no more buffers.

Because the internal functions of the server library are not yet thread safe, the flush
thread must acquire the global API lock before it can start to flush buffers. To minimize
interference with client requests, I implemented a knocking mechanism in the front-end
layer of the trusted file server. Whenever a client application calls the trusted server,
either directly or indirectly because of a page fault, the front end atomically increments
a global counter right before it requests the API lock. While holding the API lock, the
flush thread periodically checks this counter’s value and, if the value is greater than zero,
it stops flushing buffers, releases the API lock, and sleeps for a short time. After the
server library completed a client application’s request, the front end atomically decreases
the counter and releases the API lock. Unless further client requests come in, the flush
thread can resume its work when it awakes.

6.3.7. Flushing a Specific File

Flushing cache buffers that belong to a specific file works essentially the same way as
flushing all dirty buffers in the cache. The only difference is that the scanning routine will
only look for buffers containing data blocks with a specific unique file number.

6.4. Error Handling

6.4.1. Types of Errors

While using TrustedFS, two types of errors can occur: (1) normal errors and (2) integrity
errors.

Normal errors can occur even if the untrusted component functions as expected. For
example, opening a file will fail if it indeed does not exist in the file system.

All errors that are caused by falsified or missing data from the untrusted domain are
considered to be integrity errors. For example, if the untrusted block server could not open
a file container that is supposed to exist, the trusted component will report an integrity
error.

49

6. Implementation

6.4.2. Server Library

The implementation of the server library checks function arguments that a client appli-
cation passes in through the front end and it reports error conditions regarding these
arguments immediately to the application.

Obviously, the library implementation must validate all data and information it receives
from the untrusted component. If the implementation detects that data from untrusted
storage has been falsified, it aborts the currently ongoing operation. If necessary, it per-
forms a rollback of all changes that it did to the file-system contents since the operation
started. It then reports the error condition to the client application.

Except for information about currently opened files, the public API of the server library
is stateless. That is, the library does not record any information about errors that occurred
previously. Even if an integrity error occurred, the implementation tries to perform any
operation that a client application requests at a later time. Thus, a user can manually
backup current file-system contents that have not been damaged, before recovering the
file system from the backup copy stored on the trusted backup server.

6.4.3. Client Library

As I already explained in Section 5.8.3, client applications can easily detect error conditions
when calling functions of the library API. However, the trusted file-system server provides
file contents as dataspaces, which client applications must map into their address spaces.
Thus, accessing file contents causes page faults that the application’s region-mapper thread
must resolve by calling the dataspace-provider thread in the server task.

To prevent an application from crashing, the client library installs a callback function,
which the region mapper calls in case it cannot resolve a page fault. This callback function
uses l4rm_lookup() to determine, whether the unresolvable page fault occurred in a
virtual-memory region that contains memory-mapped file contents. If the region indeed
represents a file, the function calls l4_thread_ex_regs() to set the faulting thread’s
instruction pointer to an exception handler. The exception handler in turn uses the C-
library function longjmp() to resume thread execution at a user-defined entry point, which
has been set previously using setjmp().

The library provides the preprocessor macro TFS_BEGIN_EXCEPTION_AND_CATCH, which
encapsulates setjmp():

int exception_file;

TFS_BEGIN_EXCEPTION_AND_CATCH(exception_file);
if (exception_file != 0) {

/* handle exception in file ’exception_file’ */
}

/* code section accessing memory-mapped file contents */

TFS_END_EXCEPTION; /* catch no more exceptions */

The corresponding macro TFS_END_EXCEPTION ends a code section in which page-fault
exceptions should be caught and handled in the if-branch. These code sections can also
be nested, like try and catch blocks in C++.

50

6.5. Reused Components

6.5. Reused Components

TrustedFS uses the Advanced Encryption Standard (AES) to encrypt file contents and the
Secure Hash Algorithm (SHA-1) to calculate hash sums. I chose implementations from
the Linux kernel for both algorithms, as they have no dependencies to other source code.
I implemented a thin adaptation layer, which allows them to be used in the server library
with almost no changes.

Currently, the server library contains a modified copy the L4 Region Mapper’s AVL-tree
implementation. This modified version should be moved into a separate L4 package, so
that only one implementation needs to be maintained.

6.6. Issues of the System Platform

Using currently available hardware, it is not possible to prevent legacy OSes from vio-
lating address-space boundaries, if they use direct memory access (DMA). Therefore, an
untrusted L4Linux instance using DMA can access physical memory that belongs to trusted
components.

A software-based solution would be to let L4Linux use the disk controller through a
separate trusted driver, for example using the Linux Device Driver Environment [46]. In
his PhD thesis Kapselung von Standard-Betriebssystemen [47], Frank Mehnert presented
another software-based solution for this problem. There also exist hardware solutions,
for example, Christian Böhme developed a PCI-to-PCI bridge [48] that allows to enforce
DMA restrictions. Upcoming hardware-virtualization technology, such as AMD’s "Paci-
fica" technology [49], can solve DMA-related problems as well.

51

7. Evaluation

In this chapter, I shall discuss the performance of TrustedFS and I shall evaluate the
implementation with regard to size and complexity of the trusted computing base (TCB).

7.1. Performance

When evaluating the performance of a file-system implementation, it is common practice to
use a standard benchmark utility such as bonnie++ [50]. However, this approach is not an
option to evaluate the performance of TrustedFS, because these benchmarks only work on
the operating system for which they have been created. Instead, I developed three custom
benchmarks to examine the performance with regard to (1) throughput, (2) page-fault
resolution, and (3) latency when opening files. These aspects are of particular interest,
because they allow to determine the performance overhead introduced by the trusted
file-system wrapper and the cryptographic operations.

7.1.1. Test Environment

Hardware: I ran all performance tests on a system with an AMD Athlon64 2800+ pro-
cessor, which operated at a clock rate of 1800 MHz. The system was equipped with
a Via K8T800 chipset, 512 MB DDR RAM, and an 80 GB hard disk (model Max-
tor 98196H8). For all test series, I used a single disk partition, on which I created a
fresh ReiserFS 1 file system [51] before performing any write tests.

Using the hdparm utility on a native Linux 2.6.14, I measured a maximum transfer rate
of 28.1 MB/s for read operations. However, when reading an unfragmented file of roughly
260 MB from the test partition, the hard disk could deliver only 19.5 MB/s (the file was
not in the native Linux’ page cache). For the latter measurement, I used the system utility
dd with /dev/null as the output file.

Software: The test system was running the L4/Fiasco microkernel and L4Linux 2.6.15.
L4Linux was using the L4 graphical console and it was given 128 MB of physical memory.
Fiasco and all user-space applications including L4Linux were configured to use system call
entry code in the kernel info page. Due to the kernel extensions required by L4Linux, the
assembler IPC shortcut was disabled. Except for the throughput benchmarks, all tests
were performed with the kernel option ’fine-grained CPU time’ enabled.

I compiled the TrustedFS file server with all assertions and logging statements disabled
and I configured it to use 64 MB of physical memory as its trusted buffer cache.

7.1.2. Throughput

Throughput measurements allow for getting an impression of the overall performance when
reading and writing large amounts of data. However, the benchmark results discussed

1 ReiserFS version 3.6.

53

7. Evaluation

in this section are preliminary, as I did not yet implement the memory-mapped block-
server interface that I described in Section 5.7. Instead, the implementation uses a shared
memory buffer to transfer single data blocks synchronously between the trusted component
and the untrusted block server.

I measured read and write throughput for both encrypted and plaintext files. When
using plaintext files, the trusted component just needs to copy data between its buffer
cache and the memory region that it shares with the untrusted block server. Nevertheless,
it must still calculate each data block’s checksum to be able to ensure integrity. For
encrypted files, the trusted component uses the encryption and decryption routines rather
than the memcpy() function to move data between the two domains of trust.

