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Chapter 1


Introduction


For years operating systems were built using a monolithic kernel containing all needed functionality in
one large piece of software. In contrast, the microkernel development, started in the 1980s, focuses on
minimizing the kernel to a minimal set of abstractions and implement all remaining operating-system func-
tionality as servers at user level. Ideally, a microkernel provides only address spaces (protection domains),
threads (the active entities inside an address space), and communication between threads (inter-process
communication, IPC).


Servers and applications implemented on top of the microkernel execute in their own address space.
Communication between servers and applications uses the kernel-provided IPC mechanism. Therefore the
performance and functionality of the IPC mechanism is important for microkernel-based systems.


System-wide security policies require the control of communication relationships. Certain constraints
on the flow of information are imposed and need to be enforced. This means that both the direct communi-
cation of task and their access rights to objects need to be controlled. The absence of the latter would allow
for indirect communication via a shared resource. To achieve the aforementioned objectives a semantically
well defined, general and efficient control mechanism is needed. In this thesis I refined and implemented
such a mechanism.


Generalized Mappings is devised upon the ideas of the L4 memory management scheme. Resources
are referred to by local names only and access rights can be transferred. The coverage of new notions
as send rights required the extension of the existing name space. Originally only virtual addresses were
used as name space. The existence of objects beyond page frames required an additional naming scheme.
Capabilities as opaque handles to objects of various classes fulfill this role. The manipulating operations
(map, grant, unmap) can be applied the same way as for memory objects.


This thesis refined an initially vague model and evaluated its appropriateness on a prototypical imple-
mentation. The results confirmed its feasibility.


1.1 Organization of this Document


This thesis is organized as follows. In the next chapter I describe the background of this thesis. I introduce
microkernels, access-control mechanisms and the L4 memory model. In Chapter3, I present the design
of the Generalized-Mapping IPC mechanism. First, I describe the requirements for the IPC mechanism,
then the mechanism itself. Chapter4 explains the prototypical implementation. Furthermore, I discuss
algorithms for receiver selection. I evaluate the performance of the new IPC mechanism in Chapter5.
Finally, I conclude this thesis in Chapter6 and give an outlook on future work.


1.2 Acknowledgements


This thesis would have been impossible without the support of many people. I am deeply indebted to all of
them. First of all I would like to thank Prof. Hermann Härtig. He was the driving force behind the ideas
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of Generalized Mappings. My special thanks go to my supervisors Christian Helmuth and Marcus Völp
for their guidance and the support they gave me during the work on this thesis. I had numerous interesting
discussions with them. Finally thank Michael Peter, Udo Steinberg and Marcus Völp for proofreading this
thesis. Their valuable comments and feedback helped me to improve this document.







Chapter 2


Background and Related Work


2.1 Microkernels


In operating systems, the termkerneldenotes the fundamental part used by all other software. The kernel is
special from other software, as it runs in a special CPU mode: the kernel mode. Thus it can use all processor
features such as programming the memory management unit or switching tasks. Software running in user
mode cannot perform such security-critical operations.


Many operating systems, such as Linux [22] or Windows [31], are based on a monolithic kernel. Such a
kernel contains all operating-system services, including file systems, device drivers, network stacks, mem-
ory management, scheduling and others, packed together into a single kernel. Thereby all these services run
in kernel mode. One malfunctioning or hostile component can corrupt and even crash the whole system.


In contrast, the key idea of microkernels is to provide only a minimal set of abstractions in the kernel
and implement all additional functionality as servers at user level. Ideally, the microkernel implements
only address spaces, inter-process communication (IPC) and basic scheduling [20]. All remaining op-
erating system components and services, even device drivers, are user-level programs. Because each of
these components executes in its own address space, they are protected from each other. This design al-
lows for more robust operating systems because a malfunctioning service does not hamper the remaining
components. Furthermore, this design approach helps to reduce the trusted computing base (TCB) to the
hardware, the microkernel and basic services, such as a basic memory manager, a screen driver, a keyboard
driver, and perhaps a disk driver and a file system.


The first generation of microkernels and its flagship Mach [1], however, suffered from flexibility and
performance problems. Mach was a refactored Unix kernel and it was not really small (more than 140
system calls, more than 300 KB code). It provided a rich featured IPC mechanism with authorization,
message buffering and a complex message format. Mach also invented the innovative concept of external
pagers that allows to implement memory management strategies outside the kernel. However, due to the
enormous size and the sophisticated IPC mechanism, the Mach microkernel had poor performance.


The designers of the second generation of microkernels learned from the errors of the first generation
and designed their kernel for achieving performance. Liedtke constructed his L4 microkernel from scratch
with the goalsIPC performance is the Master[15] and minimality [19]. This design methodology leads to
small-sized kernels with high performance.


The L4 Microkernel


The original L4 microkernel interface [18] was designed for the x86 architecture and written completely in
assembly language [17]. L4 provides only three abstractions: address spaces (protection domains), threads
(the executing entities in an address space) and synchronous inter-process communication (IPC) between
threads. Furthermore, the kernel provides a scheduler with multiple fixed-priority levels, whereby threads
with the same priority are scheduled in a round-robin fashion.


All software developed during this thesis runs on top of the Fiasco microkernel, an implementation of
the L4 interface developed by Michael Hohmuth at TU-Dresden [7, 4]. Fiasco is fully binary compatible to
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the original L4 kernel. Furthermore, Fiasco provides a powerful in-kernel debugger and a port to the linux
system-call interface [5]. Therefore, Fiasco is an excellent basis for software development for L4.


2.2 Access Control


Access Control is a key mechanism for constructing trusted secure operating systems. The access-control
mechanism enforces the defined access-control policy of a system. The access-control policy defines and
restricts the ability of asubjectto invoke certain operations on anobject.


Objects are the resources of the system. These objects can be physical resources, such as memory,
CPUs, devices and other hardware, or logical resources, such as processes, communication channels, files
or system calls. Certain operations can be invoked on objects depending on the object type. For example,
files can be read and written to, but system calls can only be executed. Therefore, objects need to be
protected [13] from unauthorized or invalid accesses.


Subjects are the active entities that access objects. In computer systems, subjects are usually processes
acting on behalf of a user. Subjects can have access rights on objects to access and use these objects.
However, subjects can also be potentially untrusted, for example user-supplied or downloaded program
code.


So a way is needed to prohibit subjects from accessing objects that they are not authorized to access.
The provided mechanism must also allow for restricting the allowed operations a subject can use on an
object. For example, a taskT may be authorized to read a fileF , but not to write to that file. The access-
control mechanism must ensure that the desired access-control policy cannot be bypassed. A subject’s
access to an object must not succeed if that access violates the policy.


The relationship between subjects and objects regarding the object access can be represented with the
triple (subject, object, rights). Such a triple specifies the subject’s rights on an object. These triples are
defined by the system’s access-control policy and are used by the access- control mechanism to enforce the
policy.


2.2.1 Access Matrix


A possible way to store the access triples is the access matrix. The access-matrix rows consist of the
subjects; the columns are the objects. An entry inside the matrix controls the access rights from a subject
to an object. Whenever a subject tries to access an object, the access control mechanism checks the matrix
entry whether the requested operation is allowed or not.


The main problem with the access matrix is its enormous size: The matrix needs one entry per (subject,
object) pair. Also the matrix is usually sparsely populated (most subjects need and have only access to some
few objects). So storing the entire, mostly empty, matrix would waste memory and disk space. Therefore,
the idea is to store only the relevant parts of the matrix. Two methods are common: Storing the nonempty
elements by column or storing them by row. The first method is called anaccess control list. The second
method is called acapability.


2.2.2 Access Control Lists


An access control list (ACL) consists of all nonempty elements from a matrix column. Every ACL entry
is a tuple (subject, rights). The ACL is stored together with the object it belongs to and specifies which
subject can access that object in which way.


When a subject tries to invoke an operation on an object, the object’s ACL is traversed to check whether
the subject may invoke the requested operation or not. If more than one entry matches the subject, the first
entry found is used. Therefore the access control list must be kept sorted by some metric. A common
metric, used in the Unix file system, is to store entries regarding individual users at the beginning, followed
by entries regarding groups of users (sometimes called roles). Default entries are stored at the end. With
this metric a particular user can have less rights than a group it is in.


Since ACLs are stored together with the object, it is easy to figure out which subject can invoke which
operations on that object. Only the ACL has to be analyzed for that. The revocation of rights is also
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Server RightsObject f(Object,Rights,Check)


Figure 2.1: A cryptographically-protected Amoeba capability.


uncomplicated: Now unwanted operations are removed from every subject’s ACL entry. To revoke the
access of a subject completely, the ACL entry is removed. However, care has to be taken when a subject
can act also with a role account (e. g., a Unix group). Then the subject’s entry must not be removed. Instead
it must allow for no operation (remember also the metric described afore).


A problem with ACLs is their limited ability for access delegation. For each subject wanting access
(temporarily) a new entry has to be added. After accessing the entry has to be removed again.


Access control lists are commonly used in file systems, such as the Unix file system, or the Win-
dows 2000 file system.


2.2.3 Capabilities


When storing the rows from access matrix we talk aboutcapability listsconsisting ofcapabilities. A
capability is a tuple (object, right) assigned to a subject.


The capability grants its owner certain access rights on an object. Thereby the object used is encoded
in the capability; the subject specifies only the capability to use and the operation. To check whether the
requested operation is allowed or not only the capability is inspected. No list traversing as with ACLs is
needed.


Because capabilities are given to subjects, which are potentially malicious, they must be protected from
tampering. Three different methods are known: First, capabilities can be protected by hardware. The Cam-
bridge CAP Computer [24] uses different segment types for data segments and capability segments. The
segments can be accessed only with instructions belonging to the segment type. Arithmetical and logical
instructions can be used only on data segments. Capability related instructions work only on capability
segments.


Second, capabilities can be protected by the operating system. Here only the operating system itself
can access the capabilities directly, user applications only receive a handle, a local name, for the capability.
A common example are file descriptors in Unix: The process uses a handle (the file descriptor) to invoke
operations (read, write, seek) on a file. In Hydra [32] and in EROS [25] capabilities are protected by the
operating-system kernel.


The third way is to store capabilities in user space but protect them from tampering using cryptography.
This approach is used in distributed systems such as Amoeba [29]. An Amoeba capability [28], shown in
Figure2.1, encodes the server the capability belongs to, an object there and the access rights to that object.
The last field is the result of a cryptographically strong one-way hash function wherebyCheckis a secret
only known to the server. When the capability owner wants to access the object, it sends the request and
the capability to the server. The server recalculates the hash using the object and rights fields from the
transmitted capability and its internally stored check. Object access is only granted when the recalculated
hash value matches the hash value from the capability. Not matching hashes indicate an altered or even a
self-created capability. In this case the access is denied and the request is discarded.


Using capabilities allow for an elegant way of access delegation: One subjectS can give a capability it
owns to another subjectR. TherebyS can restrictR’s access rights to the object the capability references
to a subset of its own access rights. AfterwardsR can also access the object using its capability copy.


However, because capabilities are given to a subject and that subject can give copies to other subjects,
the revocation of granted access rights (capabilities) is difficult. It is hard to find all outstanding copies,
especially in distributed systems as Amoeba. One approach is to have an indirection object: Rather than
pointing to the object itself, all capabilities point to the indirection object. Capability revocation is done by
destroying the indirection object. This object becomes invalid, and thus all capabilities regarding to it too.
EROS provides this method; the indirection objects are calledwrappersthere.
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Hardware, MMU


Policy 1 Policy 2


Monolithic Kernel


Figure 2.2: Memory management policies in a monolithic kernel.


Hardware, MMU


Policy 2Policy 1


Microkernel


X


X


Figure 2.3: Memory management policies in a microkernel-based system.


Another way for revocation is possible in the Amoeba scheme: A server can change the check field
it stores with the object. Immediately, all existing capabilities encoded with the old check value become
invalid. However, neither of these mechanisms allow to revoke capabilities selectively from one subject
but not from another.


2.3 The L4 Memory Model


In this section I will introduce the L4 memory model, the ideas behind it and the provided mechanisms.
The separation of address spaces to protect tasks from each other is important in operating systems as it


is necessary for fault isolation and data protection. The basic mechanisms for address-space separation are
provided by the hardware’s memory management unit (MMU). Since programming the MMU is critical
for system security, it can only be done in kernel mode but not in user mode. Therefore the kernel has to
program the MMU and the structures used by the MMU.


In monolithic kernels the kernel does the entire memory and address space management. The kernel is
part of the TCB, and because the kernel must be trusted anyway, this implementation is safe from a security
perspective. The kernel also defines the policy used for memory management. However, kernel-defined
policies are rather static, the applications can at most select from the provided strategies. Implementing
additional application-specific management policies requires a kernel change to insert a new policy into the
kernel. Another problem with this approach is the lack of isolation between the different provided policies:
One malfunctioning policy module can harm the other modules and their client applications. This problem
is illustrated with dashed lines in Figure2.2.


The microkernel approach addresses these problems. Here only the fundamental management, the
programming of the hardware, is done by the kernel. The kernel exports an interface for modifying the
memory management structures to user level. The management policy is implemented purely at user level
using this kernel-provided interface. So any required memory management strategy can be implemented
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map IPC


Receiver


receive(’map’, virtual address in R)


Sender
send(’map’, virtual address in S, max access)


Figure 2.4: A page is mapped using IPC.


at user level. New policy implementations do not require a kernel change. Because of the address-space
separation, a faulty memory-management policy provider can only harm its clients but not other policy
providers and their clients, see Figure2.3.


With this approach it is even possible to stack multiple policy providers: For example, a base memory
provider hands out pages using a cache-coloring scheme. The next-level provider then does demand paging
for its clients. In the L4 microkernel the scheme of recursive address-space construction is used for stacked
memory managers.


2.3.1 Recursive Virtual Address Space Construction


The L4 kernel provides mechanisms for the recursive construction of address spaces outside the kernel
[17]. These mechanisms allow a thread from one address space to give access to its pages to another thread
in another address space.