The benchmark consisted of two phases: (1) writing a new file of 256 MB in size and
(2) reading the same file back into memory. Both tests were performed with empty caches
(I rebooted the test system before performing the read benchmark). Figures 7.1 and 7.2
visualize the throughput that the benchmark application measured for each megabyte of
data that it has read or written.

 30000

 25000

 20000

 15000

 10000

 5000

 0
 224 192 160 128 96 64 32 0

 0

 5000

 10000

 15000

 20000

 25000

 30000

T
hr

ou
gh

pu
t i

n
K

B
/s

Progress in MB

read, plaintext
read, encrypted

Figure 7.1.: Throughput when reading a file (encrypted contents and plaintext contents).

Based on the results of the micro benchmark that I shall discuss in Section 7.1.3, I
determined the maximum throughput that TrustedFS can achieve on the test system. For
encrypted file contents, the cryptographic operations limit the transfer rate between the
trusted and the untrusted domain to 22.7 MB/s. The theoretical maximum when reading
or writing plaintext files is 87.9 MB/s. Given the hard disk’s transfer rate of 19.5 MB/s,
which I mentioned in Section 7.1.1, you would expect the hard disk to be the limiting
factor when reading data.

TrustedFS performs slightly better with plaintext files, which the benchmark application
could read at 18.5 MB/s compared to the average read rate of 17.6 MB/s for encrypted files.
Clearly, throughput for plaintext files is limited by the hard disk. However, for encrypted
files, the CPU seems to be the limiting factor, although the measured throughput is only
78 percent of the theoretical maximum. You can see from Figure 7.1 that the plot for the
encrypted file is below the plot from the plaintext benchmark. Also, the transfer rate is
not constant, but the diagram shows negative peaks. These anomalies are not caused by
the trusted file-system wrapper, but L4Linux itself. I did not have the time to determine
the exact cause. A possible explanation is that the file containers got fragmented while

54

7.1. Performance

flushing the buffers during the write phase of the benchmark, however, this assumption
has to be verified in a more detailed analysis.

Throughput Encrypted file contents Plaintext file contents
Read 17.6 MB/s 18.5 MB/s
Write (average) 23.7 MB/s 32.0 MB/s
Write (cache not full; no flushing) 261.0 MB/s 261.4 MB/s
Write (cache full; with flushing) 18.3 MB/s 24.9 MB/s

Table 7.1.: Throughput when reading and writing files.

The average throughput when writing files is 23.7 MB/s for encrypted and 32.0 MB/s
for plaintext files. However, these results are not representative, because they are highly
influenced by both the buffer cache of the trusted file server and L4Linux’ page cache.
They depend on the the size of the file that is written and on the size of the caches. The
trusted component does not transmit any data to the untrusted block server, as long as
there are unused buffers available in its buffer cache, which has a capacity of 64 MB. Thus,
at the beginning of the write benchmark, throughput is determined by the performance of
page-fault resolution including allocation of a new cache buffer. The measured throughput
is roughly 261 MB/s.

 300000

 270000

 250000

 200000

 150000

 100000

 50000

 20000

 0
 224 192 160 128 96 64 32 0

 300000

 270000

 250000

 200000

 150000

 100000

 50000

 20000

 0

T
hr

ou
gh

pu
t i

n
K

B
/s

Progress in MB

write, plaintext
write, encrypted

Figure 7.2.: Throughput when writing a file (encrypted contents and plaintext contents).

When writing an encrypted file, the trusted component flushes the corresponding buffers
at an almost constant rate of 18.3 MB/s. Figure 7.2 also shows that it is possible to flush

55

7. Evaluation

buffers of plaintext files at approximately 47 MB/s. In both cases, these figures include
necessary overhead caused by page-fault resolution and transferring the evicted data block
to the untrusted block server. I shall give a more detailed analysis regarding this overhead
in Section 7.1.3.

As the flush rate for encrypted data blocks is close to the transfer rate of the hard
disk, L4Linux is able to write the received data blocks to disk quickly enough. However,
the increased flush rate when writing the plaintext file causes L4Linux’ page cache to
overflow. As I assigned only 128 MB of physical memory to L4Linux, the first of these
overflows occurred after the benchmark application wrote about 150 MB of data, of which
64 MB were still in the trusted buffer cache. To free buffers in its page cache, L4Linux
writes large chunks of data to disk. This operation takes considerable time, thus, the
untrusted component blocks in the write() system call. The diagram in Figure 7.2 shows
the corresponding negative peaks. As a result, the average flush rate for plaintext files,
24.9 MB/s in this benchmark scenario, is lower than the maximum rate of approximately
47 MB/s.

Nevertheless, I consider the performance of TrustedFS to be acceptable regarding both
read and write throughput.

7.1.3. Page-Fault Resolution

To precisely determine how much overhead the trusted file-system wrapper and the crypto-
graphic operations cause with regard to throughput, I also performed micro benchmarks.
I instrumented the code path that is responsible for mapping data blocks into a client
application’s address space with performance sensors, which collected timing information.
For this purpose, I used the Ferret performance-measurement framework, which Martin
Pohlack develops internally at the Operating-System Research Group at TU Dresden.

When reading data from from a memory-mapped file on disk, the trusted file server
resolves page faults as follows:

1. Upon a page fault in a client applications address space, the microkernel switches to
the corresponding region-mapper thread, which calls the dataspace-provider thread
of the trusted file server.

2. After looking up the parent node of the requested data block, the trusted file server
instructs the untrusted block server to load the data block.

3. The trusted file server decrypts (or copies) the data block into its buffer cache and
verifies the hash sum of the data block.

4. The trusted file server sends the mapping for the cache buffer containing the
requested data block back to the client application’s region-mapper thread.

Again, I performed the benchmark for both an encrypted and a plaintext file. The
benchmark application read 8 MB of data from the files that were created during the
write phase of the throughput benchmark. For the last 1024 data blocks (4 MB of data),
the benchmarking code collected timing information.

Table 7.2 shows the average execution times in CPU cycles that were measured for
each of the involved components. It is not surprising that the cryptographic operations
account for most of the CPU time consumed by the trusted file server. The discrepancy
of approximately 1,600 CPU cycles in the table row denoted as ’Other’ is caused by

56

7.1. Performance

Encrypted file contents Plaintext file contents
Wrapper (total) 316,452 84,881
Cryptography 309,892 79,979
Other 6,561 4,902
Block sever/L4Linux (total) 58,176 263,859
IPC (total) 20,709 20,291
IPC (client and file server) 9,216 9,029
IPC (file server and block server) 11,492 11,262
Page-fault resolution (total) 385,765 366,367

Table 7.2.: Performance data of page-fault resolution.

cryptographic overhead as well. These figures include the costs to decrypt and authenticate
parent nodes and to allocate a cache buffer.

However, the trusted trusted file server waited 72 percent of the average time to resolve a
page fault until the untrusted block server retrieved a plaintext data block. When reading
an encrypted file, it had to wait approximately 58,000 CPU cycles, or 15 percent, yet the
average throughput is comparable in both cases, as mentioned in Section 7.1.2. These
results show that L4Linux can effectively read data in advance while the trusted file server
performs CPU demanding cryptographic operations.

Nevertheless, as you can also see from the raw performance data in Appendices B.1
and B.2, the average time that it took to retrieve one data block does not reveal all
performance-related characteristics of the block-server interface. The block server could
provide more than 95 percent of the plaintext data blocks within 22,500 CPU cycles,
including IPC costs of approximately 11,200 CPU cycles. The costs for retrieving an
encrypted data block are comparable. However, the average costs are significantly higher,
because the untrusted block server itself occasionally has to wait several million CPU
cycles for the hard disk to provide the requested data block.

With regard to the overhead caused by the trusted file-system wrapper, only the best-
case time of approximately 22,500 CPU cycles is relevant. Thus, with the influence of
the hard disk eliminated, TrustedFS requires approximately 116,000 CPU cycles to map
a plaintext data block into the benchmark application’s address space, if the data block
is not yet in the buffer cache. For the encrypted file, the costs are 348,000 CPU cycles. In
both cases, these costs include the time required to allocate a cache buffer, to retrieve the
parent node if necessary, and the IPC2 between the benchmark application and trusted
file server. Thus, for encrypted files, the cryptographic operations account for 89 percent
of the overall time to resolve a page fault. Copying a plaintext data block into the buffer
cache and hashing it requires 69 percent accordingly.

As the cryptographic operations and the IPC costs cannot be avoided, there is little room
for optimizations, if the user requires files to be encrypted. In this case, retrieving the
data block takes six percent of the overall time. For plaintext files, a more efficient block-
server interface could improve performance notably, as retrieving a data block accounts
for 19 percent of the overall time. With the memory-mapped block-server interface that
I described in Section 5.7, the implementation could potentially reduce these costs. The

2 These costs include the time required to switch to the region mapper, to determine and contact the
dataspace provider, marshalling and unmarshalling of the transferred information, and eventually send
the mapping back to the region mapper.

57

7. Evaluation

savings could also increase the flush rate of the trusted buffer cache, however, as the
hard disk is most likely the limiting factor when reading and writing data blocks, such an
improvement might only reduce CPU utilization.

7.1.4. Opening Files

To ensure integrity on file level, the trusted component must retrieve a file’s master entry
using the meta data in the corresponding file container, whenever a client application
opens a file. I explained the details in Sections 5.3.3 and 5.4.1. To be able to quantify the
overhead caused by TrustedFS’ security measures, I performed another micro benchmark,
for which I instrumented the code path that is executed when opening a file.

While opening 50 distinct files in the root directory of the file system, the benchmarking
code measured the time required to execute the relevant sections of this code path. To allow
for an estimation of the average costs for retrieving uncached master entries, I modified
the trusted component, so that it stored each master entry in its own data block in the
master hash file. However, in this scenario, I assume that it is not necessary to revalidate
the hashed pathname stored in the file’s master entry, as described in Section 5.4.2. The
purpose of this benchmark is to evaluate both worst-case and best-case performance. At
the beginning of the benchmark, both the buffer cache of the trusted file server and
L4Linux’ page cache were empty. After closing all files, the benchmarking application
repeated the benchmark with warm caches. Table 7.3 shows the average time in CPU
cycles that the involved components required to execute the steps necessary to open one
file.

Cold caches Warm caches
Wrapper (total) 331,945 18,686
Cryptography 322,802 14,575
Other 9,143 4,111
Block server/L4Linux (total) 5,385,160 27,927
Open file container 18,979 7,518
Read meta data 5,349,793 5,386
Retrieve master entry (total) 2,066,865 852
IPC (total) 22,155 18,871
IPC (client and file server) 9,767 6,703
IPC (file server and block server) 13,106 12,168
Open file (total) 7,481,640 52,186

Table 7.3.: Latency when opening files (cold and warm caches).

With cold caches, the untrusted block server requires most of the time to open the file
container and to read the meta data. In average, performing these tasks takes approxi-
mately 5.4 of the 7.5 million CPU cycles that the benchmarking application measured for
the tfs_open() call in total. Opening the file container itself is fast. It seems that, when
opening the master hash file before starting the benchmark, L4Linux already cached the
inodes and directory entries of the other file containers. However, reading the meta data
takes significantly more time, because L4Linux has to wait for the hard disk. The hard
disk in turn cannot read the data before its read–write head reached the disk sector that
contains the meta data. Although this seek operation increases latency when opening an

58

7.2. Code Complexity

uncached file container, it does not cause a slowdown in practice, because it is necessary
when accessing a file’s contents in any case.

Loading the data block of the master hash file that contains the corresponding mas-
ter entry takes roughly 2.1 million CPU cycles, of which the trusted file server requires
approximately 306,000 CPU cycles to decrypt and authenticate the data block. Thus, the
costs of retrieving a master entry in this benchmark are 28 percent of the overall time that
is required to open a file. Although this percentage might increase under different work
loads, I consider the overhead to be acceptable given the integrity guarantees, for which
it allows.

As you would expect, opening a file with warm caches is much faster. Because mas-
ter entries were cached, too, the average CPU time consumed by the trusted file server
decreased from approximately 332,000 down to 18,686 CPU cycles, of which 78 percent
were required for cryptographic operations. Particularly, these costs result from pathname
encryption and decrypting and hashing of the meta data that the untrusted block server
supplied.

There is much room for optimizations. For example, when creating or removing a
large number of files in the same directory, the trusted component needs to open and
close the corresponding shadow directory for each of these file operations. In the current
implementation, the trusted component always passes the encrypted pathname of the
shadow directory to the untrusted block server to retrieve the meta data, which it then
decrypts and authenticates. This is inefficient, because the file container of the shadow
directory is still opened, if there are dirty buffers left in the buffer cache. I explained this
aspect of the implementation in Section 6.3.3.

A simple lookup cache could save the costs involved in contacting the untrusted block
server. This cache could map the hashed pathnames of currently opened file containers
such as the aforementioned shadow directory to the corresponding file handles. With
regard to the described scenario, I estimate that the costs for reopening a shadow directory
can be reduced to approximately 2,000 CPU cycles. Client applications that reopen a file
might benefit from such an optimization as well. However, in this case, IPC costs for
communication between the client application and the trusted file server and the costs
for calculating the hash sum of the full pathname have to be taken into account as well.3

For client applications, the costs could be reduced to approximately 15,000 instead of
52,000 CPU cycles.

I estimate that it is possible to implement this lookup cache in about one hundred lines
of code by reusing the AVL-tree implementation.

7.2. Code Complexity

The main objective of my work has been to create a trustworthy file-system implementa-
tion, which should be implemented with only a small trusted computing base (TCB). In
this section, I shall analyze size and complexity of TrustedFS’ source code. However, as
the implementation is not yet complete, I can only evaluate its current state, which I shall
discuss further in Sections 8.1 and 8.2.

The code base of TrustedFS is split into two major parts: (1) the trusted component
and (2) the untrusted component. The former is divided into the server library, which

3 When opening a shadow directory internally upon file creation or removal, the trusted component reuses
parts of the target file’s encrypted pathname.

59

7. Evaluation

is the core of the file-system implementation, and a font end that allows client applica-
tions to access the file system conveniently. Table 7.4 summarizes the complexity for all
components and their subsystems.4 These figures do not include debugging code such as
assertions or logging statements.

Lines of code
Server library (total) 3,369
File-system wrapper 1,713
Cryptography layer 789
Buffer cache 455
Block-server layer 181
Other 231
API Front end (total) 613
Client-side API library 236
File Server (API) 162
File Server (dataspace manager) 215
AVL-tree implementation 953
Untrusted block server 808

Table 7.4.: Source-code complexity of TrustedFS.

Source Lines of Code: In its current state, the file-system wrapper accounts for about
half of the server library’s overall code base, which consists of 3,369 lines of code. Thanks
to the efficient reuse of already existing code, the implementation of the buffer cache has a
size of only 455 lines of code. However, although there currently is a copy of the AVL-tree
implementation in the source tree of TrustedFS, I do not consider it part of the server
library. The reason is that the TCB of all L4Env applications already includes the AVL
tree, as I mentioned in Section 5.6.2.

The front end consists of both the trusted file server, which is based on the server
library, and a client-side library that wraps the application programming interface (API).
The file server also implements the dataspace manager that is required to support memory-
mapped file access. In total, the front end consists of 613 lines of code. Thus, the current
implementation of both the server library and the front end add only about 4,000 lines of
code to an application’s TCB.