The kernel enforces the security restrictions on this operation: Only pages the sender has access to can
be given to the receiver. This restriction prevents from gaining access to arbitrary memory pages. It is
achieved by using virtual page numbers for the operation. The other important restriction is that the source
thread can grant at most the rights it has itself on a page to the receiver. So privilege elevation, for example
upgrading a page from read-only to read-write, is prevented. However, downgrading the access rights,
for example from read-write to read-only, is an allowed operation. Hence, the L4 model for constructing
address spaces is safe because the kernel enforces the aforementioned restrictions during page transfer and
because only the kernel programs the MMU hardware.


The recursive address space construction starts from an initial address space calledσ0. The kernel
creates this address space with an idempotent mapping from virtual to physical pages during system start.
It owns all memory except the parts the kernel uses itself. All other address spaces are created empty.


To recursively construct address spaces the kernel provides the three operationsmap, grantandunmap.


Map and Grant


A thread from an address space canmapany of its pages to another address space if the recipient agrees.
The mapped pages are inserted into the recipients address space. Afterwards the mapped pages are acces-
sible in both the mapper’s address space and the recipient’s address space.


A thread from an address space can alsogrant any of its pages to another address space if the recipient
agrees. The granted pages are inserted into the recipients address space. However, in contrast to map, the
granted pages are removed from the granter’s address space.


Both operations, map and grant, require an agreement between the source thread and the recipient
thread. Therefore these operations are implemented using IPC: The sender specifies the map or grant
option inside the message and provided the virtual address of the page to send and the receiver’s maximum
access rights to that page. Remember, the kernel maps or grants at most the actual rights from the sender.
The receiver waits for a map message and specifies the virtual address a received page is mapped or granted
to in its address space. This map IPC is illustrated in Figure2.4.


With the map and the grant operation, L4 has an elegant way to delegate access rights to memory pages
from one address space to another.
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A


B
C


D


Figure 2.5: An unmap example.


Unmap


A thread from an address space mayunmapany of its pages at any time. Afterwards, the unmapped page
remains accessible in the thread’s address space but is removed from all address spaces the thread (or
another thread from the same address space) has mapped the page to. Thereby, unmap works recursively
and removes the page also from all address spaces that received the page indirectly. This is illustrated in
Figure2.5: The page is revoked from all address spaces that received it directly (B, C) or indirectly (D)
from A.


In contrast to the map and grant operations unmap does not require an explicit agreement with the
address spaces the pages are removed from. Such an agreement would allow a DoS attack against threads
from the unmapping address space when threads that received the page are not willing to agree on the
unmap. Nevertheless, the operation is safe because it is restricted to owned pages as map and grant are too.
The recipients of mapped pages already agreed on a potential unmap when accepting the received the page.


The unmap operation allows also to revoke access rights from mapped pages: The unmapping thread
specifies the maximum allowed access rights for the page. For example, a read-write page can be down-
graded to read-only. Revoking all access rights results in removing the page completely as described at the
beginning. The unmap mechanism allows for revocation of previously delegated (mapped) pages.


2.3.2 Mapping Database


In L4 address spaces are recursively constructed and managed at user level using the kernel provided
map, grant and unmap operations. These operations allow for arbitrary user-supplied paging and memory
management strategies that are in no way restricted by the microkernel.


The map and grant operations work with virtual addresses and can be implemented by copying the
page-table entries and applying further restrictions (e. g., setting the read-only flag). For unmap, however,
additional information is required: The kernel has to unmap the pages from all address spaces that received
the pages directly or indirectly from the unmapping thread. To do that the kernel needs the address spaces
and the virtual addresses within where the page has been mapped to. This information is stored in the
mapping database.


For each virtual page existing in an address space the mapping database contains an entry. During
a map operation the receiver address space and the virtual address within are recorded in the mapping
database entry for the mapped page. So the unmap operation can iterate through the database entries to find
all directly or indirectly derived mappings of a page.


Pages are mapped from one task to another task. At any time a page can origin from at most one task.
Further on, the kernel prevents cyclic mapping of a page. Therefore the mapping database for any page
is a directed acyclic graph. Because all page mappings start at the initial address spaceσ0, the mapping
database for a page can be interpreted as a tree rooted inσ0.
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Figure 2.6: Page fault processing in L4.


2.3.3 Page Fault Handling


A thread can potentially access memory at any virtual address in its address space. The memory access
succeeds only when a page with sufficient rights is mapped to the address. In all other cases the CPU
generates a page fault and traps into the kernel. A monolithic kernel would now try to resolve the fault by
mapping a page with sufficient access rights or by killing the thread due to an invalid access.


The L4 microkernel, however, provides only the mechanisms for address space construction. So the
kernel itself cannot resolve the page fault, because address spaces are managed completely at user level
with the operations map, grant and unmap. Therefore the kernel only provides a mechanism for reflecting
page faults back to user level. This concept is calledexternal paging.


In L4 every thread is associated with apager thread. When the thread triggers a page fault it traps
into the kernel. On behalf of the faulting thread the microkernel then generates an IPC to the pager. The
message contains the fault address, the fault reason (read access or write access) and the thread’s instruction
pointer. The pager receives the message and analyzes the fault location and the fault reason. Now it can
invoke appropriate fault handling, for example reading a block from disk (this can include IPCs to other
subsystems, such as the disk driver), or copying the page contents into another page because the original
page’s policy is copy-on-write. Afterwards the pager sends the so prepared page back to the faulting thread
using the map (or grant) operation. The microkernel inserts the mapped page into the page table and restarts
the faulted thread. Page fault handling is illustrated in Figure2.6.


The association of a thread to its pager is initially done at the time of thread creation. However, it can
be changed at run time. It should be noted that the first thread of an address space is specially cased in
L4V2: Its pager is specified during address space creation.


The concept of external pagers together with the operations map, grant and unmap allow for implement-
ing arbitrary memory management strategies, for example pinned memory (that never gets unmapped),
shared memory, copy-on-write or demand paging, at user level. All disallowed accesses are signalled to
the pager.
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Chapter 3


Design


Generalized Mapping, in short GM, is a new idea of the TU-Dresden’s Operating Systems Group for a next-
generation L4 microkernel. The main idea behind GM is to generalize the well-understood L4 mechanisms
for memory management, the mapping and unmapping of pages, in order to use these mechanisms for all
other kernel-provided resources as well. The resources provided by such an L4 kernel are memory pages,
threads, tasks and communication channels.


As in current L4 kernels, a task is a protection domain. Thus a task can own resources of all the above
types. Threads as the active entities can invoke operations on the task’s different resources. A task has a
task-local name space for each type of resource the L4 kernel provides. This allows a task to access the
actual resource using local names without the need of a globally unique name1. However, when global
names are needed, they can be implemented at user level. The local name space allows a task to manage
names for resources with an arbitrary policy at user level. Furthermore, task-local names are also a step
toward resource virtualization: A locally named resource can be backed by any physical resource of that
type like it is already done with memory pages in current L4 versions.


A local name for a resource can be seen as a capability: When a task has a local name to a particular
resource it can access or invoke operations on that resource. Without a name no operations can be invoked.
So a local name, or a capability, allows certain operations on a resource. There are existing two types of
operations: operations that can be used with all types of resources, and resource-specific operations.


The operations specific to a certain resource type can be invoked only on resources of that type. These
operations are usually bound to the resource type’s name space implicitly. So it is impossible to invoke
these operations with the wrong type of resource. For example the read-memory operation always uses the
virtual address space (the name space for memory) and therefore cannot be invoked on threads from the
thread name space.


General operations can be used with all types of resources. However, when such an operation is in-
voked, it keeps track of the resource’s name space. Thus name spaces cannot be merged using a general
operation. Examples for operations valid on all resource types are map and unmap.


In a system with Generalized Mappings resources are transfered from one task to another using the map
operation. This is basically a generalization of the mapping mechanism used for memory pages With this
mechanism a task can grant access rights to any of its resources to another task. During the map operation
the allowed access rights can be diminished. So the receiver of a mapping may have less rights than the
sender. Widening the access rights with the map operation is not possible, because the kernel maps at most
the sender’s actual rights, even if it specifies more.


This thesis focuses on the IPC mechanism used in a Generalized Mappings kernel. So the following
sections will discuss IPC and the IPC control mechanisms in detail.


1However, global names are needed for very special purposes e. g. physical addresses for DMA memory. So mechanisms have
to be provided to translate local names to global names when needed. As current experience with memory shows, this can be done
outside the kernel.
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3.1 Requirements


In this section I will define the requirements the IPC mechanism of a kernel with Generalized Mappings
should fulfill.


Trent Jaeger et al. [10] define the following six requirements for the system’s trusted computing base
(TCB). Since the IPC mechanism is part of the TCB, it has to fulfill these requirements.


• Communication: The system must be able to restrict the ability of a process to send an IPC to
another process.


• Authentication: The system must identify the source of an IPC.


• Authorization : The system must be able to determine whether a particular operation on a particular
object should be permitted.


• Delegation: The system must be able to control the delegation of permissions from one process to
another.


• Revocation: The system must be able to revoke the ability of a process to communicate with another
process or perform an operation on another process’s objects.


• Denial: The system must be able to prevent denial-of-service attacks on processes.


• Mechanism: The system must be able to implement arbitrary access control mechanisms (e. g.,
optimized for the policy that they enforce) of its own choosing.


In addition to these six the following requirements came up in discussions before and during my work.


• Local names: All resources must be addressed using local instead of globally unique names. This
allows changing of the actually used resource without changing its name. Wherever global names
are needed, they should be created at user level.


• Transparent thread structure: The client should not need to have a priori knowledge about the
thread structure of a server task. This allows the server to hide its internal structure or even change
it transparently. With the new IPC mechanism one should be able to implement a wide variety of
server structures — for example thread pools, dedicated threads per client, a server side distribution
to worker threads, or single threaded servers — without having to add extra mechanisms for just that
purpose such as auto propagation [21].


• Isolation: The provided mechanisms should allow to isolate subsystems from each other. Thus,
communication restrictions must enforce that a task from one isolated subsystem is unable to com-
municate with tasks from other subsystems.


• Synchronous IPC: The IPC between communication partners should be synchronous to avoid com-
plex buffering of messages inside the kernel. When asynchronous communication is needed, it
should be implemented at user level.


3.2 Generalized Mappings for IPC Management


In microkernel-based systems the kernel provides the basic mechanisms for communication. Because it
also provides the communication mechanism (IPC), the kernel must allow for restricting communication
between tasks to enforce the desired security policy. The policy itself is not defined by the kernel, it is
controlled by user-level policy servers but enforced by the kernel. Whenever the policy changes, the policy
servers must be able to update the restrictions and thus permit new communication channels or revoke
existing ones.


To achieve communication control, and thus communication restrictions, I introduce a new mechanism
to the L4 microkernel: The right to send a message from one task to another task. This right is represented
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by a new kernel object called aTask-Send Capability, in short send capability. Possession of such a
capability authorizes its owner to send messages using this capability. The send capability refers to the
actual message receiver. Therfore these send capabilities establish a one-way communication channel2.
When the receiver wants to reply, it also needs a send capability: a send capability referring back to the
sender.


In this thesis the notation→ B is used for a send capability. With the denoted send capability messages
can be sent to taskB. To name the owner of a send capability the notationA → B is used: TaskA holds a
send capability to taskB.


In order to enforce security restrictions regarding the communication between tasks, the capability must
be protected from modification by its owner. Otherwise a task could arbitrarily forge capabilities and thus
send messages it is not allowed to send according to the system’s security policy. The send capabilities
used for GM IPC are kernel-provided objects. Therefore they are protected by the kernel. The owning task
only gets a handle — the local name — to the send capability, the actual content is opaque to the user.
This opaqueness allows for changing the capability transparently to the user because the user-visible name
remains the same.


Send capabilities solve the authorization requirement: Only tasks possessing a send capability→ B to
a taskB can send massages to taskB. They are authorized to do so by a user-level policy server. Tasks
without a send capability to taskB cannot send messages toB.


Send capabilities can protect against some types of denial-of-service attacks. An attacking task without
a send capability to a target task cannot send any messages to the latter and thus it cannot carry out DoS
attacks. Tasks with sufficient send capabilities can still send useless “junk” messages preventing the target
from doing useful work. This is not a problem, because after detection, the attacked task could ask the
policy server to revoke the misused capability using the mechanisms described in the next sections.


Further on, send capabilities also solve the isolation requirement: Tasks inside an isolated subsystem
receive only send capabilities to other tasks inside this subsystem. So these tasks cannot send messages to
other tasks outside this subsystem. Similarly, no send capabilities to tasks from the subsystem are given to
tasks outside the subsystem. Now only tasks inside the subsystem can send messages to other tasks within
this subsystem. It is completely isolated from other communication.


3.2.1 Distribution of Send Capabilities


In the previous section I introduced the task-send capabilities. Now I describe the mechanisms used to
propagate capabilities from one task to another. Afterwards I describe, how the well-known L4 mechanisms
can be used to revoke the propagated capabilities.


A task in a system with Generalized Mappings holds some send capabilities. Each of these capabilities
permits communication with another task. Over these established communication channels normal data
messages can be sent, but also messages containing resources such as memory pages or capabilities. So a
task can send its send capabilities to another task. Afterwards, both tasks own the same capability and can
send messages using this capability. In the following this capability transfer will be calledforwardingof a
capability. Of course, a task can only forward capabilities itself owns. There is no way for the creation of
new capabilities using the forward operation.


A completely new mechanism just for capability transfers is not necessary, it would even violate the
minimalistic approach of L4. The L4 IPC system-call already provides a transfer operation for resources:
the map operation. So far this operation is solely used for the mapping of virtual memory pages from one
task to another. I use this operation also to transport capabilities from a sender task to a receiver task.
Hence, the mapping of capabilities applies the same mechanisms as the well-known and well-understood
mapping of pages from the task’s virtual address space.


A slight extension of the L4 kernel has to be done to support a new type of flexpage, thecapability
flexpage. Such a capability flexpage consists of a base capability Id and the size of the flexpage, just like
for normal memory flexpages. During the map operation all capabilities inside the given flexpage from the
sender are inserted into the receiver’s capability structures.


2IPC error codes can be used to leak information back from the receiver to the sender. To enforce strict one-way communication
channels, a reference monitor has to be inserted into the channel (see Section3.3.1).
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Most of the classic capability-based systems do not keep track of the forwarded capabilities. Hence,
these systems cannot easily revoke a capability, because they do not know which tasks have a copy of the
desired capability (see also Section2.2.3). Some systems, EROS [25] for example, provide an indirection
level for the actual capability and can invalidate it there. EROS and Mach [1] provide capabilities with an
use-at-most-once semantic, e. g. the EROSreturn capability. All copies of such a return capability become
invalid when one of the copies is used. In Amoeba [29] capabilities are protected cryptographically (see
Section2.2.3) using a secret. Changing the secret invalidates all outstanding capabilities. Neither of these
mechanisms is able to revoke a capability selectively from a subset of tasks.