In general, the presented figures prove that it has been the right decision to base the
design of TrustedFS on a wrapper that reuses the file-system infrastructure of an untrusted
legacy operating system (OS). Approximately 450 of the 1,713 lines of code that belong to
the wrapper implement the naming infrastructure required by the pure-wrapper approach.
This code implements pathname encryption, shadow directories, and error handling. Of
course, the complexity of the file-system wrapper will increase, once I added the missing
functionality, on which I shall elaborate in Section 8.2. I estimate that the final version
will have a size between 2,500 and 2,700 lines

However, the trusted file-system wrapper does not only provide access to the func-
tionality that is provided by untrusted components, but it is also responsible to ensure
confidentiality, integrity, and recoverability. Thus, I consider it hard, or even impossible, to

4 These figures were generated using David A. Wheeler’s ’SLOCCount’.

60

7.2. Code Complexity

implement a complete file system inside the TCB that provides comparable functionality
and performance with as little code as I estimated previously for the file-system wrapper
of TrustedFS. Reusing an existing implementation seems even more difficult. For example,
the source tree of the Linux kernel contains file-system back ends that are implemented in
less than 2,000 lines of code. However, these file systems provide only limited functional-
ity5 and their implementations depend on Linux’ Virtual-File-System (VFS) layer, which
consists of more than 10,000 lines of code.

Cyclomatic Complexity: Thomas J. McCabe introduced another commonly used com-
plexity metric [52], which measures the cyclomatic complexity of source code. In essence,
the cyclomatic complexity of a function is the number of possible execution paths that
result from conditional statements in the source code. Thus, higher numbers indicate
higher functional complexity.

Using the tool pmccabe [53], I measured the average cyclomatic complexity of all func-
tions in the source code of TrustedFS. The result of 3.1 is low. In contrast, I measured
average cyclomatic complexities of 5.9, 5.6, and 6.5 for the implementations of the FAT
file system, Ext2, and ReiserFS respectively in the Linux kernel 2.6.14. Thus, according
to the McCabe metric, TrustedFS’ functional complexity is lower than those of commonly
used existing file-system implementations.

Code Reuse: Although the untrusted component does not necessarily have to be small,
it has been a design goal of my work to reuse as much as possible of the already available
infrastructure. The implementation of the untrusted block server, which I implemented
in about 800 lines of code, fulfills this demand. Thus, TrustedFS can benefit from the
efficient file-system implementation provided by the legacy OS.

5 Only the Minix files system and the MS-DOS file system have stable write support. However, they
impose unacceptable restrictions on file size and the supported length of filenames.

61

8. Conclusion and Outlook

8.1. Current State of the Implementation

Unfortunately, I could not complete the implementation within the time frame of my
thesis. Nevertheless, the core functionality has been implemented. It is possible to create
files and directories as well as to remove them from the file system. Also, applications can
resize files arbitrarily.

I implemented all encryption and integrity checks that I discussed in Chapters 4 and 5.
When creating a file, an application can specify, whether the file should be encrypted or
not.1 Thus, TrustedFS can provide better performance, if confidentiality of file contents is
not required. However, it is neither possible nor desirable to turn off integrity protection.

The implementation of the buffer cache is complete. I also implemented the client-side
library including error handling as described in Sections 5.8 and 6.4. This library encap-
sulates all communication with the trusted file server, which provides the functionality of
the server library trough a small front end. Client applications can map file contents into
their address spaces using existing functionality of the L4 Region Mapper.

8.2. Open Tasks

The following functionality has not yet been implemented or completed:

• Moving and Renaming Files: Currently, it is not possible to move or rename
files or directories. Also, I did not yet implement path revalidation as described in
Section 5.4.2.

• Backup and Recovery: I implemented the scanning routine to collect modified
data blocks in a file. However, the server library currently lacks the functionality
that is necessary to find modified files based on the backup version number in their
master entries. It cannot reconstruct a file’s encrypted pathname either, as this
functionality depends on path revalidation.

• Sealed-Memory Support: Currently, the encryption key is hard coded into the
source code. Also, the implementation ignores the calculated hash sum of the master
hash file’s contents.

• Optimizations: I did not yet implement the optimizations for shadow directories
as described in Section 5.3.3. The lookup cache to optimize reopening files that
I described in Section 7.1.4 it not implemented either. Also, the communication
interface between the untrusted block server and the trusted component does not
yet use the mapping method that I described in Section 5.7.

1 Encryption is enabled by default. Applications must explicitly request the creation of plaintext files.

63

8. Conclusion and Outlook

8.3. Outlook

Apart from the open tasks that I mentioned in Section 8.2, there are other areas of future
research. In Section 5.3.1, I outlined requirements for a file-system implementation that
includes a complete naming infrastructure. By fully implementing file lookup in the trusted
computing base (TCB), it would become possible to enforce access restrictions on file and
directory level. Naming, file lookup, and access control could be moved into a second
trusted component, whereas the first one just provides functionality that is necessary to
handle files and to access file contents.

Robustness against system crashes is also subject to future work. Partial recovery using
the backup copy on the trusted backup server, as described in Section 5.5.4, is one simple
solution for repairing a file system. Nevertheless, writing a transaction log, which the
trusted component can use to recover from a system crash, could limit data loss further.
An interesting question in this context is how much of the necessary functionality can be
excluded from the TCB, and implemented in the untrusted component instead.

8.4. Summary

It has been the main objective of my work to design and implement a trustworthy file
system. A user should be able to trust this file-system implementation to store his data
securely and reliably. Within the context of my thesis, I developed TrustedFS, which is
able to ensure confidentiality of file contents and filenames. TrustedFS also gives strong
integrity guarantees including freshness of all file-system contents and it can ensure recov-
erability of the user’s data in case of data loss.

The design of TrustedFS is based on the Nizza Secure-System Architecture. The
implementation is split into a small trusted component and an untrusted part, which
reuses existing infrastructure provided by a legacy operating system (OS). Particularly,
TrustedFS stores all file-system contents in the legacy OS’s untrusted file system and pro-
tects this data using cryptographic means. With the trusted component running on top
of a small microkernel-based system platform, this architecture allows to keep the TCB
small. The file-system implementation leverages trusted-computing technology such as
sealed memory and remote attestation, so that it can ensure confidentiality, integrity, and
recoverability.

TrustedFS is a general-purpose file system that allows the user’s trusted application
programs to store arbitrary data. It is not only suitable for use in desktop computers,
but also in mobile devices. However, the implementation is not yet complete. I discussed
the current state and open tasks in Sections 8.1 and 8.2. Nevertheless, the performance
measurements that I evaluated in Section 7.1 have shown that TrustedFS can provide
acceptable performance despite the use of cryptography that is necessary to fulfill its
security requirements.

64

Appendix A.

Glossary

CPU: Central Processing Unit.

PCI: Peripheral Component Interconnect. PCI is a input–output bus system used in most
desktop and laptop computers.

IA-32: A processor architecture introduced by Intel Corporation that is used in most
desktop and laptop computers. Also known as x86 architecture.

Inode: Index node. In Unix file systems, the inode contains all meta data describing a file
such as ownership information, access rights, or file size. It also contains information
on where to find the data blocks (or clusters) containing the user data. It does not
contain the filename, which is stored in directories.

L4Env: L4 Environment. L4Env comprises of a set of basic servers and libraries used for
developing applications on top of the L4/Fiasco microkernel.

L4/Fiasco: The L4/Fiasco microkernel is a second generation microkernel that imple-
ments, among others, the L4v2 interface. It is largely written in C++ and supports
real-time applications.

65

Appendix B.