The send capabilities used for GM IPC should avoid these problems. Again, a possible solution is
already used in the L4 kernel for memory mappings. During mapping of memory pages the kernel keeps
track which page from the source address space is mapped to which location in the destination address
space. This information is kept in the mapping database. For each physical frame the mapping database
records the map operations of a task and the virtual address in the destination space.


A similar database can be used to keep track of capability mappings. For each capability this database
contains a tree3 where the capability mappings are recorded. So the kernel can keep track of all mapping
operations. Thus the kernel knows for every capability the tasks this capability is accessible from and also
the location there. (Note: How a system is initialized and started is described in detail in Section3.2.7.
The total number of initial capabilities existing in a system is also describe there).


The mapping database stores the information how the task-send capabilities are distributed among
tasks. This information can then be used to selectively revoke the capabilities a task directly or indirectly
forwarded to other tasks. For memory L4 provides the unmap system call implementing this operation.
The unmap operation traverses the mapping database for the requested frame starting from the current
task. Then the page is removed from the address space of all tasks it was mapped to from the current
task. Furthermore, unmap works recursively through all address spaces the original receiver has mapped
the page to. This continues until the complete subtree of the mapping database is traversed and the pages
are unmapped from all tasks inside that subtree.


With the mapping database for capabilities and the aforementioned capability flexpages the unmap
operation can be extended to revoke forwarded capabilities. Hence, we also have an effective way for the
selective revocation of send capabilities.


The unmap operation is safe, because a task can only unmap capabilities it owns. Furthermore, the
receiver of a capability mapping implicitly agrees to a possible unmap when it accepts the mapping. for
this reason no further authorization or agreement is necessary for the unmap call.


With the introduced mechanisms and operations the rights-delegation and rights-revocation require-
ments can be solved. The map operation during IPC is used to delegate the rights from one task to another.
The unmap operation together with the mapping database is used for the revocation of previously granted
communication rights.


3.2.2 Preventing the Unwanted Distribution of Rights


As described in the previous section, task-send capabilities are distributed between tasks by mapping them
from one task to another. Up to now, there are no restrictions whether a task can forward its send capabilities
(or other resources such as memory pages) or not. However, when the mapping operation is allowed without
any restrictions, a new problem arises: The unwanted distribution of rights.


For an illustration look at Figure3.1. A subsystem with three tasks and a well defined information
flow (send capabilities) is shown. For example, this subsystem could be a part of a video player:X is
a controlling task getting user input (e. g., seek). It instructs the disk driverY to read blocks from disk.
The blocks are transfered to a taskZ that decrypts them for presentation (using a trusted screen driver not
shown in the figure). The defined data flow assures that no decrypted data can leak back to the disk.


However, when allowing unlimited capability mappings,X can map its capabilityX → Y to Y . Y
in turn maps this capability toZ establishing an unauthorized backward channel. This new channel is


3 The kernel prevents cyclic mappings and allows a capability in a task to origin from at most one task (the mapping task). Therfore
the mapping-database structure is a tree.
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Figure 3.1: A subsystem with a defined information flow.


X Y Z


Figure 3.2: The same subsystem with unwanted communication channels.


unwanted, because it allowsZ to send the decrypted video data back to the disk driver. The new situation
is shown in Figure3.2, the dotted arrows are the unwanted communication channels derived fromX → Y .


For discussing solutions for this problem look at the scenario from Figure3.3. Given are two groups
G1 andG2 of untrusted tasks. Inside a group the tasks have send capabilities so they can communicate
with each other. Every group has a trusted member (T1 andT2), which can additionally communicate
with tasks outside its group. In the Clans & Chiefs model [14] these tasks would be the chiefs. Because all
communication crossing a clan boundary is redirected to the chief, the unwanted rights distribution problem
does not exist here: The chief intercepts the message and can discard disallowed or unwanted parts before
forwarding the message to the destination. In practice, however, this very restrictive communication has
turned out to be inefficient, because for one message sent fromB to K, at least three IPC operations have
to be invoked:B to T1, T1 to T2 andT2 to K.


In a system with capabilities the trusted tasks could establish a direct communication channel between
dedicated members ofG1 (B) and dedicated members ofG2 (K) for fast inter-group communication.
Hence taskB gets a send capability to taskK. Forwarding this capability insideG1 is unproblematic
becauseB could also forward messages from other tasks inside its group acting as a proxy. The problem
here is that the untrusted taskB can forward the send capability it has to taskC (B → C) over the
established channel toK. This forwarding will establish a new communication channel between the groups
(dotted arrow in Figure3.3), circumventing the trusted tasks, which are unaware of this new communication
channel fromK to C. The problem here is that the newly created channel cannot be closed easily by the
trusted tasks: Revoking the send capabilityB → K from B does not revokeK → C. Things get even
worse, if other resources such as memory mappings are transfered, establishing a shared memory region
between the different groups which is a high bandwidth channel.


A possible solution for this problem could be to restrict whether a send capability can be forwarded to
another task or not. In the given scenario all send capabilitiesB receives would be tagged as nonforward-
able. Therefore no new direct communication channel (e. g., fromK to C) can be established.B, however,
can still map memory pages toK and thus establish the shared memory channel. So this forwardable flag
has to be implemented for every type of resource in the system to prevent unauthorized channels. This
means that in the scenario all resources (memory pages, send capabilities and possibly others) of group
G1’s members have to be tagged nonforwardable, otherwise a group member, for exampleC, can forward
its mappings toB without tagging, andB in turn can send that mapping toK establishing a new channel.


Instead of limiting the forward-ability of send capabilities (and other resources too), the communication
channels could be restricted to allow mapping operations or not. For the above scenario this means that the
send capabilityB → K is tagged to disallow the transfer of mappings. NowB is unable to establish new
communication channels betweenK and tasks insideG1, because it can only send plain data messages but
no mappings toK. All other communication channels insideG1 can be tagged to allow mappings without
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Figure 3.3: The unwanted distribution of rights.


implications on security because communication from and to the outside is restricted (B → K) or filtered
by T1.


The tagging of communication channels introduces no new mechanism, but is a permission on the
communication channel.


3.2.3 Capability Fault Handling


Possession of send capability authorizes communication to a particular task. The destination task is de-
termined and the capability is validated during the invocation of the IPC operation. Without a proper
capability the task cannot send the message. So a task may try to invoke an IPC operation using an invalid
send capability (e. g., a capability it does not own). The invocation of IPC is forbidden with this capability
and a fault occurs. This fault that has to be handled by the GM-IPC mechanism.


There are four different causes of faults during the validity check of the used capability. First, the given
local name of the capability can be out of the range supported by a particular GM implementation. Second,
the capability may be invalid because it is not mapped. Third, the capability may be used for an operation
it is not intended for. Fourth, the capability me be lacking a required permission. The third case cannot
happen with the send capabilities from this thesis because the task-send capabilities can only be used for
IPC. We handle the fourth case by silently discarding mapping requests if the transfer of mappings is not
allowed with the used capability.


For the first type of failure, the capability is out of supported range, the IPC operation should abort and
return the error codeinvalid destination. Application programmers must pay attention to this condition and
handle it accordingly.


Failures of the second class occur, when a task tries to use a send capability, which is not mapped to
that task. This can happen either by using an arbitrary capability the task never possessed, or by using a
capability that already got unmapped. From the kernels point of view both possibilities are the result of
invoking IPC with an invalid capability. This resulting fault is called asend-capability fault.


In classic L4 only memory access faults, the page faults, can occur. The kernel translates the page
fault into an IPC and sends it to the faulting thread’s pager. A similar mechanism can be used for handling
capability faults.


For handling capability faults, every thread in a GM system has a capability pager. On a capability
fault the kernel generates capability-fault IPC and send it to the capability pager. Like a page-fault IPC,
the capability-fault IPC consists of the faulting capability name and the instruction pointer where the fault
occurred. The capability pager inspects the message and extracts the faulting capability name. Then the
pager resolves the fault by mapping an appropriate capability to the faulting task. Afterwards the faulting
operation is restarted,
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This type of error handling is transparent to the faulting thread, such as page faults are today. It is useful
to fulfill parts of the transparency requirement: A pager can revoke capabilities from its clients at any time.
During the next IPC operation a fault is generated, and the pager can send another capability back to the
client. Without further interaction, the client now sends to another task as before the replacement. This
mechanism can be used when server tasks need to be restarted, when splitting a large server into smaller
ones, or when joining several server tasks into one task. Moreover, in Section3.3.1I show in detail, how a
communication interceptor (e. g., a debugger) can be inserted into an existing communication channel.


However, with the described revoke and fault-in mechanism one might not be able to build systems with
arbitrary capability distribution between tasks. For example, a system is built, where a client sends a reply
capability together with its request to a server. Before the server replies, the client revokes that capability.
In the scheme above, there is no chance for the server to detect that the capability is lacking, hence the
server faults. To eliminate this fault, the server must detect the missing capability. The only reliable check
for the validity of the capability can be done during the IPC operation. But instead of generating a fault
IPC and restart the faulting IPC afterwards, the IPC operation returns an error code. This error code can be
used by the server to do the appropriate error handling.


For the discussed reasons, a system implementing the Generalized Mappings IPC mechanism should
provide both types of error handling, transparent fault IPC with restart and IPC abort with error code.


3.2.4 Local Id’s on the Sender Side


In the preceding sections I introduced the task-send capabilities and their handling in general. In this section
and in the following sections I describe how these send capabilities are actually used for the communication
between threads.


To use the send capabilities a sender thread needs to name the capability it wants to use for sending the
message. Since a task, and thus the threads within, can own many different send capabilities, the sending
thread must be able to distinguish between the different send capabilities using different names. Hence,
every task requires a name space for naming the send capabilities: thesend-capability name space. Like
the name space for memory, the virtual address space, the send-capability space is local per task. This
enables a task to manage the capability name space on its own, applying any policy for the send-capability
naming it wants.


The send-capability space is indexed by natural numbers. Every number represents a slot for one send
capability. A slot is either empty, no capability is mapped there, or it contains a valid send capability. In
the following the termcapability Id is used for the slot number. For a sender, the capability Id represents
a send capability, and thus a communication channel. Since every task has its own send-capability name
space, the capability Id’s are also local per task. Different tasks can have different send capabilities at the
same capability Id. The capability Id can be interpreted (and of course used) also as the senders local name
of the intended receiver of messages sent using this capability Id.


The send-capability map and unmap operations described in Section3.2.1work within the capability
space. Both operations use capability flexpages consisting of a base capability Id, and the size of the
flexpage. As the base address in memory flexpages the base capability Id is aligned according to the
flexpage size.


The send-capability name space also solves some of the defined requirements. It allows a task to use
arbitrary local names for their communication partners. Further, together with map and unmap operation
the send-capability space provides the transparency of the actual message receiver: The sender’s pager
can revoke a send capability at any time. Later, when resolving the according capability fault, the pager
can forward another send capability to the sender. The sender does not notice this change of the receiver,
because the sender’s local name remains the same. Refer to Section3.3.1for an example.


3.2.5 Local Id’s on the Receiver Side


Task-send capabilities authorize the communication from a sender to a receiver as described. Consequently,
when a task receives a message, it knows that the sender was allowed by an authority to send the message.
The problem now is, how the receiver can identify the source of the received message. Or, in other words,
how it can figure out, which of all possible senders actually sent the message.
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This sender identification provided to the receiver must be unforgeable by the sender, otherwise a
malicious sender can spoof it and send messages pretending to be another task. That’s why the reliability
of the identification must be enforced. In Generalized Mappings the kernel is a trusted entity, therefore the
kernel provides the mechanisms for enforcing an unforgeable identification.


A naive approach would be the transmission of the sender’s thread Id like in current L4. This solves
the identification problem and can also be useful for accounting purposes. But it violates the transparency
requirement and the idea of Generalized Mappings, where global Id’s should be omitted if they are not
needed for very special purposes (e. g., DMA memory). Therefore another mechanism is needed for sender
identification.


The solution I propose for GM IPC is that every message gets an unforgeable identifier stored inside the
capability used to send the message. Since the capabilities are kernel-protected objects, the sender cannot
forge this identifier. This identifier is called theprincipal Id, in shortPID. I do no call it sender Id because
this would imply a particular use. The PID can be used for other purposes as described below.


For the kernel the PID is an opaque bit string of lengthn . The bits do not have a special meaning for
the kernel. On IPC these bits are inserted into the message by overwriting the firstn bits of the message.
So the first part from a received message,n bits, is enforced through the kernel and unforgeable by the
sender.


The receiver can interpret the PID in any manner. For example, a receiver uses the PID only for
identifying the sender, thus the PID is a sender Id. When replying to the sender, the receiver maps the
received PID to one of its send capabilities. More complex receivers can use the PID as object identifiers
(file descriptors for example) the message content has to be applied to. Since the PID is unforgeable, the
receiver can trust the object Id without further checks. Another possibility is the encoding of the function
Id the receiver calls with the message. For more scenarios and examples refer to Section3.3.


The PID solves the authentication requirement, because it is unforgeable inserted into every message.
It also gives the receiver a local name space for its requesters. The remaining questions now are, how the
principal Id’s are managed, who manages them, and how they are placed into the send capabilities.


PID Management


The principal Id comes from the send capability. So the actually used PID has to be inserted into the
capability. Send capabilities are forwarded from one task to another using the map operation. During
this map operation the forwarding task specifies the PID and its length. These values are inserted into the
forwarded capability.


But this PID insertion mechanism must prevent a task from forwarding send capabilities with an ar-
bitrary PID. Otherwise a malicious task can insert any PID when forwarding a send capability, and thus
rendering the PID useless for any kind of identification. Therefore only new bits can be appended to the
PID. The already existing PID bits from the original send capability are inserted into the newly speci-
fied PID. The new PID length is the maximum of the PID length of the existing capability and the newly
specified length during capability forwarding.


So the pagers in a pager hierarchy can build a hierarchic PID space by specifying some more bits of the
PID when forwarding a send capability to the next pager.


Acting on Behalf


In classic L4 with Clans & Chiefs the Chief of a Clan can send messages to tasks outside that Clan pre-
tending to be sent by any task inside this Clan. This is necessary, as every message a task inside the Clan
sends to the outside is redirected to the Chief. When the Chief then forwards the message to the intended
destination, it acts on behalf of the original sender.


With the send capabilities and the principal Id GM IPC supports also tasks acting on behalf of other
tasks. Looking at the example from Figure3.4, the pagerP owns a send capabilityP → S with PID pidp.
The pager established a channelC1 → S by forwarding its send capabilityP → S specifying the PID
pidc. Later on,P also forwards this capability toC2 also with the same PIDpidc. SinceC2 now owns a
send capabilityC2 → S with the same PIDpidc asC1, it can send messages on behalf ofC1. The server
S does not notice the different sender.
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Figure 3.4: Acting on Behalf.


Also a pager can always act on behalf of its clients, because it is the one who forwarded the capabilities
to the clients. If the pager forwards the capabilities unchanged, that means without further restricting the
PID, the scenario is similar to the previous one withpidp = pidc. When the pager forwards the capability
with additional PID restrictions, hence the pager specifies more bits forpidc thanpidp has, the pager itself
has to put the additional bits it specified forpidc into the message because only the shorterpidp is inserted
from the kernel. Also here the server does not notice a difference in the received messages from the pager or
the client as both start with the same bit pattern, the client’s PID. Thus, the precondition for impersonation
is that the PID of the impersonator is a prefix of the PID of the impersonated task.


In Section3.3.1demonstrates how acting on behalf is used when intercepting messages.


3.2.6 Receiver Selection


With the Generalized Mappings IPC mechanism messages are sent to a task specified by the senders send
capability. While this allows to hide the receiver’s thread structure from the sender, the task addressing has
the problem that threads, and not tasks, are the active entities inside a system. Only threads can invoke the
IPC operation for sending or receiving messages. So the thread actually receiving an incoming message to
the task has to be selected by some mechanism.


Usually not all threads inside a task are equal in terms of message reception, because the application
might associate some given semantics with the threads. Another problem is that all threads would have
to provide message buffers for all possible incoming messages. More problems may appear when threads
have different priorities in order to prioritize some clients or operations.


The solution GM IPC offers for this thread selection problem is the specification of amessage criteria.
A thread specifies the message criteria for messages it is willing to receive. The message criteria consists of
a bit string and a lengthn . For an incoming message the kernel matches the firstn bits of the message with
the bit string from the message criteria. When the massage matches the criteria, the message is delivered
to the waiting thread. Otherwise the message is incompatible with the specified message criteria and not
delivered to that thread.


This type of matching is calledprefix matching. Prefix matching was chosen for receiver selection in
GM IPC because in current systems the first message part often contains an object Id or an operation Id to
which the remainder of the message has to be applied to. With prefix matching a receiver thread can wait
for specific object or operation Id’s.


This content-based receiver selection can be used to implement a wide variety of different selection
policies at user level. The three most common cases, open wait, group wait and closed wait, I will describe
now.


For an open wait a receiver thread specifies an empty message criteria with length 0. This pattern
matches every message. Therefore the thread is a candidate for receiving any incoming message, as every
message is compatible.


For a closed wait, L4 speech for waiting on exactly one communication partner, the receiver thread
specifies a bit string and its length as message criteria. Additionally it must be guaranteed that only threads
inside one sender task can send messages which match the given criteria. This constraint can be assured
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with a proper PID distribution: The first part of the message is used for prefix matching with the message
criteria. On sender side, the first message part is also the part that is replaced with the principal Id from
the capability. So the PID is one part of the message which matched with the message criteria. When the
receiver can trust the sender’s pager, i. e. the pager does not map the send capability with the same PID to
other tasks, a closed wait for one sender can be assured.


The third common case is called group wait. Here the receiver thread also specifies a bit string and
length as message criteria. Although, in contrast to closed wait, the specified criteria has a shorter length,
and thus suits to several incoming messages. Again, with proper PID distribution group wait can be used to
wait for messages coming from a group of other tasks, but not from tasks outside that task group. Another
example are threads of receiver tasks, which use the first message part as an object Id. Group wait can
be used for waiting on messages regarding to any object out of group of objects. For an example refer to
Section3.3.2.


Together with the described hierarchical PID distribution, the content-based receiver selection provides
protection from some types of denial-of-service attacks. All messages of an attacking sender containing its
PID. Thus, this sender can carry out a DoS attack only against receiver threads waiting for messages with
the senders PID or a shorter subset thereof. Of course, as today too, open-waiting threads are also affected
by a DoS attack. All other threads are not affected by the attacking sender.


Considerations for Multiple Receiver Threads


As described, threads waiting with a specific message criteria. The kernel chooses the actual receiver
by comparing the first bits of the incoming message with the message criteria of each receiving thread.
For multi-threaded receivers it is possible that the criteria of more than one thread matches the incoming
message. This happens either when several threads are waiting with the same message criteria or when one
waiting thread specifies a prefix of another thread’s criteria.


In both cases the kernel has to choose one out of all possible receivers. In the first case, several threads
with the same message criteria, all possible threads are equal from the kernel’s point of view. Choosing the
last running thread for receiving the message is a good idea here, because the working set of this thread
may still reside in the cache. Thus this choice can outperform the selection of another thread.


For the second case, choosing the first fitting thread, or even a random one, is also not a good idea,
because with such a strategy there is absolutely no control to which thread the message is actually delivered.
A more deterministic way is that the thread with the most specific message criteria gets the message. The
idea thereby is that this thread might have more a priori knowledge about the message than the other
threads. Thus it can benefit from the kernels choice. Another point is that threads with a shorter message
criteria accept a wider range of messages. Choosing a thread with a longer message criteria does not block
the reception of other messages out of this range. The more specific receiver cannot receive these messages
due to its longer message criteria.


This afore described selection mechanism can be used to implement thread pools. Many threads are
waiting with the very same criteria. An incoming message with this content is delivered to one waiting
thread out of the pool using LIFO selection. No further special mechanism, such as auto propagation [30],
is needed for just that purpose. Answering back to the sender is not an issue, because the needed send
capability is owned by the task. Each thread can use it for replying.


Another example are worker threads. Here, only one thread receives messages from task-external
sources. Then it analyzes the message content and forwards the message to another local thread that does
the actual work. This allows a task to implement arbitrary message distribution at user level based on the
content. For the same reason as above, replying to the original sender is also not a problem here.


3.2.7 Starting a System


I explained the motivation and usage of the send capabilities. Now I discuss, how a system based on
Generalized-Mappings IPC starts up. Afterwards I show the effects on task creation and start.


When a system starts, the hardware is checked and initialized to a known state. Afterward the boot
loader loads the kernel and possibly a couple of initial tasks into memory. Then the kernel is started,
initializes itself, and takes over the control of the system. A classic L4 kernel then creates a root address







3.3. SCENARIOS 29


space calledσ0 that represents the physical memory. This address space has an idempotent mapping of
virtual addresses to physical addresses. All other address spaces are created empty. Further on the kernel
creates two tasks: Sigma0 and the root task. Sigma0 has the address spaceσ0, therefore it is the root for
recursive address space construction. The root task starts up the rest of the system by loading and starting
the needed tasks.


This strategy can be extended for a system with Generalized Mapping IPC. The kernel has to create an
initial send-capability name spacecap0 with an idempotent mapping of send-capability Id’s to tasks. The
idempotent mapping allows for easy conversion between task Id’s and the corresponding send-capability
Id’s. No additional mechanism is needed for it. For every possible task in a system there exists exactly
one send capability incap0. All send capabilities incap0 have an empty, zero-length PID. Therefore a
task havingcap0 as its send capability space can send any message to any task, because nothing inside the
message is overwritten. So this task can also impersonate all other tasks.


The question now is, which task gets the initial spacecap0. Basically there are two possibilities. First,
to create an additional taskCapability0 that hascap0 as its send-capability space. Second,cap0 goes to
Sigma0.


In the first case, the additional task Capability0 owns all send capabilities to all tasks, hence it is the
root for capability distribution, while Sigma0 owns all the memory pages. However, this variant has a
chicken-egg problem: The virtual address space of Capability0 is empty, therefore a page fault is raised
immediately after the start. Unfortunately, Sigma0 cannot send the required memory pages, because its
send-capability space is empty. A solution for preventing such a deadlock during startup is that the kernel
instantiates some initial capability and memory mappings between Sigma0 and Capability0. However,
when more types of resource mappings, such as task mappings or thread mappings, come into play in the
future, these problems get even worse.


These problems do not exist for the second variant. Here both name spaces,σ0 andcap0, are owned by
Sigma0. So Sigma0 is the root for both recursive address space construction and recursive send-capability
space construction. By the latter, Sigma0 can also partition the PID space each next-level pager manages.


The second variant is the more elegant way, because it does not add additional complexity to the kernel.
Everything regarding a policy can be done at user level. Sigma0 can provide and enforce the systems basic
security policy by partitioning the PID space.


Creating a new Task


During system start, but also afterwards, new tasks are started. Initially, the virtual address space and
also the send-capability space of a newly created task are empty. The empty send-capability space is
problematic, because the task does not have a send capability to its pager. Therefore the task, more precisely
the kernel on behalf, cannot send fault messages to the pager. So fault handling would be impossible.


In classic L4 this problem is solved by specifying the initial pager on the task-creation system call. So
the newly created task can (and of course will, because it does not have any code pages mapped yet) raise
page faults that are handled by the pager.


A similar strategy can be used for creating tasks in a system with the Generalized-Mappings IPC mech-
anism. Here the send capability to the pager has to be specified for the task-creation system call. The
creating task specifies one of its send capabilities, which then is mapped to the newly created task and used
there for sending fault messages. So the new task can raise faults, and these faults are resolved by the pager.


3.3 Scenarios


3.3.1 A Message Interceptor


In this section I demonstrate how the mechanisms of Generalized Mappings can be used for the insertion
of an intercepting task into an existing communication cannel. Afterwards all messages sent through this
channel can be inspected by the newly inserted task. Thereby, the interceptor insertion can be transparent
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Figure 3.6: After inserting the message interceptor.


to all other involved tasks4. The interception task, for example, can be a debugger, an IPC tracer, or a filter
(e. g., a reference monitor) that drops unwanted messages.


Message interception is illustrated with the scenario from Figure3.5: The system is running and there
are three tasks: a clientC, a serverS and their pagerP (in principleS can also have its own pager, but
this would make the scenario slightly more complex). During the startup ofC a communication channel
from C to the pager is established, and thusC can send fault messages toP . The pager also established
a channel from itself toC, so that it can reply to the fault messages. The same holds for the server. As
the client wants to send requests to the server and the server answers them, the pager established channels
from C to S and fromS to C by mapping the appropriate capabilities.


At some point in time the pager decides to observe the messages the client sends to the server. Therefore
the pager unmaps the send capabilityC → S from C. SoC can no longer send messages toS. Upon the
next requestC tries to send, the kernel generates a capability-fault IPC and delivers it to the pager. The
pager starts an interposing taskI. I gets a send capability toP so thatP can act as its pager. Obviously
the pager has also the right for sending messages toI.


After the creation ofI, the pager replies toC ’s fault message with a send capability mapping to task
I. From its point of view,C can now communicate again with S, as only the capability internal data has
changed, butC ’s local name forS remains the same. The intercepting taskI can now examine the incoming
message. It can apply any policy to the message including changing the content or even drop it. WhenI
decides to forward the (potentially modified) message toS the first time the kernel generates a capability-
fault IPC to the pager. The pager resolves this fault by mapping a send capability→ S to the interceptor,
applying the same or a prefix of the principal Id it formerly mapped toC. The new situation is shown in
Figure3.6.


From S’s point of view it still gets messages fromC without any notice of the intermediate taskI,
becauseI is able to send the same messages asC could — the authentic principal Id ofI is a prefix of the
PID of C. Therefore the insertion of the interceptor can be transparent to bothC andS.


4 When a task installs a local fault handler it can detect the insertion. Also with timing-based attacks the insertion can be detected.
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Figure 3.7: An encoding for global Id’s.


When message inspection on the way back fromS to C is demanded, the previous steps also have to
be applied toS. The pager then might decide to use the already existing I instead of creating a new one. In
the latter caseI can inspect both messages fromC to S and the replies fromS to C.


Removal ofI from the communication channels can be done in the same way as the insertion: The
pager unmaps the send capabilityC → I. OnC ’s next IPC invocation a fault message is generated and the
pager replies the original send capability sending toS.


One problem when inserting an intercepting task is that IPC betweenC andS is no longer synchronous.
C sees a successfully sent message even when the IPC betweenI andS results in an error or, for example,
S has been destroyed meanwhile. This is a general problem when using message interception. Trent Jaeger
et al. proposed a solution in [11] for classic L4. The mechanisms they introduce are keeping the source
of a message blocked when the message is intercepted until the final receiver is reached, and sending back
a notification about IPC success to unblock the sender. These mechanisms are orthogonal to the GM-IPC
mechanism, they can be implemented in a similar way for GM-IPC. However, additional send-capabilities
might be needed for the unblock messages.


3.3.2 Global Id’s


In the L4 versions L4V2 [18] and L4X0 [30] the kernel provides a fixed scheme for Id management with
globally unique thread Id’s. Such an Id consists of a task Id, a thread Id, and a generation number for
uniqueness in time5. This section describes, how to emulate this policy on top of a system with Generalized
Mappings IPC.


The global Id’s are used for thread identification. For IPC the sender of a message specifies the global
Id of the receiver. The receiver gets the senders Id. Because these Id’s are global, unique, and unforgeable,
the receiver can rely on it6. Another benefit of global Id’s is that a thread has always the same Id when
communicating to arbitrary other threads. That’s why, in systems with global Id’s the thread Id’s are often
used for authentication and identification purposes in applications.


When emulating global Id’s with GM the aforementioned conditions must hold. A global thread Id
consists ofmbits task Id andn bits thread Id. Therefore a task can have up to2n threads. On the sender
side, the capability Id can be used directly as the global Id of the destination thread. The firstn send
capabilities refer to threads of task0 , the nextn to task1 and so on. For receiving the sender’s global Id
on the receiver side, a clever encoding of the global Id for the first message word and therefore the PID is
needed. Additionally, this encoding must guarantee that the correct receiver thread is selected for message
reception. The encoding must also work for multi-threaded senders.