Raw Data from Measurements

B.1. Page-Fault Resolution (Encrypted File Contents)

Total Total CPU IPC Find Alloc BS IPC IPC Crypt Hash IPC to Consume
time FS to FS parent buffer read to BS to FS client full page

348838 313336 3731 1497 1688 21505 7987 3394 247590 61039 241 10751 6542
348222 317272 3721 1467 1582 22413 8303 3387 251685 61031 256 5312 6678
346268 314538 3747 1424 1463 23136 7947 3445 248892 61135 365 5374 6689
344579 313271 3686 1484 1592 22594 7948 3407 247607 61033 310 5533 6646
344808 312932 3730 1437 1396 23087 8114 3384 247571 61033 250 5577 6587
343749 312879 3715 1398 1284 22408 7982 3378 247625 61040 276 5267 6469
348891 317598 3645 1398 1420 22815 7846 3410 252212 61078 276 5316 6636
344218 313150 3626 1394 1444 22445 7909 3380 247846 61017 241 5472 6637
344689 312861 3803 1430 1330 23061 8047 3385 247512 61034 241 5492 6581
344186 312981 3611 1391 1347 22937 8107 3384 247735 61017 241 5174 6695
346127 314451 3641 1373 1348 23139 7856 3439 248989 61135 365 5377 6693
348570 317120 3676 1446 1287 22743 7973 3414 251750 61026 310 5579 6649
344807 313221 3606 1510 1429 22997 8147 3388 247764 61017 250 5478 6535
391309 316731 3620 1386 1339 22143 7978 3384 250890 61356 544 5981 6417
342858 313732 3819 1492 1505 20747 6095 3411 248229 60935 276 5086 6636
344759 313072 3578 1405 1312 22921 8384 3384 247886 61017 241 5673 6635
456076 317765 3647 1492 1410 129158 8004 3723 251904 61182 327 6139 6616
343442 313202 3782 1444 1380 21787 8288 3392 247836 61017 241 5223 6697
345707 314647 3677 1395 1435 22504 7881 3434 249089 61145 365 5363 6637
344154 312869 3676 1456 1480 22674 7968 3411 247301 61032 310 5471 6596
344732 313258 3644 1479 1356 22742 8141 3390 247835 61033 260 5544 6593
347684 316986 3621 1384 1377 22277 8077 3376 251712 61010 283 5283 6417
344313 313663 3595 1397 1341 22204 7862 3415 248314 61102 285 5343 6635
343964 313025 3666 1378 1383 22325 7913 3376 247757 61034 241 5447 6692
344936 313409 3806 1502 1460 22738 8043 3387 247886 61034 241 5475 6586
343301 312928 3694 1368 1357 22063 8111 3385 247698 61017 241 5135 6696
413261 321613 3667 1370 1342 22904 7874 3442 255355 61694 623 6283 6511
343711 313438 3841 1625 1498 21484 6056 3425 247792 60893 310 5529 6455
344906 313092 3740 1446 1395 23167 8494 3410 247727 61022 250 5432 6593
343884 313035 3622 1413 1276 22362 7981 3390 247803 61017 286 5349 6301
343971 313817 3640 1384 1515 21828 7835 3409 248314 61084 286 5167 6635
386427 319831 3578 1381 1358 22416 7898 3373 254110 61262 506 5823 6694
341824 313064 3995 1482 1407 20164 5909 3389 247739 60891 241 5250 6583
343768 312976 3655 1394 1359 22503 8493 3390 247691 61034 241 5160 6695
346101 314619 3641 1431 1388 22999 7866 3448 249087 61135 365 5325 6696
344852 312921 3750 1435 1346 23244 8014 3402 247502 61033 310 5454 6596
349645 317147 3732 1483 1445 23689 8156 3408 251636 61043 275 5597 6536
343542 313134 3617 1428 1334 22087 7970 3391 247817 61034 285 5183 6360
344227 313451 3605 1392 1269 22436 7883 3399 248144 61102 285 5261 6635
344448 313188 3578 1429 1341 22731 7910 3382 247930 61034 241 5434 6696
345290 313318 3754 1469 1490 23218 8021 3390 247799 61034 241 5493 6582
348151 317021 3647 1416 1292 22829 8110 3383 251761 61027 241 5205 6696
391264 318434 3628 1475 1454 23052 7866 3450 249115 64511 656 5701 6594
342111 313528 3783 1587 1504 19780 5997 3439 247873 60883 310 5623 6598
345773 313278 3749 1464 1346 23912 8455 3380 247864 61034 294 5381 6594
344258 313276 3622 1494 1412 22496 7994 3376 247817 61039 285 5350 6357
348259 317700 3639 1421 1426 22266 7854 3403 252249 61095 285 5141 6636
343460 313065 3603 1434 1316 21782 7938 3373 247786 61034 250 5523 6695
451409 314105 3766 1504 1456 128096 8016 3630 248311 61181 311 5961 6590
344179 313370 3790 1500 1508 22349 8250 3390 247816 61033 250 5186 6696

. .

67

Appendix B. Raw Data from Measurements

B.2. Page-File Resolution (Plaintext File Contents)

Total Total CPU IPC Find Alloc BS IPC IPC Crypt Hash IPC to Consume
time FS to FS parent buffer read to BS to FS client full page

120233 84419 3785 1504 1656 21948 7912 3343 18608 61123 225 10583 6493
115362 84014 3707 1496 1514 23071 8011 3344 18470 61065 225 5053 6689
115225 83987 3735 1417 1422 22775 7713 3341 18464 61120 349 5192 6707
115608 84405 3695 1444 1575 22849 7728 3490 18604 61124 297 5260 6648
115938 84288 3726 1419 1372 23051 7928 3348 18898 61112 245 5341 6596
114665 84066 3662 1387 1309 22342 7767 3337 18862 61072 225 5059 6422
114759 84093 3680 1415 1416 22220 7720 3372 18726 61103 225 5182 6700
115298 84176 3643 1361 1408 22822 7895 3345 18867 61102 225 5122 6698
114765 84191 3809 1410 1271 22111 7871 3340 18891 61123 225 5139 6589
114949 83721 3635 1420 1340 23088 7893 3338 18432 61074 225 4983 6700
115504 84007 3653 1402 1354 23112 7728 3353 18547 61131 354 5190 6712
120327 84193 3686 1406 1274 27594 11806 3373 18816 61131 297 5350 6654
115049 84296 3652 1460 1386 22374 7922 3355 18889 61088 245 5210 6543
115020 84160 3611 1373 1346 22503 7734 3336 18946 61064 225 5203 6366
113664 84008 3622 1370 1371 21511 7747 3379 18734 61088 225 4996 6703
115343 84193 3587 1383 1285 22794 7859 3337 19000 61088 225 5227 6695