Figure3.7shows an encoding for the first message word, which accomplishes both requirements. The
first part,receiver thread, is used on receiver side for selecting the right thread. For an L4-style open wait,
a receiver thread does a group wait specifying its thread Id as message content. The receiver task Id is not
needed here, because it is only relevant on the sender side – the used send capability there refers to the right
receiver task. The next two fields contain the senders task Id and thread Id. Closed wait for one sender
thread is implemented by specifying the complete triple on a group-wait operation.


5Additional fields of the different L4 versions, such as clan Id or site Id, are omitted here. They can be seen as part of the task Id.
6 Deceiving by chiefs is not considered as a problem, for discussion see [14].
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Figure 3.8: An example for tasks using global Id’s for communication.


The fieldsreceiver threadand sender taskare put into the PID of a send capability. The latter is
necessary to prevent malicious tasks from forging their Id. The first one is needed due to the afore described
wait semantics together with the fact that the PID is always a complete bit string without holes. Thesender
threadfield is specified by the sender thread. This is safe, because a task is a protection domain. Putting
sender threadinto the PID too would require much more send capabilities inside a task (one capability for
each possible combination of sender thread and receiver thread, which grows quadratic with the number of
tasks) while giving no additional security, because a thread can always use the send capabilities intended
for another thread of the same task. Thus, in both cases it can impersonate any other task-local thread.


An example scenario is shown in Figure3.8. There are a clientC, a multi-threaded serverS and a
name serverN . These three tasks using global Id’s for communication with each other. The threadsS1 and
S2 of S registered themselves at the name server for the services they provide. The client (single-threaded,
threadC0) wants to use a service provided byS1, so it first asks the name server for the Id of the thread
providing it. The replied thread Id, the threadS1, is used as destination by the client. The pagerP manages
the send capabilities of the tasks.


When a thread uses a send capability the first time, a capability-fault IPC is sent to the pager. The
pager extracts the faulting capability Id from the fault message and calculates the requested task and thread
out of it. Then it resolves the fault by mapping a send capability referring to the task with the calculated
global task Id. Thereby the PID fields forreceiver threadandsender taskof this capability are set to the
calculated receiver thread and the faulting tasks global task Id.


In the exampleC faults on capabilityS1 = S ∗ n + 1. When resolving the fault the pagerP maps its
send capabilityP → S with the PID 1 C to C. Now C can send messages toS1. After handlingC ’s
request,S1 uses the received global Id for replying. Here also a capability fault occurs. The pager resolves
that fault by mapping itsP → C to S with the PID 0 S


I showed, how the current situation of global Id’s can be emulated with GM IPC. However, the emu-
lation has some limitations. The pager has unlimited send capabilities to all tasks that use global Id’s, so
it could impersonate all that tasks. This is a non problem, as a task must trust its pager anyway. Another
limitation is that a communication attempt with a not existing thread of a task does not result in an error
code. Because the task exists, the pager maps a capability, but no thread is waiting for thereceiver thread
specified in the PID. Two more things can be seen as limitation, but also as benefit: a thread can imper-
sonate other threads of the same task, and a thread can wait for messages intended for other threads by
specifying a wrong Id when waiting for a message. Both cases cannot be prevented, because the protection
domain is always a task. However, they need not be prevented from a security perspective. The first case
is useful for request propagation to worker threads. The actual worker thread replies directly to the client
using the propagator’s Id as sender thread Id. The second case allows the implementation of thread pools.
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3.4 The Prototype


In the previous sections I described the goals and the general design of the Generalized Mappings IPC
mechanism. Now I am going to describe the architecture of the prototypic GM-IPC implementation I
developed during this diploma thesis. The concrete implementation challenges are discussed in the next
chapter.


3.4.1 General Architecture


At the beginning of my work was clear that during the available time for a thesis it is impossible to work
myself into the depths of Fiasco and incorporate a completely new IPC mechanism. Also it was unclear,
how GM-IPC exactly works and what are the effects on the remaining system components.


So I decided to implement the GM-IPC mechanisms inside a library at user level on top of the existing
L4V2 infrastructure [18]. Programs that use the Generalized Mappings mechanisms are linked against
that library. They use the library provided functions for communication instead of the kernel provided
ones. Furthermore, the library provides send-capability management, mapping and unmapping of send
capabilities and capability-fault handling.


The implementation as user level library has several benefits: I don’t have to define a new kernel binary
interface (ABI) for capabilities and the receivers message specification. The library’s interface can consist
of ordinary function calls. In contrast to a binary system-call interface to the kernel the parameters of these
function calls can be type checked at compile time. This eases debugging and prevents mistakes when
functions or data types are changed in the implementation, but not in the corresponding header files. Such
checks are not possible with the current Fiasco kernel, because the kernel does not use user-level headers
and vice versa.


Another benefit from a library is the more rapid development using the existing infrastructure. So new
functionality can be added step by step. Inside the kernel, large parts of the IPC path have to work reliable
(think about memory mapping) before it can actually be used and tested by user programs. In addition, user
level code is often easier to debug because some types of error, such as invalid accesses, are trapped by the
kernel. Also debugging software can be used. However, the ability to debug should not be overemphasized
as Fiasco has a powerful in-kernel debugger for both user level and kernel level debugging.


Besides the benefits an implementation as library has also limitations. Communication control is rele-
vant for system security and also for denial-of-service prevention (see Section3.2). When implementing
send-capabilities purely at user level the security requirements cannot be met, because a hostile application
can access and even modify all the library’s data structures. In an in-kernel implementation these security-
relevant data structures are protected by the kernel. Accessing them from user level will be detected and
denied by the kernel’s fault handler.


These important limitations, however, do not interference with the main goals of this thesis, which
are to discuss and implement GM-IPC and see whether it is useful and should be implemented inside a
next-generation L4 kernel.


The developed library defines the necessary data types and functions for library internal and user visible
send-capability handling. Functions for sending and receiving messages using GM-IPC are also provided.
Task and thread management are not subject of the developed library. For those the mechanisms provided
by the native L4 kernel have to be used.
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Chapter 4


Implementation


In the previous chapter I focused on the fundamental design of Generalized-Mapping IPC. I also explained
the reasons for implementing the prototype as a library at user level and the basic library design: The
library provides the Generalized Mappings IPC functionality. Also the send-capability management and
the capability mapping is provided.


This chapter points out the concrete implementation of GM IPC inside the developed library. In the
following section I present the library’s architecture and the provided data structures. Thereafter I present
the Generalized Mappings IPC path in detail. Finally, in Sections4.4, I discuss the matching requirements
and possible algorithms for receiver selection.


4.1 Library Architecture


I implemented GM IPC prototypically as a library at user level. All application using the Generalized
Mapping mechanisms are linked against the library. This is shown in Figure4.1


The most important part of the library is the distributor thread. This thread is started at program startup
when the library is initialized. The distributor thread receives incoming GM-IPC messages and selects the
actual receiver thread from all waiting threads. I chose a design with an extra thread, because in GM-IPC
messages are sent to tasks using send capabilities. Furthermore, the distributor thread is also responsible
for mapping and unmapping of capabilities.


The distributor thread manages the library’s data structures; the lists for sender threads, receiver threads
and timeouts. It also manages the mapping database for capability mappings.
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Figure 4.1: A system with GM tasks and non-GM tasks.
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The distributor thread, the requests to it and the important data structures are shown in Figure4.2.


4.2 IPC Implementation in Detail


The main objective for this thesis was the development and test of the Generalized Mappings IPC mecha-
nism. As the library works on top of an L4V2 kernel, I decided to extend the existing data format and the
function syntax of V2-IPC slightly for using send capabilities and the new receiver-selection mechanism.


The new GM-IPC send function takes a capability Id instead of the receiver’s thread Id. All other
parameters, the IPC descriptor, the two “register” words and the timeout are the same as in the current send
operation for L4V2. So these parameters can be given directly to the underlying L4V2 IPC system call.
The capability Id is not the only new field: An additional first message word, to which the PID is applied,
is needed. The PID cannot be applied to the first “register” word, because this word is interpreted during
memory map operations by the underlying L4 kernel. Therefore the message should not be changed by my
library.


The GM-IPC receive function takes a structure for the message criteria. The additional first word from
the send operation is matched to the message criteria. When the word matches it is delivered back to the
receiver in the message criteria structure. All other parameters for the receive operation, except the now
superfluous sender thread Id, are the same as in L4V2.


From the users point of view the only changes are the name of the IPC functions and the first parameter,
which is no longer a thread Id. All other fields and also the message format remains the same. This also
holds for a combined send-and-receive operation.


My library capsulates the GM IPC path. When the send operation is invoked, the used capability tested
for validity. In case the capability is invalid (i. e., not mapped) fault handling is done. Otherwise the
capability’s PID is applied to the first word. The so modified first word is used for selecting the actual
receiver thread by matching the word with the message criteria. When a matching receiver thread is found,
the user supplied message, potentially including memory mappings and strings, is transfered from the
sender thread to the receiver thread using an L4V2 IPC.


4.2.1 Receiver Preparation


Before explaining how a message is sent from one thread to another using the Generalized-Mappings
IPC mechanism, I will show you how a receiver thread prepares itself for message reception. Figure4.3
illustrates the receiver preparation.


At first the receiver thread prepares the message buffer wherein the message should be received. For
a short IPC the “buffer” consists of the two direct words. Then the thread chooses the message criteria
of messages it wants to receive by specifying the bit values and the number of significant bits. Now the
library’s GM-IPC receive function is invoked (1).
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Figure 4.3: The receiver prepares for message reception.
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Figure 4.4: Control flow for a GM-IPC send operation.


The receive function builds up a receiver structure containing the message criteria and the timeout for
the receive operation. Other fields of the structure are omitted here, they are introduced in the subsequent
sections when these fields are actually used.


Then the receive function sends a pointer to the just created structure to its task’s distributor (2). Here
a pointer can be used, because the receiver and its distributor reside in the same task. The pointer allows
the distributor to change the structure’s fields directly without additional IPC overhead. This mechanism is
used for the transfer of the initial message as described in the next section.


The distributor enqueues the receiver thread in its receive list (3) and waits for the next request1.
After sending the message to its distributor, the receiver thread does an L4V2 open wait with the passed


message buffer. The benefit of this open wait is that the distributor does not need to notify the receiver
thread about the sender’s L4V2 thread Id when a matching sender is found. The receiver is able to receive
the actual message from any sender.


4.2.2 Send Operation in Detail


A thread of an application wants to send a message to another task using the Generalized-Mappings IPC
mechanism. Therefore the thread prepares the message (in L4V2 format). Further on it sets up the capa-
bility descriptor with the receivers capability Id and the initial first message word. Now the thread invokes
the GM-IPC send function provided by the developed library.


The control flow and the invoked L4V2-IPC operations are illustrated in Figure4.4. Thereby, the first
IPC (1) is the afore described receiver preparation.


The send function checks the validity of the send capability referred by the given capability Id. Ap-
propriate fault handling is done if the send capability is invalid: Depending on the invoked function, either


1Actually, the distributor first checks the send list for a waiting sender whose message matches the message criteria. When a
matching sender is found, the receiver is not enqueued. Instead the sender is dequeued and notified. See also Section4.2.2.
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Figure 4.5: Control flow for a GM-IPC call operation.


the error codeinvalid destinationis returned, or a capability-fault IPC to the capability pager is generated.
From a valid capability the principal Id is taken and applied to the initial message word from the capability
descriptor. Also the L4V2 thread Id of the GM-IPC distributor thread inside the receiver task is extracted
from the capability.


Now the library sends an L4V2 IPC, consisting of the modified initial message word and the timeout
for the send operation, to the receiver’s IPC distributor (2).


The distributor uses the received initial word for selecting the actual receiver thread. Basically this is
done by matching the initial word to the message criteria of every waiting thread. However, with optimized
algorithms (see Section4.4) it is possible to skip some unsuitable receivers. In case that no matching re-
ceiver thread was found, that is the initial word did not match any receiver’s message criteria, the distributor
enqueues the sender in its sender list and waits for the next request.


A matching receiver is dequeued from the receiver list. The initial word is passed to the receiver thread
by copying the word into the receiver’s message criteria. This works, because both the receiver thread and
the distributor thread reside in the same task. Then the distributor replies the receiver’s L4V2 thread Id
back to the send function (3).


Finally the send function now sends an L4V2 IPC with the actual message to the receiver (4). This
message consists of the two register words and potentially a memory buffer. These message parts are not
modified by the GM library. The error code of this final IPC is delivered back to the invoker of the send
function.


The purpose of the dashed dashed message (5) I will explain at the end of the next section.


4.2.3 Implementing an Atomic Call


L4 servers often reply to their clients using a send timeout of 0. This protects the server from denial-of-
service attacks by malicious clients that send a request but do not wait for a reply. For the above reason
the call IPC operation of an L4 kernel switches a client thread atomically from the send to the waiting state
after message transfer, but before the server is invoked. The server can now handle the request and send
the reply with timeout 0, because the client is already waiting for the message.


The same server behavior should be possible for servers and clients communicating with the GM-IPC
mechanism. Therefore the library’s GM call operation, more precisely a combined GM send and GM
receive operation, must be implemented in a way that it also switches atomically from the send to the
receive state. Otherwise the client may not be receiving when the server replies.


The major challenge during implementing such an atomic switch at user level was the interaction and
synchronization between all involved threads: the sender, the receiver, and the sender’s distributor. The
distributor of the receiver is unproblematic, because it is used only during the sender’s send stage for
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receiver selection. Figure4.5illustrates the interaction between the involved threads and the IPC messages
sent between them. Again, (1) is the preparation of the receiver


The main constraint for an atomic call operation is that the receiver’s receive operation cannot finish
until the sender is in receive state. I implemented the following solution: After preparing the message to
be sent, the capability descriptor and the message criteria, the sender invokes the library’s send-and-wait
function. The send part works exactly as described in Section4.2.2(IPCs (2), (3) and (4)). In principle,
the receiver could now start servicing the request. However, this would violate the atomic-call constraint.
Hence, the receiver’s receive operation does not return immediately, instead it waits for anIPC-complete
message. The send-and-wait function now prepares the receive state. The receiver structure is build up
(see4.2.1). An additional field therein is set to the receiver thread’s L4V2 thread Id. The distributor will
use this field for sending the IPC-complete message. Now the send-and-wait function calls the sender’s dis-
tributor for receiver enqueuing (5). The distributor usually enqueues the now receiving sender. Afterwards
the distributor sends the IPC-complete message to the receiver thread (6), the Id is taken form the receiver
structure. Now the sender is in a proper receive state and the receiver can start processing the request.


Another implementation detail: The server can use both functions, receive and send-and-receive, when
waiting for a message. Therefore both functions have to implement the afore described logic. However,
when every receive function awaits an IPC-complete message, what happens when a basic send is invoked?
Here, the sender does not call its distributor for receiving a message. Therefore the distributor cannot send
the IPC-complete message to the receiver. My implemented solution is that the GM-send function itself
sends the IPC-complete message to the receiver thread subsequent to the actual data message. This IPC-
complete message is the dashed fifth message in Figure4.4.


4.2.4 Implementing Timeouts for IPC


In L4, the IPC operation has timeouts for both the send and the receive part. The timeout specifies, how
long a thread is willing to wait for the communication partner’s invocation of the IPC operation. If the
message transfer is not started until the timeout hits, the IPC operation is canceled and returns the error
codesend timeoutto the sender, respectivelyreceive timeoutto the receiver.


Timeouts are used for several purposes: Firstly, a server protects itself from hostile clients by replying
with a send timeout of 0. The reply will fail, if the client is not already in the receiving state. This
prevents a DoS attack where the server is blocked by hostile clients that query the server but do not wait
for the responses. Secondly, servers use timeouts to specify the maximum time they wait for an event. For
example, a window server wants to awake at least once per second, even when no other requests are issued.
Thirdly, timeouts are used to wait a certain amount of time. The sleep function is implemented using a
receive with a timeout.


For these reasons, the implemented GM-IPC mechanism must also provide timeouts. The timeouts of
the underlying L4V2 IPC cannot be used directly, because this could lead to improper results: For a send
operation the send timeout would specify the time to wait for the receiver’s distributor but not, as intended,
the time until the actual receiver is ready. Also a consistent library state has to be kept. Only threads really
waiting to send or receive should be in the library’s lists.


Therefore I implemented timeouts for GM IPC inside the distributor thread. I will describe now, how
timeouts for a GM-IPC send operation are implemented. Timeouts for the receive operation are imple-
mented analogously.


The GM-IPC send functions already have a timeout parameter. This timeout is sent to the distributor
thread when calling it for receiver selection. The distributor tries to find a matching partner as described.
When no matching partner is found, the timeout is inspected. If the timeout is 0, the distributor sends a
timeout error back to the sender. Then the sender aborts the send function returningsend timeoutto the
caller. Otherwise the distributor enqueues the sender into the sender list. When a timeout other than∞ was
specified, the absolute2 hit time is calculated and the sender is enqueued in the timeout list too. Thereby
the timeout list is kept sorted by ascending absolute timeouts.


2In L4V2 timeouts are relative to the current time.
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The distributor implements timeouts by waiting for new requests with a receive timeout of 10 ms.
There is nothing special with 10 ms, it is just a tradeoff between accuracy and additional load due to
timeout handling. However the used Fiasco kernel seems to handle timeouts also every 10 ms.


When the distributor receives a message, or when its receive timeout hits, the first timeout is checked.
If it is less than the current time, timeout handling is done. Thereby the timed out thread is dequeued from
the timeout list and from the sender list, respectively the receiver list. Then a timeout error is sent back to
this thread. These steps are repeated until the first timeout is later than the current time or, of course, the
timeout list is empty. After timeout handling the distributor processes the received request, if there was
one.


4.2.5 Capability Mapping and Unmapping


The mapping of capabilities during GM IPC is done purely inside the library. In analogy to memory
mappings the sender specifies a capability flexpage it wishes to send inside its message. The receiver
specifies a receive window where it is willing to receive capabilities. After the receiver selection the
capabilities from the sender’s flexpage mapped to the receiver according to the rules from [2] if the flexpage
and the receive window are of different size. Afterwards the L4V2 message transfer is started as described
in Section4.2.2. During this message transfer the sender’s capability-flexpage descriptor is transfered as
raw data by the underlying L4V2 kernel. The receiver can use the received capability-flexpage descriptor
to determine which capabilities have been mapped into its capability space.


Unmapping of send capabilities, thus the revocation of communication channels, is a key functionality
of Generalized Mappings. In today’s L4, unmap is a system call. Since the library capsulates the handling
and mapping of send capabilities, it has to provide also an appropriate unmap functionality for these capa-
bilities. Like the GM-IPC functions, the library-provided unmap takes the same parameters as the standard
unmap: the flexpage to unmap and an unmap mask. When the flexpage is a send-capability flexpage, the
library handles the unmap internally, i. e. traversing the mapping database of each capability within the
flexpage and unmap the capability from all tasks it was mapped to. As expected, unmapping of send capa-
bilities works transitively as well. Other flexpage types, ordinary memory or IO flexpages, are forwarded
to the L4 kernel’s unmap system call. However, thecomplete spaceis special cased by the library’s unmap:
It first unmaps all send capabilities. Then the kernel’s unmap is invoked, which unmaps all memory pages.


4.2.6 Capability Fault Handling


Another important functionality the library provides is the handling of capability faults. Capability faults
occur when a capability Id referring to an invalid capability is used for an IPC operation. The two types3


of fault handling are to send a capability-fault IPC to the pager or to abort the faulting IPC. For the latter
case the library provides an extra send function which returns an error code. The standard send function
does the first type of error handling.


To handle capability faults a task needs a capability pager. Because of the different handling of memory
faults — they are detected by the L4 kernel and handled using L4V2 IPC — and send-capability faults,
which are detected by the library and handled using GM IPC, the L4V2 pager of the faulting thread cannot
be used as capability pager. Thus an extra pager for handling send-capability faults is needed. In the
prototype the capability pager is per task. I decided so after analyzing the usage of the per thread memory
pager. The memory pager was only changed when a region manager is used. The region manager then
forwards the page fault to the appropriate pager. However, the same for capabilities can be achieved by
supplying a wrapper around the error returning GM-IPC send functions.


The program can set the send-capability pager using a library provided function which takes a capa-
bility Id and the initial first message word as parameters. The mechanisms described in Section3.2.7
are not feasible, because the prototype does only IPC management. For task and thread management the
functionality of the underlying L4 kernel is used.


So when the GM send operation detects an invalid capability, it generates a capability fault message
and sends that message to the task’s capability pager. After the pager replied an appropriate capability


3For discussion refer to Section4.2.6.
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mapping, the failed send operation is restarted. If the pager capability is invalid as well, the faulting thread
is shut down.


4.3 Matching Requirements


In Generalized Mappings IPC the receiver thread of a message sent to a task is selected based on the
message content. A thread waiting for a message specifies a pattern, the message criteria, on its wait
operation. An incoming message must match the specified criteria to be delivered to that thread. Refer to
Section3.2.6for a detailed discussion.


The basic algorithm to find receiver thread for an incoming message is to compare the message with
the message criteria from all waiting threads. When the comparison succeeds for a thread that thread is a
valid candidate for message reception. Since the message criteria is a variable-length bit string, which is
compared with the beginning of the message and the comparison ignores the tailing message bits, this type
of comparison is called aprefix match.


The main challenge during receiver selection is to find the thread with the best matching message
criteria from all valid candidates. That is to find the thread which specified the longest matching message
criteria. So algorithms used in GM receiver selection must be able to search the longest matching message
criteria (the longest matching prefix) for an incoming message.


A common example for longest prefix matching is the routing decision for packets in IP networks:
For an incoming packet a router selects the next router, thus the outgoing interface, based on the packet’s
destination. From its routing table the router searches the entry with the longest matching prefix to the
desired destination.


In contrast to prefix matching, many search algorithms performexact matching. Here two keys are
compared and the comparison only succeeds when both keys are equal and of the same length. For example
consider the password for a computer login: To gain access, the typed password must be exactly the same
— char-by-char — as the stored password. When you type more or less characters, the login will be denied.


The problem with exact matching for GM receiver selection is that in many cases the specified message
criteria will shorter than the incoming message. So exact matching will not find a valid receiver candidate.
Cutting the message to the criteria length can prevent the failed comparison. However, cutting once to a
fixed length does not solve the original problem because threads inside a task can specify different criteria
lengths.


4.4 Receiver Selection Algorithms


This section describes possible algorithms for receiver selection. The benefits and the problems when using
the algorithms for prefix matching are discussed. Concrete numbers for the implemented algorithms are
presented in Chapter5.


For search time complexity the following notation is used:n is the number of waiting threads.w is the
maximum length of the message criteria the threads specified for their wait operation.


4.4.1 Linear List Search


The first implemented algorithm for receiver selection is a linear search through all waiting threads. I
chose the linear search, because I did not expect any implementation difficulties and I wanted to run my
test applications. So I got a working GM IPC path without sophisticated receiver selection.


Linear search works directly on the distributor’s client-thread descriptors of my library. The descriptors
of all waiting threads are chained into a linear list. On an incoming message the whole list is traversed to
find a suitable receiver. The receiver thread with the longest matching prefix is chosen as the message
recipient and dequeued from the list. When multiple receivers specified the same prefix and length (e. g.,
they implement a thread pool) the first one found is used.







42 CHAPTER 4. IMPLEMENTATION


In principle, linear search can be used with any other matching algorithm, because the matching algo-
rithm is applied to the message specification of every receiving thread. However, in this thesis only prefix
matching is used.


The time needed for finding the actual receiver thread for an incoming message depends on the number
of waiting threads. So the time consumed for receiver selection isO(n). Inserting a new receiver thread
into the list is done inO(1), because new receivers are always enqueued at the beginning of the list. The
enqueuing does not have an influence on the search operation, because all receiver-thread descriptors are
searched through thereby.


4.4.2 Binary Trees and Tries


Binary Tree


A binary tree is a data structure that can be used for storing data keys and finding them later. The tree
consists of nodes, each node stores a data key and two pointers to the left and the right subtree. A search
for a key starts at the root node of the tree. The search key is compared with the node’s data key. When
the keys are equal, the search was successful. Otherwise, depending on whether the search key is greater
or less than the node key, the search continues on the right or on the left subtree. Searching the binary tree
terminates either on a successful comparison — the key was found — or when branching to a non-existing
subtree. In the latter case the searched key was not found in the tree.


The shape of a binary tree depends on the insertion order of the keys. Therefore binary trees can become
unbalanced. In the worst case the tree degenerates to a linear list. This is especially a problem, because the
worst case can occur frequently in practice, for example when the keys are inserted in sorted order.


The search complexity of a perfect binary isO(log n). However, unbalanced trees need more time to
search a key, up to the worst case ofO(n).


Another problem of a binary tree is that both the insert and the search operation use an exact match
between the search (or insert) key and the node key. In contrast, the receiver selection for GM IPC has to
find the thread with the longest matching message criteria. Padding a short message criteria with zero bits
(or any other known bit combination) does not work, because the respective bits of the incoming message
are not known a priory. The padding bits likely have a wrong value, so the expanded criteria will not match
the incoming message.


Binary Trie


Both problems, the unpredictable shape and the applicability of prefix matching, can be addressed with
a binary trie. Let me first describe the basic concept of a binary trie4. Thereafter I will discuss prefix
matching and further optimizations.


Like the binary tree a binary trie consists of nodes with a data key and two subtree pointers. The
branching decision, however, is not determined by comparing the keys themselves. Instead the individual
bits of the search key are used. A search starts with the search key’s most significant bit at the root node.
The left branch is taken on a0 bit, the right branch on a1 bit. Trie traversal continues with the next bit.
The basic search scheme is considered successful, when the bits of the search key run out and the data key
of the reached node is valid. Otherwise the searched key was not found in the trie.


The basic search scheme does exact matching, as a binary tree too. Fortunately, the trie can be adapted
for prefix matching: When the finally reached node from the basic search scheme does not contain a valid
data key, the search backtracks, potentially up to the trie root. Only when no valid node is found on the
walked path, the search terminates unsuccessful. Otherwise the backtracking ensures that the data key with
the longest matching prefix is found. A more efficient implementation omits backtracking by remembering
the last visited valid node during tree traversal. The remembered node can be returned directly when the
finally reached node has no valid data key.


The shape of a binary trie depends on the inserted keys but not on their insertion order, because for the
branching decision the individual key bits are used and not complete key value. So the search time for a
key in a binary trie does not depend on the number of keys nor their insertion order. Only the key length


4The termtrie is derived from retrieval [6].
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is important: The search complexity of a binary trie isO(w). This also holds for searching the longest
matching prefix.


Path Compression


Unlike binary trees, binary tries do not become unbalanced. However, the tries are often still too deep: The
depth of a leaf node is equal to the length of its key in bits.


Long chains of nodes with only one child node occur frequently in tries. Such a chain without branches
indicates that all keys following the chain have an identical prefix. The idea of path compression is to
convert these chains into a single node. Thereby the skipped branches, thus the skipped key bits from
the original chain, are recorded in that node. The resulting path compressed trie is less deep than the
corresponding binary trie except in the rare occurring worst case.


Path compressed tries are also calledprefix tries. An example for a path compressed trie is the PATRI-
CIA trie [23] used in text searching algorithms and the 4.3BSD routing table [26].


With prefix free keys a PATRICIA trie withn stored keys hasn leaf nodes with the keys, called external
nodes, andn − 1 internal nodes. Each internal node has exactly two child nodes. The average depth of a
PATRICIA trie with m nodes islog m, while the average depth of the binary trie is the average key length.


When the keys are not prefix free, the external nodes are not necessarily leaf nodes. They can also
occur within the trie. In contrast to internal nodes, external nodes within the trie can have only one child
node. The number of internal nodes in such a trie is at mostn− 1. The average trie depth remainslog m.


The rarely occurring worst case for a path compressed trie is when the keys have increasing length and
shorter keys are prefixes of longer keys. Then the resulting trie is a sorted linear list.


Implementation


In my library I did not implement pure binary tries for matching the incoming message with the receiver’s
message criteria because of the expected chains without branches. Nodes in such chains require additional
storage. They also increase the search time for a receiver because of the needed bit tests per node and also
due to the increased cache working set: The more nodes have to be tested the more cache is needed and
therefore more application cache lines are destroyed.