9147692 84804 3665 1434 1414 9053158 7850 3758 18854 61337 367 6606 6590
116398 84105 3888 1551 1491 23876 8857 3342 18443 61051 225 5069 6727
114241 84119 3680 1474 1419 21743 7746 3348 18559 61115 349 5162 6657
114762 84139 3704 1426 1456 22155 7795 3366 18590 61104 297 5254 6595
114882 84102 3628 1459 1349 22316 7937 3347 18654 61114 270 5323 6624
114280 83857 3638 1395 1371 22201 7787 3340 18593 61051 234 5056 6369
114033 83881 3640 1384 1367 21865 7753 3375 18601 61088 225 5109 6693
114473 83758 3667 1358 1276 22338 7901 3336 18598 61088 225 5173 6695
115135 84160 3835 1482 1423 22426 7924 3352 18621 61108 225 5220 6592
114885 83875 3735 1397 1375 22790 7879 3348 18571 61066 225 4966 11120
114344 83798 3664 1426 1307 22119 7719 3341 18377 61116 349 5222 6713
115268 84175 3711 1455 1400 22410 7789 3373 18633 61123 297 5472 6429
114610 83989 3736 1444 1390 22196 7927 3345 18586 61088 245 5167 6599
114399 83709 3632 1381 1221 22351 7757 3340 18617 61051 232 5172 6256
113761 84060 3640 1395 1478 21541 7745 3382 18646 61088 232 4994 6699
115028 83925 3603 1361 1352 22717 7870 3341 18672 61105 225 5242 6695
114441 83982 3902 1414 1360 22103 7894 3341 18580 61123 225 5032 6584
114989 83882 3721 1433 1340 22898 7952 3342 18493 61085 225 5042 6697
114482 83856 3684 1427 1378 22186 7719 3357 18384 61108 349 5190 6713
115296 84050 3725 1405 1328 22744 7767 3362 18636 61108 304 5267 6594
115338 84210 3767 1463 1390 22496 7933 3370 18730 61137 245 5334 6541
114396 83927 3629 1399 1326 22253 7744 3340 18689 61085 225 5042 6313
114325 83925 3639 1392 1238 22112 7748 3388 18732 61122 225 5117 6701
114543 84004 3602 1409 1308 22250 7858 3336 18743 61121 225 5136 6704
119041 88122 3797 1473 1350 22429 7863 3348 18711 65073 245 5160 6530
114664 83812 3637 1452 1258 22736 7853 3342 18516 61105 225 4980 6699
114721 83889 3707 1454 1395 22388 7701 3357 18377 61116 349 5183 6697
115770 84337 3714 1426 1442 22776 7742 3362 18709 61217 297 5424 6594
115126 84179 3736 1477 1346 22495 7949 3370 18732 61139 245 5206 6598
114598 83971 3629 1431 1365 22290 7763 3340 18667 61084 228 5161 6312
114592 84065 3639 1401 1410 22298 7755 3388 18697 61123 225 5042 6698
114569 84036 3602 1421 1290 22152 7880 3336 18750 61129 225 5248 6699

6915481 85099 3797 1502 1416 6820469 7851 3730 18618 61785 376 6664 6553
116769 84238 3852 1584 1568 24103 8911 3339 18423 61114 225 5054 6726

. .

68

B.3. Performance Data for File-Open Operations (Cold Caches)

B.3. Performance Data for File-Open Operations (Cold Caches)

Total Tot. CPU IPC Enc Open IPC open() read() IPC Crpyt ME ME IPC
time FS to FS path total to BS to FS meta total crypt to cl.

9665199 380204 21728 10831 9198880 15680 56981 9114686 5421 23524 354117 305782 6094
66958756 333675 3239 4919 611763 9241 18585 576237 4287 12361 66319037 306704 4683

754868 329683 3503 4654 395281 10027 18341 359733 3936 11782 332641 304938 4146
2237229 329332 3130 4509 1877817 8651 16860 1845141 3972 11628 333429 304928 3913
713377 329686 2927 4495 354890 8733 16990 322078 3886 11726 332623 305094 3919

21411080 331005 3112 4540 21050643 8918 24812 21009657 3982 11918 334216 306399 3964
827576 329159 3141 4522 468444 8894 19888 432566 3891 11683 333013 304845 3992

4637371 328963 3084 4568 4279182 8741 16467 4246896 3904 11396 332473 304713 3861
943045 329861 18822 5020 567792 8999 16543 535141 3920 11445 333433 305114 3766

4496692 330246 2777 4889 4137310 9126 17165 4103492 4239 12182 332881 305003 4104
1057598 335498 3287 4515 685448 8862 19661 649696 3973 11636 345622 310836 4071
6982634 329180 3019 4501 6623787 6712 17715 6592225 3961 11336 333137 305171 3937
1044422 329231 3170 4476 686732 8702 17450 653511 3894 11480 331828 305044 3781

23739048 332371 2991 4501 23377355 8861 17678 23343242 4295 13008 334583 306420 3968
783804 333318 3110 4505 421037 8688 17755 387435 3941 11466 336924 309307 3915

4669451 330522 3075 4502 4310034 8744 25228 4268439 4197 12461 332902 304971 3886
902159 334131 17119 4994 524441 9255 17418 490524 4039 11522 337481 309192 3871

4552998 330438 2775 4864 4192595 9025 17574 4158355 4339 12223 334043 305094 3874
994610 329075 3048 4475 636783 8862 17167 603624 3950 11542 332018 304845 3848

6817078 333347 3107 4477 6454363 8706 17520 6421003 3955 11421 337012 309336 3864
712410 330309 3090 4475 353542 8681 17383 319969 4235 12537 332328 305138 3842

4243699 330678 3035 4484 3884554 8813 17577 3850996 3986 11732 333297 306347 3785
793434 333692 3089 4478 429858 8718 17029 397019 3913 11450 337477 305075 4030

4673949 329718 3137 4469 4315127 8737 17243 4282048 3922 11516 332976 304980 3886
705095 334172 15013 5018 329767 9025 16904 296699 3956 11610 336893 309136 4029

39916462 331863 2854 4825 22029317 9005 24613 21987957 4382 12400 17859920 305713 4108
729858 329312 3015 4473 370978 10105 17915 335769 3923 11593 332726 304812 4097

11744585 333574 3101 4472 11381703 8915 17349 11348205 4038 11596 336756 309178 4120
829051 329442 3226 4478 469748 9145 17404 436071 3951 11505 333263 304942 4037

4638273 334956 3063 4484 4275256 8983 17330 4241757 4004 11420 337312 310597 3831
937992 329262 3020 4476 580052 8885 17447 546596 3940 11469 332091 304909 3982

4529780 333533 2999 4516 4167825 8694 17230 4134636 3961 15396 332010 304949 3871
1078789 330219 16950 4982 705741 8909 17746 671919 3966 11492 332901 304973 3917
6639517 330418 2845 4831 6280075 9012 17841 6245440 4496 12525 332830 304824 3953
1184881 333914 3058 4475 820979 8802 17573 787454 3953 11664 337664 309240 4029
4285212 329530 2953 4475 3926746 8855 27109 3883516 3983 11569 332637 305069 3931
1279721 329341 2913 4475 921007 9053 17307 887561 3887 11534 332883 305022 3959

24289001 330998 3024 4475 23929365 8970 17596 23895657 3963 11772 333537 306272 3995
1384797 329455 2933 4465 1025745 8968 17284 992414 3901 11461 333146 304943 4001

24178613 329503 2994 4463 23819260 8725 17174 23786232 3955 11659 333285 304781 4132
1495954 329963 15515 4963 1124591 8945 17018 1091479 3935 11589 332663 305010 3978

29555425 331457 2849 4822 26084724 8969 17033 26051195 4253 12246 3443909 305619 4085
705526 329525 3057 4466 346710 9615 17062 312897 3917 11570 332806 305063 3864

20732925 329238 2989 4452 20374529 8899 16635 20341804 4015 11711 332293 304739 4051
812412 329918 2920 4461 453024 9169 16504 420063 4118 11624 333388 305308 4006

4776900 330792 2986 4501 4416556 8921 24663 4375771 3928 11537 334581 306357 3965
915218 329515 3000 4460 556645 9049 16056 524453 3896 11480 332801 305083 3864

4406571 329092 3077 4460 4048085 8734 16850 4015244 3991 11517 332411 304729 4025
1030308 330458 16145 4999 657398 8947 16825 624464 3955 11809 333053 305076 4049
6686668 334502 2859 4864 6324529 9092 17221 6290700 4238 12161 335983 309097 3743

69

Appendix B. Raw Data from Measurements

B.4. Performance Data for File-Open Operations (Warm
Caches)

Total Tot. CPU IPC Enc Open IPC open() read() IPC Crpyt ME ME IPC
time FS to FS path total to BS to FS meta total crypt to cl.