A prefix trie does not suffer on these two problems, therefore I implemented it. I did not use different
node layouts for internal and external trie nodes, because the given message criteria of one thread can be
a prefix on another thread’s message criteria. Then an external node exists inside the trie and not only at
the leafs. Another reason is that I do not have to test for different node types during trie traversal when
searching or inserting a key. Also, on insertion of a new waiting thread whose specified message criteria is
the same as the key of the reached internal node, there is no need to convert the internal node to an external
node.


Thus, a trie node consists at least of two pointers to the left and to right subtrie, a pointer to a thread list
with all threads waiting for the reached prefix and the bit number to test for the next branching decision.
The problems that arise now are how to represent the skipped bits and how to test them. One solution would
be to store the skipped bits inside the trie node as a variable-length bit string and compare them before each
branch. However, variable-length bit strings are often inconvenient to handle. Trie implementations used in
virtual memory management for translating virtual addresses into physical addresses delay the comparison
of the skipped bits until a leaf node is reached [27]. The entire key is stored in the leaf node or in a table
outside the trie, for example in a frame table. After reaching a leaf node the entire key is compared with
the stored key at once. When the keys are not equal, some of the skipped bits were different and no valid
address translation exists.


Unfortunately, the described algorithm cannot be used for GM, because of its assumption: The algo-
rithm assumes a prefix free trie which is true for memory. This assumption does not hold for the message
criteria of waiting threads in GM IPC, where one thread can specify a longer criteria starting with exactly
the same bits that are another thread’s shorter criteria. In such a case for an incoming message the best
matching criteria has to be found for IPC handshake and message delivery.


In my prototype a message criteria has at most 32 bits. So I decided to include two additional fields
into my trie nodes: the entire node key and a mask for the valid key bits. The mask is precomputed from
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Figure 4.6: Page table structure of the Pentium MMU.


the branching bit number during node insertion. Therefore, a trie node needs 24 bytes memory on the x86
architecture. Together with additional padding my trie nodes use 32 bytes memory, which is exactly an L1
cache line on the Pentium processor.


During trie traversal the node’s mask is applied to the search key. Then the masked search key is
compared with the node key. When both keys are equal trie traversal continues on the left or on the right
subtrie depending on the search key’s bit value on the branching bit position. Otherwise, if the keys are
unequal, the trie traversal is stopped and the search algorithm backtracks to find the last matching node.


To achieve higher performance I avoided backtracking by slightly extending the trie traversal algorithm:
When the key comparison succeeds and the node’s thread list is valid (i. e., not aNULL -pointer) my
algorithm memorizes the node as the best matching node so far. Later, on a node where the search key does
not match the node key, the algorithm straightly goes back to the memorized node, which is automatically
the best matching node.


4.4.3 Page Table like Structures


During discussions about possible structures for fast receiver selection often the idea came up that structures
similar to page tables could be used for searching a matching receiver. I will discuss now the difficulties
when using page tables as structures for receiver selections.


In principle, page tables are generalized tries with a greater base than 2: In each level of the table there
are existing more than two child-table pointers. For branching to the right child table more bits than one
bit are used. For example, the two-level page table used on the x86 architecture [8] is a trie with the base
1024. The first level is calledpage directory, the second levelpage table. From the given virtual address
the first 10 bits are used as index into the page directory to get the corresponding child page table. The next
10 bits are an index into the page table to get the physical page. An extension introduced with the Pentium
processor are super pages. For a super page the page directory entry point not to a page table, but to a 4MB
super page. Hence, the Pentium page tables are a trie with variable key length. Because a page directory
entry points either to a super page or to a page table, the address space is always prefix free. Figure4.6
illustrates the address translation for 4KB pages and 4MB super pages.


The usage of multi-level page tables for translating virtual into physical addresses has several benefits:
In an uncompressed binary trie only one bit is used per level, so many single bit tests are necessary to find
the corresponding physical page (e.g, 20 tests are needed on the x86). Instead, in page tables many bits
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are used to find the next table level (10 bits on x86). So the number of memory accesses and the actual
translation time is reduced.


Like a trie, multilevel page tables allow holes in an address space: When no pages are allocated inside
a large region (on x86 a 4MB region aligned to 4MB) no page table is needed for that region, the entire
region is marked invalid in the page directory. This mechanism helps to save memory for page tables
by allocation only the actually needed page tables. So smaller tables offer the opportunity of saving table
memory because they can support smaller holes. However, smaller tables per level means more table levels,
increasing the translation time. Therefore the table size is a tradeoff between the memory consumption for
the page table and the translation time.


For larger address spaces, e. g. the virtual address space on 64-bit architectures, more page-table levels
or larger tables per level are needed. Assuming a page size of 4K, a table entry needs 8 Byte (52 bits page
address and 12 bits for permission, attributes, etc.), so a 4K frame holds 512 Entries. A multi-level page
table will have 6 levels for address translation. Such a deep table is inefficient for most tasks, because only
small portions of the address space are actually used. So tables on intermediate levels often contain only
one valid entry.


Guarded Page Tables(GPT) [16] skip these intermediate levels by using a guard representing the
skipped address bits. Effectively, skipping bits during translation is applying path compression to the
page table. Hence, GPTs are generalized PATRICIA tries with a radix greater than 2. Like in tries, path
compression helps to save memory and translation time. Another benefit from GPTs is the support of dif-
ferent page sizes withsize = 2n. Thereby, like hierachical page tables, guarded page tables support prefix
free keys. Furthermore, with GPTs the size of a page table in a table level can vary depending on the page
distribution in the corresponding memory region. Larger tables are used for densely populated regions,
smaller ones for sparsely populated ones. In both cases the skipped bits help to reduce the table depth.


L4 implementations for the MIPS [3] and the Alpha processor use GPTs for address translation.


Page Tables or GPT for Receiver Selection?


Page tables and guarded page tables used for address translation are designed for prefix free search keys.
Prefix free means that inside a memory region covered by a super page (e. g., a 4MB region aligned to 4MB
on x86) no translation for a 4K page can exist. This property is enforced by hardware (x86) or by software
(L4 on MIPS [3, 27]). Both implementations use a single bit test to distinguish whether the translation
reached a valid super page or a next level page table.


However, the message criteria used for selecting a receiver thread in the GM-IPC mechanism has not
the property of prefix free keys. Rather, the longest key from all keys matching the incoming message is
searched. So a table entry can contain both a valid key with a link to a waiting thread and a link to a next
level table for possible longer keys. Hence, unmodified standard page tables cannot be used because they
only support one link type per entry at a time. Another problem I described already with tries is also present
on page-table like structures: Since the key space is not prefix free, the search algorithm has to backtrack
when no matching key is found on deeper table levels. To save search time backtracking can be optimized
as in my implemented trie (Section4.4.2).


The main problem I see when using page table like structures for receiver selection is the arbitrary
length of the message criteria, especially in combination with the prefix keys. With standard page tables it
is difficult to support arbitrary key length because a fixed number of bits is used as an index into the table.
However, a waiting thread of a GM task can specify a fewer number of bits as its message criteria. The
obvious solution of using less index bits, therefore using smaller tables, leads to a binary trie.


One solution to support any possible length is a table layout as shown in Figure4.7. Here a table level
consists of several tables: The first table provides the linkage to the next table level. The firstk bits from
the key are used as index into this table (in the examplek is 4). For each possible lengthl smaller thank
a table for threads specifyingl significant bits as message criteria exists. In the example there are tables
for threads with three, two, and one significant bits containing eight, four, and two entries. You should
note the difference between entries of different tables marked with the same number: The first entry of the
3-bit table means000 , i. e. three zero bits, while the first entry of the one-bit table stands for0 , one zero
bit. The final one-entry “table” is a bit special, it is used for threads waiting for all messages regarding the
reached table. For the top-level table this field is used for threads invoking an open wait. In deeper levels
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Figure 4.7: A possible page table structure for receiver selection.


threads are enqueued in this one-entry “table” when the length of their message criteria is a multiple of
k: In every table level abovek bits are used as index into the linkage part, so no significant bits from the
criteria are left in the current level.


The problem with such a table structure is to find an efficient matching algorithm. When using a depth-
first search, that is to walk down to the next table level until a leaf is reached, backtracking has to be used
when no matching thread is found in the leaf-table’s subtables. Backtracking can be expensive depending
on the table size and depth. Using a breadth-first search means that on every visited table level allk l-bit
subtables are searched for matching threads before the algorithm steps to next table level. The problem for
fast searching I see here is the linear search in every table level. However, as in my trie, backtracking can
be avoided by remembering a matching entry form a higher table level. Another possible optimization is
to stop the linear search when a subtable contains a matching thread: In all later subtables can only exist
threads with shorter matches but the thread with the longest matching criteria is searched for.


Because of the discussed difficulties and mainly due to the lack of time I did not implement table like
structures for receiver selection.


4.4.4 Hashing


During my work I also thought about hashes and hashing algorithms for fast receiver selection. The main
idea of using hashes for receiver selection is the hopefully constant low search time. If it is so, hashing
would allow selecting the actual receiver thread in timeO(1) regardless ofn or w. However, the total
overhead will be slightly higher than in current L4 because the calculation of the hash function takes some
short time.


The problem I see with hashing is the exact match semantics. For keys with different lengths the hash
function will certainly generate different hash values. So in general the complete first word of an incoming
message will likely not generate the same hash function output as an a few bits short message criteria that
matches the message otherwise. Also in GM-IPC not only one arbitrary matching thread is searched, the
thread with the longest matching message criteria has to be found.


A naive idea to solve the problem of different criteria lengths is the expansion of shorter a message
criteria to a common length with a fixed known pattern. The problem hereby is that the extra bits will
likely not have the same value as the corresponding bits of the incoming message. Therefore the hash
function will compute two different outputs for the expanded message criteria and the incoming message,
thus indicating no match between the two. So no valid receiver thread is found even if there is one, but
with a shorter message criteria.


Another, more feasible, idea is the usage of one hash per existing message-criteria length. Before
applying the hash function, the incoming message masked according to the criteria length of the individual
hash. But how to find the hash with the best matching criteria for a particular message? Here a second-
stage algorithm for selecting the right hash is needed. However, the search time for a key then depends not
only on the hash (hopefullyO(1)), but also on the second-stage algorithm. So the time consumption of that
algorithm is also important.


One feasible algorithm is a linear search through all existing hashes. As there is one hash per criteria
length, up tow hashes are searched degrading the time for receiver selection from the expectedO(1) to







4.4. RECEIVER SELECTION ALGORITHMS 47


O(w). When searching the hashes in ascending criteria length order, always all hashes must be searched
through because the last hash with the most specific message criteria might contain a matching receiver
thread. Like in my trie, a hash containing a match is remembered until a hash with a longer criteria has
a matching thread inside. So it is guaranteed that the thread with the longest matching message criteria is
selected for message reception.


In contrast, searching the hashes in descending length order can stop on the first hash containing a
match. All unsearched hashes can contain only less specific matches with a shorter message criteria. So
descending search is faster than ascending search except when only the shortest length hash contains a
match or no match is found at all.


So in the worst case, searching through all hashes, hashing is slower than a trie (alsoO(w)) because the
hash calculation is more complex than the trie’s bit test for branching. For the average case an estimation
is more difficult. Hashes may be faster, depending on the actual implementation, when only few different
criteria lengths each with a lot of threads with different criteria exist. Then a trie will have many branches
toward the leafs consuming many bit tests while only a few hash calculations are necessary. Descending
search will also be faster than a trie when the wide majority of incoming messages is for waiting threads
that specify a long message criteria. Here the first searched hash will contain a valid receiver thread — no
further hashes are searched.


However, for the described difficulties with hashes, the unclear search time, and due to the limited time
for this thesis I did not implement hashes for receiver selection.
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Chapter 5


Evaluation


In this chapter the implemented Generalized Mappings IPC mechanism will be evaluated quantitatively.
However, detailed end-to-end IPC benchmarks, for instance using the standard ping-pong benchmark, are
rather useless because the prototype implementation is a user-land wrapper library: The library layer intro-
duces additional latency in terms of the total consumed time and also in terms of cache usage. Therefore
I created a set of microbenchmarks to measure the important parts from the GM-IPC path. With the mi-
crobenchmarks I can avoid the library’s additional IPC overhead.


Evaluation Environment


All microbenchmarks were done on an Intel Pentium processor (P54C, CPUID 5:2:B) with 133 Mhz on
an Intel i430 FX chipset based mainboard (Asus P54TP4). The processor has an 8 KB 2-way associative
data cache with a cache-line size of 32 bytes. The data TLB has 64 entries for 4 KB pages and is 4-way
associative. These TLBs are flushed on an address space switch. Further on, the board is equipped with
64 MB RAM and 256 KB unified 2nd level cache. The network card, an Intel Ethernet Pro 100, is only
used for booting the machine.


The microbenchmarks ran on the Fiasco microkernel extended by a system call for flushing the caches
from user level. Besides the benchmarks the standard components from the L4Env [12], the name server,
the log server and the dataspace manager, were running. All used software was compiled with gcc 2.95.4.


All times presented in the next sections are in processor cycles. They where measured using the proces-
sor’s internal timestamp counter, which is read using therdtsc instruction [9] — excluding the overhead
of that instruction.


Experiments


I created two microbenchmarks that cover the two fundamental parts of the Generalized-Mapping IPC path:
the capability usage for allowing and authenticating IPC, and the receiver selection for finding the actual
receiver thread. The first part, the capability access, I account to the sender side. The second part, receiver
selection, clearly depends on the concrete receiver thread structure, so it is accounted to the receiver side.
Both parts together build the IPC handshake.


The first microbenchmark measured the additional costs when using a capability for authorizing an
IPC. As my library is a prototypic design the capability access and check is written in C and not highly
optimized. Therefore a measurement of that path would result in a relatively high numbers indicating slow
capability checking and thus much overhead. So I decided to implement an optimized path for benchmark-
ing the capability testing overhead in assembly language like it will be used in an in-kernel implementation.
The measurements of that path and a discussion follows in Section5.1.