57989 21207 3002 5306 31977 9464 9251 6669 3488 10379 1355 0 3110
51292 18861 2581 4373 27995 8742 7453 5480 3460 10041 916 0 2941
50511 18403 2548 4358 27467 8623 7380 5200 3424 10168 774 0 3150
50652 18550 2554 4330 27557 8652 7364 5290 3426 10199 909 0 3033
50567 18485 2426 4341 27685 8580 7450 5342 3430 10153 804 0 3024
50514 18577 2495 4368 27457 8552 7357 5297 3426 10143 853 0 3038
62019 18980 12554 4872 28658 8881 7944 5443 3510 10278 739 0 3082
51874 19118 2661 4727 28267 8929 7702 5275 3473 10096 1143 0 2999
50378 18160 2488 4341 27717 8650 7331 5500 3417 10002 737 0 3061
51104 18867 2505 4330 27685 8582 7402 5359 3467 10099 896 0 3106
54503 18552 2549 4348 31393 8586 11243 5250 3469 10065 745 0 3086
50467 18580 2508 4325 27448 8596 7305 5296 3426 10036 924 0 3013
50571 18486 2510 4337 27653 8607 7368 5388 3426 10036 916 0 3027
50648 18452 2521 4325 27728 8672 7410 5314 3417 10065 836 0 3037
61335 19184 11911 4928 28380 8833 7740 5429 3516 10146 752 0 3081
51794 19119 2616 4715 28201 8940 7451 5415 3517 10164 1007 0 2985
50575 18385 2509 4335 27794 8659 7450 5419 3459 10077 836 0 3019
50537 18358 2512 4327 27725 8627 7178 5509 3548 9981 794 0 3028
50276 18298 2451 4337 27568 8624 7323 5349 3463 10151 710 0 3041
50516 18488 2508 4327 27591 8577 7345 5376 3478 10076 994 0 3006
50492 18263 2508 4337 27788 8656 7477 5276 3526 10124 708 0 3014
50610 18509 2507 4326 27645 8591 7464 5325 3459 10116 887 0 3035
60704 18855 11780 4836 28199 8766 7643 5432 3501 10194 665 0 3091
51695 19307 2616 4715 27940 8951 7270 5324 3517 10117 1122 0 2989
50033 18262 2410 4349 27416 8589 7282 5271 3459 10065 741 0 3023
50859 18633 2500 4326 27743 8618 7287 5400 3565 10038 792 0 3081
50492 18328 2543 4349 27624 8644 7518 5184 3469 9981 736 0 3074
54204 18453 2502 4325 31346 8567 11144 5335 3478 9996 930 0 2978
50656 18519 2510 4345 27666 8598 7366 5281 3567 10022 922 0 3050
50680 18352 2523 4325 27886 8579 7416 5468 3505 9964 827 0 3004
60464 18979 11787 4837 27828 8768 7300 5375 3528 10060 725 0 3091
51644 19000 2560 4714 28149 8902 7529 5323 3517 10073 808 0 3075
50460 18579 2446 4347 27429 8574 7206 5383 3459 10007 889 0 3085
50790 18615 2450 4365 27620 8605 7212 5397 3542 10109 805 0 3199
50608 18418 2443 4356 27754 8597 7484 5403 3460 10170 701 0 3070
50500 18651 2373 4342 27353 8569 7012 5514 3444 10171 942 0 3205
50735 18473 2457 4322 27840 8558 7407 5531 3464 10164 838 0 3053
50482 18659 2472 4311 27348 8643 7092 5372 3435 10148 1005 0 3082
60654 18965 11786 4849 28047 8822 7479 5458 3409 10239 678 0 3081
51604 19052 2564 4688 28189 9072 7194 5612 3432 10295 873 0 3061
50048 18250 2436 4322 27609 8685 7245 5409 3465 10103 782 0 2958
50384 18868 2442 4300 27147 8726 6854 5256 3449 10203 848 0 3146
50242 18534 2572 4405 27386 8634 7128 5346 3469 10116 762 0 3081
50509 18554 2414 4287 27513 8513 7105 5636 3444 9995 852 0 3107
50282 18678 2427 4382 27220 8676 7006 5195 3485 10082 886 0 3061
50593 18603 2413 4359 27701 8752 7160 5424 3446 10206 826 0 3107
60248 18978 11857 4848 27559 8772 7200 5308 3409 10116 800 0 3086
50868 18827 2621 4714 27668 8992 7183 5181 3423 10217 810 0 2920
49728 18432 2497 4335 26830 8553 6882 5124 3465 9996 801 0 3053
49899 18585 2502 4326 26954 8581 6895 5171 3443 9990 978 0 3071

70

Bibliography

[1] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M. Levy. A
Crawler-Based Study of Spyware on the Web. In Proceedings of the 13th Annual
Network and Distributed System Security Symposium (NDSS 2006), February 2006.
1

[2] U.S. CERT United States Computer Emergency Readiness Team. Cyber Security
Bulletins. Available from:
http://www.us-cert.gov/cas/bulletins/. 1

[3] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R. Engler.
An empirical study of operating system errors. In Symposium on Operating Systems
Principles, pages 73–88, 2001. 1

[4] Hermann Härtig, Michael Hohmuth, Norman Feske, Christian Helmuth, Adam Lack-
orzynski, Frank Mehnert, and Michael Peter. The Nizza Secure-System Architecture.
In Proceedings of CollaborateCom, 2005. Available from:
http://os.inf.tu-dresden.de/papers_ps/nizza.pdf. 2, 14

[5] The Fiasco Microkernel. Located at:
http://os.inf.tu-dresden.de/fiasco/. 5

[6] L4Linux. Located at:
http://os.inf.tu-dresden.de/L4/LinuxOnL4/, http://l4linux.org/. 5

[7] Trusted Computing Group: TPM. Located at:
https://www.trustedcomputinggroup.org/groups/tpm/. 7

[8] Trusted Computing Group: Home. Located at:
https://www.trustedcomputinggroup.org/home/. 7, 15

[9] Bernhard Kauer. Authenticated Booting for L4, November 2004. Available from:
http://os.inf.tu-dresden.de/papers_ps/kauer-beleg.pdf. 8, 9

[10] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure Untrusted
Data Repository (SUNDR). In Proceedings of the 6th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), pages 121–136, San Francisco,
CA, December 2004. 9, 14

[11] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing Remote
Untrusted Storage. In Proceedings of the 10th Network and Distributed Systems Secu-
rity (NDSS) Symposium, pages 131–145, February 2003. 9, 14

[12] Hans Marcus Krüger. Zufallszahlen unter L4/DROPS, May 2005. Available from:
http://os.inf.tu-dresden.de/papers_ps/krueger-beleg.pdf. 11

71

Bibliography

[13] The Linux Kernel Archives. Located at:
http://www.kernel.org/. 13, 22

[14] Jetico Website. Located at:
http://www.jetico.com/. 13

[15] Matt Blaze. A Cryptographic File System for UNIX. In ACM Conference on Com-
puter and Communications Security, pages 9–16, 1993. 13

[16] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The Design and Imple-
mentation of a Transparent Cryptographic File System for UNIX. In Proceedings of
USENIX Technical Conference, FREENIX Track, June 2001. 13

[17] C. Wright, M. Martino, and E. Zadok. NCryptfs: A Secure and Convenient Cryp-
tographic File System. In Proceedings of the Annual USENIX Technical Conference,
pages 197–210, June 2003. 13

[18] Valient Gough. EncFS Encrypted Filesystem. Located at:
http://arg0.net/wiki/encfs. 13, 22

[19] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. Enhancing File System
Integrity Through Checksums. Technical report, Computer Science Department,
Stony Brook University, May 2004. Available from:
http://www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf. 13

[20] Microsoft Corporation. Secure Startup – Full Volume Encryption: Technical
Overview. Available from:
http://www.microsoft.com/whdc/system/platform/pcdesign/ secure-start_-
tech.mspx. 13