With the second microbenchmark the performance of the implemented algorithms for receiver selection
is quantified. Here I created a multi-threaded server task and a single-threaded client. The server threads
are waiting for messages. Thereby each server thread uses a unique message criteria. The different thread’s
message criteria have a length of 24 bits and are distributed uniformly among that 24-bit address space.
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The client is in a loop. Within each iteration it calls a randomly chosen server thread. Inside my library
I instrumented the receiver selection to measure the time it takes until the receiver thread is definitely found.
The consumed time is averaged over 10000 client calls. For the implemented receiver selection algorithms
the numbers are presented in Section5.2followed by a discussion.


5.1 Performance on the Sender Side


When a task sends an IPC message a kernel with the new Generalized-Mappings IPC mechanism has to
execute the following steps:


1. calculate the kernel representation from the sender specified send capability to access the actual
capability


2. check the validity of the send capability


3. apply the principal Id from the capability to the message


4. figure out the destination task to start the receiver selection in that task.


The send capabilities are stored in a large array indexed by the capability Id. A naive implementation would
use0...CAP_MAX as capability Id. To access the actual capability, the capability Id is multiplied with
the kernel’s capability size and the base of the array is added. However, multiply operations are quite slow
compared to other arithmetic operations on most processors. Also a bounds check withCAP_MAXhas to
be done to avoid using arbitrary memory regions as send capabilities.


Liedtke showed in [15] that a large array in the virtual address space is feasible for fast addressing of
thread control blocks in L4 when using a clever encoding scheme for thread Id’s. The same mechanism
can be used for addressing the send capabilities: To calculate the address of the capability’s kernel repre-
sentation the user supplied capability Id is masked and the base offset of the send-capability array is added.
Consequently only two basic arithmetic operations are necessary: anand for the mask application and an
add with the base offset. Both the mask and the base offset are constant.


The next step, the capability validity check, consists of two operations, one test operation and a condi-
tional branch. The test operation checks the valid field of the capability structure. When the test fails, the
branch is taken and capability error handling takes place. In the common case, the capability is valid, the
branch is not taken. Since modern microprocessors assume conditional forward branches as not taken and
fetch the instructions immediately following the branch into the pipeline, the common case is not slowed
down significantly.


In the third step the principal Id is applied to the message. Thereby bits used by the PID are masked
out from the message. Then the PID is added to the message. Both fields, the mask and the PID come from
the internal capability representation. The mask is calculated during the map operation and stored in the
capability for performance reasons during capability usage. So PID application are also two operations.


Now let me consider two cases: The fast case occurs when all accessed data resides in the cache and
the TLB contains a valid address translation for the used send capability. In the slower second case the
caches and the TLBs are empty.


In the optimal fast case all described operations can be executed at maximum speed. Since a valid
address translation exists in the TLB an all data (the whole capability structure) resides in the cache no
additional cycles besides the normal instruction execution are needed. In the microbenchmark I measured
6 cycles for the optimum case.


In the slower case the first two operations, the calculation of the actual capability structure, runs at the
same speed as the fast case because no memory is referenced. However, for the validity check the capability,
and thus the memory, has to be accessed. No valid address translation for the capability structure can be
found in the TLB so the hardware1 starts to walk through the page table to find a valid translation for
updating the TLB. As the memory address used by the capability cannot be found in the cache, additional
cycles are needed to access the real memory. My send capabilities are using 32 bytes memory, which is


1The x86 architecture has a built-in hardware page table walker.
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exactly one cache line on the used processor. So neither additional cache nor additional TLB misses occur
during the next operations for PID application. I measured 64 cycles for this case with my microbenchmark.


Cache TLB cold TLB hot


cold 64 40
hot 31 6


Table 5.1: Time needed on sender side in cycles.


Table5.1 summarizes the time used for capability access and principal Id application with different
cache and TLB states. One TLB entry and one data cache line are used during the operations. However,
the cache line is only read, no writes to the capability are issued.


Besides the aforementioned considerations on data caches and D-TLBs also the influence on the in-
struction cache and I-TLB must be considered. For the I-TLB I do not expect additional TLB misses
because the IPC path is performance critical. So the IPC path will be page aligned in a kernel designed for
maximum performance. One I-TLB miss can occur when the IPC is invoked. All further code accesses are
covered by the then existing page translation. The instructions for capability testing and PID application,
illustrated within this section, use 20 bytes of memory, roughly two thirds of a cache line. Therefore I
expect the usage of up to one additional cache line in the instruction cache due to the capability use.


5.2 Performance on the Receiver Side


On the receiver side I account the costs for selecting the actual receiver thread from all waiting threads
within the receiver task. In the optimal case the taken time is constantly low guaranteeing low overhead
and high IPC performance. However, as discussed in Section4.4, none of the implemented algorithms
allow receiver selection in constant time. The consumed time depends either on the number of waiting
threads or on the used message criteria and its length.


Another important criteria besides the consumed time is the algorithm’s influence on the cache and the
TLB. The more memory accesses at different memory locations are performed by the receiver selection
algorithm, the more cache lines are used. Thus, more application data is purged from the cache that usually
must be reloaded after the IPC. However, cache reloading from the main memory is an expensive operation
on modern processors because memory accesses are magnitudes slower than cache accesses. The same
argumentation holds for reloading the TLB. So a small cache working set is important for the overall
performance as Liedtke points out in [19].


Table 5.2 shows the time consumed for receiver selection with the implemented algorithms. Each
algorithm was measured with hot and with cold caches. The impact on the TLB is not considered, because
on the used hardware the TLB is flushed on each address space switch resulting in an empty TLB when
receiver selection starts.


Linear List


As described in Section4.4.1my list implementation works directly on the distributors client-thread de-
scriptors, which are chained into a doubly linked list. During receiver selection every element from the list
touched for matching the incoming message against the stored message criteria and also to find the next
list element.


The time consumed for finding the receiver thread with the best matching message criteria depends
on the number of list elements, thus the number of waiting threads. The time grows with the number of
waiting threads because every single thread’s criteria is matched. Therefore the linear search algorithm
does not scale for many threads: Receiver selection is becoming slower and slower the more threads are
waiting for messages.


Another Problem is the number of memory accesses and thus the pressure on the cache. For every list
element three memory accesses too the thread descriptor are done: Reading the message criteria, reading
the mask for the significant bits and reading the pointer to the next list element. Due to the thread-descriptor
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Trie Trie List List
Threads cached uncached cached uncached


1 113 156 106 126
2 148 189 133 158
3 162 222 140 188
4 171 243 156 219
8 198 270 215 319


10 219 286 228 369
16 254 308 391 514
32 329 359 804 929
50 369 419 1122 1380
64 390 449 1754 1875
75 403 459 2209 2167


100 466 475 3130 3055


Table 5.2: The time for receiver selection in processor cycles.


design and usage — one thread descriptor layout is used for both send requests and receive requests — the
memory accesses are scattered across two cache lines. Therefore the cache usage also grows linearly with
the number of threads. For 100 server threads nearly the complete first-level cache is used (6400 bytes out
of 8192 bytes).


For the described reasons it is not surprising that linear list search consumes a lot of cycles when many
threads are waiting for messages. However, selecting a receiver with searching a linear list was imple-
mented only as a quick hack to get the library working without expecting high performance. Nevertheless
the algorithm can be useful for tasks using only few threads, namely single threaded tasks or multi-threaded
tasks with up to approximately four threads.


Trie Search


Another algorithm I implemented for receiver selection is the binary trie described in detail in Section4.4.2.
In contrast to linear search the trie consists of nodes, which are stored separately from the thread descriptors.
A thread descriptor is only accessed when trie search was successful and therefore a matching thread was
found.


The time to search a key inside the trie depends on the number of trie nodes that have to be accessed
until the search key is found. Therefore the trie shape, especially the maximum and the average depth, is
important. The trie shape and the depth are depending on the used keys and their distribution across the
key space.


For benchmarking an uniform distribution of the keys, the message criteria, was chosen. The resulting
trie depth forn threads isdlog ne. The trie consistsn− 1 internal nodes andn external nodes with waiting
receiver threads as leafs.


For finding a key (i. e., matching the incoming message),log n nodes from the trie are accessed. Con-
sequently, since the computation on a node is constant, the consumed search time is also proportional to
log n. As expected, for many threads the trie algorithm is much faster as the linear list.


In terms of cache usage the trie also outperforms the list. A trie node uses 32 bytes so it fits into one
cache line. Sincelog n nodes are accessed during trie traversal,log n cache lines are used. However, when
a leaf node is reached the thread descriptor from the waiting thread is accessed, which always costs two
additional cache lines.


As you can see in table5.2, for up to four threads the trie is slower than the list. The reason for this is
the higher overhead on each trie node: In the list the next-element pointer is accessed directly while in the
trie a bit test followed by a conditional branch is executed to decide whether the left or the right subtrie is
searched next.







Chapter 6


Conclusion


In this thesis I developed a capability-based communication control and corresponding IPC mechanism for
the L4 microkernel. The requirements for the IPC mechanism are presented in Section3.1. A prototypical
implementation proved the feasibility both from a performance and functional point of view.


The Generalized-Mappings communication mechanism uses explicit communication channels between
tasks. These channels are authorized with task-send capabilities introduced in Section3.2. Possession of
such a capability allows its owner to send messages to the task the capability refers to. A task without
send capabilities to a particular task cannot send messages to that task. Therefore, send capabilities are an
effective way to restrict the ability of a task to communicate to other tasks.


In Section5.1 I showed that the overhead introduced into the time-critical IPC path causes by the
additional indirection when using capabilities is fairly low. In the optimal case this indirection and the
needed calculation costs only 6 additional cycles. In comparison with the total IPC costs of 215 cycles
these additionally incurred costs are negligible. This case, however, assumes that all needed data resides in
the cache and a valid address translation exist in the TLB. In the worst case one additional cache miss and
one additional TLB miss occur in the IPC path when accessing the capability, for discussion see Section5.1.


I also discussed how I extended the mechanisms L4 provides for memory management at user level, the
mapping and unmapping of pages, to apply them to send capabilities. Thereby the map operation allows
for the delegation of rights: A task can map its send capabilities to another task. Afterwards both tasks can
send messages to the receiver task specified in the capability. In contrast to other capability based systems,
such as Amoeba or EROS, our approach provides an effective way for selective revocation of capabilities:
the unmap operation. Unmap enables a task to revoke capabilities it previously mapped to other tasks.
Afterwards these tasks cannot use the unmapped capability for sending messages anymore.


The developed IPC mechanism provides local names for both senders and receivers. Using local names
enable several advantages over globally unique names: They allow late binding from names to actual
communication partners. The name of the communication partner remains the same when the partner is
exchanged, for example when a server task is restarted due to an update.


The flexibility of this new communication mechanism I showed in Section3.3. First, I showed how an
intercepting task, for example a debugger or a filter, is inserted into an existing communication channel.
Thereby the insertion of the interceptor can be transparent to the involved tasks. Second, I emulated the
current L4 approach with globally unique thread Id’s on top of local names and capability authenticated
communication to show backwards compatibility.


With Generalized Mappings IPC the receiver thread of a incoming message is chosen by the kernel
based on the message content. On a receive operation, a thread specifies a pattern, the message criteria,
an incoming message must match to be delivered to that thread. The kernel matches the message to the
specified message criteria and delivers the message to the waiting thread if the criteria matches the message.
This mechanism, however, slows down the IPC performance because in the timeframe of this thesis no
matching algorithm could be found that has a constant low selection time regardless of the number of
receiver threads. The consumed time of all algorithms discussed in Section4.4 depends either on the
concrete number of threads in the receiver task, or on the length of the message criteria. It remains an
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open question, whether there exist matching algorithms for selecting the receiver thread in constant time,
or whether another mechanism for receiver selection has to be found.


6.1 Future Work


In-Kernel Implementation


The Generalized Mappings IPC mechanism should be implemented inside a L4 kernel in future. An in-
kernel implementation does not suffer from the additional library overhead. Also security requirements
regarding the communication restrictions can be met in an in-kernel implementation.







Appendix A


Appendix


A.1 Glossary


Task Is a collection of resources. Often a task is used for accounting purposes. A task is also a protection
domain.


Thread An activity inside a task, an abstraction of a CPU. A thread can use the resources its task owns.


Memory The virtual address space of a task.


IPC Communication between threads.


MessageA message is sent from one thread to another with the IPC Operation. A message contains a
direct part, indirect strings (optional) and flexmappings (optional). The direct part and the strings are
simply copied from the sender to the receiver. Flexmappings are inserted into the appropriate tables
(e. g., memory mappings into the page tables, send capabilities into the send-capability table).


Task-Send Capability The right to send a message to a task. Send capabilities are objects provided and
protected by the kernel. User applications use them for invoking IPC and can map them to other
tasks. The send capability refers to the task actually receiving message. The receiver cannot be
altered by the task possessing the capability. However, more bits can be appended to the kernel
protected PID of the capability during the map operation.


Open Wait A thread waits for any incoming message.


Group Wait In contrast to open wait, a thread waits for a given message criteria. Incoming messages to
the task that match the given criteria are delivered to this thread.


Closed Wait As in group wait, a thread specifies a message criteria the incoming message must match.
However, in contrast to group wait, the specified message criteria can only be sent by one sender
task1.


Principal Id The kernel authenticated part of a message. The PID is stored inside the kernel as part of a
task-send capability. It is not accessible by the capability-possessing task.


Message Criteria The receiver specifies a message criteria for messages it is willing to receive. An in-
coming message that matches the criteria is delivered to the waiting receiver.


Flexmapping A generalized flexpage. Resources (e. g., memory pages, or task-send capabilities) are dis-
tributed between tasks with messages containing one or more flexmappings.


Resource Fault a generalized page fault. The kernel sets up a fault IPC to the pager on behalf of the
faulting thread.


1provided that the senders pager does not try to impersonate
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Pager A resource-fault message is sent to the pager of the faulting thread. The pager resolves the fault and
maps the requested resource.


→ B A send capability that can be used to send messages to taskB.


A → B TaskA owns a send capability to taskB.


A.2 Acronyms


ABI application binary interface


ACL access control list


API application programmers interface


D-TLB translation look-aside buffer for data accesses


DoS denial of service


GM generalized mappings


GM IPC generalized mappings IPC


I-TLB translation look-aside buffer for instruction fetches


IPC inter process communication


PID principal Id


TCB trusted computing base


TLB translation lookaside buffer


VM virtual memory
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