[21] C. Stein, J. Howard, and M. Seltzer. Unifying file system protection. In Proceedings
of the USENIX Technical Conference, pages 79–90, 2001. 14

[22] Umesh Maheshwari, Radek Vingralek, and Bill Shapiro. How to Build a Trusted
Database System on Untrusted Storage. In Proceedings of the 4th USENIX Sympo-
sium on Operating System Design and Implementation (OSDI), pages 135–150, San
Diego, CA, October 2000. 15, 44

[23] R. Merkle. Protocols for Public Key Cryptosystems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 122–134, 1980. 15, 24

[24] Trusted Computing Group: Storage Work Group. Located at:
https://www.trustedcomputinggroup.org/group/storage. 15

[25] Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley Trepetin. pStore:
A Secure Peer-to-Peer Backup System. Technical Memo MIT-LCS-TM-632, Mas-
sachusetts Institute of Technology Laboratory for Computer Science, October 2002.
15

[26] Emin Martinian. Distributed Internet Backup System (DIBS). Located at:
http://www.csua.berkeley.edu/˜emin/source_code/dibs/. 16

[27] Wikipedia, the Free Encyclopedia. Reed–Solomon Error Correction. Available from:
http://en.wikipedia.org/wiki/Reed-Solomon_error_correction. 16

72

Bibliography

[28] Trusted Computing Group. TCG Interoperability Specification for Backup and
Migration Services. Available from:
https://www.trustedcomputinggroup.org/groups/infrastructure/. 16

[29] DROPS The Dresden Real-Time Operating System Project. Located at:
http://os.inf.tu-dresden.de/drops/download.html. 16

[30] Federal Information Processing Standards Publication 197: Announcing the
Advanced Encryption Standard. Available from:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. 17

[31] Markku-Juhani Olavi Saarinen. Encrypted watermarks and linux laptop security. In
Chae Hoon Lim and Moti Yung, editors, WISA, volume 3325 of Lecture Notes in
Computer Science, pages 27–38. Springer, 2004. 17

[32] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid.
Recommendation on Key Management – Draft, Special Publication 800-57, August
2005. Available from:
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf.
18

[33] Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–
308, 1988. 18

[34] Federal Information Processing Standards Publication 180-1: Secure Hash Standard.
Available from:
http://www.itl.nist.gov/fipspubs/fip180-1.htm. 18

[35] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Collision Search Attacks on SHA1,
February 2005. Available from:
http://theory.csail.mit.edu/˜yiqun/shanote.pdf. 18

[36] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message Authentication Using Hash
Functions: the HMAC Construction. CryptoBytes, 2(1):12–15, 1996. 19

[37] OpenSSL Website. Located at:
http://www.openssl.org/. 35

[38] SSL 3.0 Specification. Available from:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. 35

[39] rsync Website. Located at:
http://www.samba.org/rsync/. 36

[40] D. R. Morrison. PATRICIA - Practical Algorithm to Retrieve Information Coded in
Alphanumeric. Journal of the ACM, 15(4):514–534, October 1968. 37

[41] G. M. Adelson-Velskii and E. M. Landis. An Algorithm for the Organization of
Information. In Soviet Mathematics Doklady, pages 1259–1262, 1962. 37

[42] The Single UNIX Specification. Available from:
http://www.unix.org/what_is_unix/single_unix_specification.html. 39

73

Bibliography

[43] Bernhard Kauer and Marcus Völp. L4.Sec Preliminary Microkernel Reference Manual.
Technical report, 2005. Available from:
http://os.inf.tu-dresden.de/L4/L4.Sec/l4_sec_20051019.pdf. 46

[44] Bernhard Kauer. L4.sec Implementation - Kernel Memory Managment. Master’s
thesis, TU Dresden, May 2005. 46

[45] U. Dannowski, J. LeVasseur, E. Skoglund, and V. Uhlig. L4 experimental kernel
reference manual, version x.2. Technical report, 2004. Latest version available from:
http://l4hq.org/docs/manuals/. 46

[46] Christian Helmuth. Generische Portierung von Linux-Gerätetreibern auf die DROPS-
Architektur. Master’s thesis, TU Dresden, 2001. Available from: http://os.inf.tu-
dresden.de/project/finished/finished.xml.de#helmuth-diplom. 51

[47] Frank Mehnert. Kapselung von Standard-Betriebssytemen. PhD thesis, TU Dresden,
July 2005. 51

[48] Christian Böhme. PCI-to-PCI-Bridge mit sicherheitsrelevanten Eigenschaften,
September 2005. Available from:
http://os.inf.tu-dresden.de/papers_ps/boehme-beleg.pdf. 51

[49] Advanced Micro Devices, Inc. AMD Secure Virtual Machine Architecture Reference
Manual, May 2005. 51

[50] Russell Coker. Bonnie++. Located at:
http://www.coker.com.au/bonnie++/. 53

[51] Namesys Website. Located at:
http://www.namesys.com/. 53

[52] Thomas J. McCabe. A complexity measure. In IEEE Transactions on Software
Engineering, SE2(4):308–320, December 1976. 61

[53] pmccabe – McCabe-style function complexity and line counting for C and C++.
Located at:
http://www.parisc-linux.org/˜bame/pmccabe/overview.html. 61

74

	Introduction
	Basics
	Context of the Thesis
	Protecting Data in Untrusted Storage
	Attacker Model
	Software-based Attacks
	Hardware-based Attacks

	Platform Requirements
	General Requirements
	Authenticated Booting, Remote Attestation, and Sealed Memory
	Infrastructure required for Recoverability
	Random Numbers and Key Generation

	Related Work
	Protected Storage
	Backup and Recovery
	File Access on the L4 Platform

	Cryptography to Protect File-System Contents
	Confidentiality
	Integrity

	Design
	General Design
	Protecting Individual Files
	Confidentiality
	Integrity
	Recoverability
	Meta Data and Per-File Integrity Anchors
	Summary

	Protecting Directories and Directory Structure
	General Considerations
	Confidentiality
	Integrity
	Recoverability
	Summary

	Trusted File-System Wrapper
	Opening and Authenticating Files
	Moving and Renaming Files and Directories
	Deleting Files

	Backup and Recovery
	Basic Backup Protocol and File-System Scanner
	Extended Backup Protocol for Integrity
	Communication Channel to Trusted Backup Server
	Recovery

	Buffer Cache
	Requirements
	Looking up Cache Buffers

	Untrusted Block Server and Trusted Block-Server Layer
	Untrusted Block Server
	Block-Server Layer of the Trusted Component
	Virtual--Address-Space Consumption

	Application Programming Interface
	Function Primitives of the Server Library
	Low-Complexity API Front End
	Error Handling

	Implementation
	Thread Structure
	File-System Wrapper and Organization of File Containers
	Embedded-Tree Structure
	Loading Data Blocks into the Buffer Cache
	Adapting Depth and Breadth of the Embedded Tree
	Sparse Files

	Buffer Cache
	Replacement Strategy
	Making the Buffer Cache Aware of Parent--Child Relationships
	File-Handle Consumption Caused by the Buffer Cache
	Flushing Single Cache Buffers
	Flushing Multiple Cache Buffers at Once
	Flushing All Dirty Cache Buffers
	Flushing a Specific File

	Error Handling
	Types of Errors
	Server Library
	Client Library

	Reused Components
	Issues of the System Platform

	Evaluation
	Performance
	Test Environment
	Throughput
	Page-Fault Resolution
	Opening Files

	Code Complexity

	Conclusion and Outlook
	Current State of the Implementation
	Open Tasks
	Outlook
	Summary

	Glossary
	Raw Data from Measurements
	Page-Fault Resolution (Encrypted File Contents)
	Page-File Resolution (Plaintext File Contents)
	Performance Data for File-Open Operations (Cold Caches)
	Performance Data for File-Open Operations (Warm Caches)

	Bibliography

