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Abstract

This paper describes design and implementation of
L4ATM, an ATM (Asynchronous Transfer Mode) based net-
working server. While ATM emphasizes deterministic high-
speed communication, applications can not yet fully utilize
its potential. We demonstrate an architecture—and a cor-
responding implementation—to resolve this dilemma by de-
veloping implementable resource quantification techniques
and QoS (Quality Of Service) management algorithms for
host resources.

L4ATM has been built in the context ofDROPS(Dresden
Real-Time OPerating System).DROPSsupports coexisting
real-time and time-sharing applications in a�kernel envi-
ronment.

Evaluating L4ATM ’s implementation in a real-world en-
vironment, we show that (i) performance guarantees are
maintained under heavy time-sharing load, and (ii) the im-
plementation outperforms a standard OS significantly.

1. Introduction

This section introduces the DROPSarchitecture [12] and
states design criteria applying to all sub-projects within the
DROPScontext.

1.1. Motivation

Applications with real-time requirements, such as multi-
media applications, can be supported by end systems in two
contradictory ways: (1) Use standard (e.g., non-real-time
capable) operating systems software on hosts equipped with
vast amounts of resources to account for the worst case; (2)
Alternatively, use real-time-aware operating system soft-
ware, thus providing performance guarantees to real-time
applications while using less powerful hardware compared
to the first approach.

This research was supported in part by the Deutsche Forschungsgemein-
schaft (DFG) through the Sonderforschungsbereich 358.

Firstly, we believe that the second alternative is techno-
logically more desirable. Secondly, we feel that—although
complex—building such a system is attainable and practi-
cal. This observation has guided the design of DROPS. The
remainder of Section 1 reviews DROPS’ essentials.

1.2. DROPS architecture

Based on the L4�kernel [17], DROPSincorporates mul-
tiple OS personalities: Standard time-sharing tasks use the
L4Linux server [13], a port of the monolithic Linux kernel
to the L4�kernel. In contrast, real-time applications are
free to use dedicated real-time servers for predictable per-
formance. Drivers run in user space. Resource manager
components are responsible for enforcing and monitoring
host resource reservation, such as buffer space, processing
times, cache utilization and I/O-bandwidth. Figure 1 shows
the system architecture.
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Figure 1. Simplified DROPS architecture.

The L4Linux server provides the environment for stan-
dard time-sharing applications and buys us (1) support for
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a broad range of hardware devices, and (2) binary compati-
bility to Linux. With the exception of the Linux scheduler,
only architecture-dependent parts needed to be modified to
adapt Linux to the L4-�kernel. System call traps are redi-
rected via the L4�kernel (trampoline mechanism). Hard-
ware interrupts are translated into IPC messages to dedi-
cated threads. To control interrupt latency, protection of
critical regions within the L4Linux server is done by us-
ing explicit synchronization instead of blocking interrupts.
Host memory is divided at boot time between the L4Linux
server and real-time components, taking cache access char-
acteristics into account [10].

1.3. Real-time model

Similar to the path abstractionin the experimental
Scout [21] system and to the concept ofcompound sessions
by Anderson’s LBAP model [4], real-time components can
be lined up in chains. The DROPSmodel is based on jitter
constrained streams [9], an abstraction on numerous param-
eter sets (such as the QoS parameters defined for ATM net-
works [23]). The model develops quantitative techniques
for resource management, for example, computation of re-
quired buffer space to compensate for jitter (Section 2.3).

The data model builds on L4’ virtual memory manage-
ment concept offlexpagemapping operations [11], resem-
bling fbufs [7], but extending it with the capability of pre-
cisely timed revoke operations of page mappings.

Each real time component must provide the uniform
DROPSinterface, but is free to offer additional interfaces.

Scheduling in the L4�kernel uses static priorities. On
top of that, the model provides a flexible periodic schedul-
ing framework. Applications may reserve a certain prior-
ity level within a given interval for a number of cycles.
For the reserved cycles, priority of the application will be
temporarily raised. Time-sharing processes (that is, low-
priority processes) are granted unused or remaining cycles.
A call-back mechanism provides feedback to applications,
allowing them to scale their requirements as appropriate.

The remainder of this paper discusses design, implemen-
tation and performance of one such real-time component,
the L4ATM protocol server.

2. L4ATM design

While network hardware support is necessary to offer
QoS guarantees to applications, it is not sufficient. To guar-
antee tight bounds on throughput, delay and jitter, operat-
ing system support is mandatory. Operating system and
host protocol implementations must provide mechanisms
for the management of local resources necessary to pass
performance guarantees on to application level. We identi-
fied relevant host resources for protocol processing, in par-

ticular: CPU time, host buffer space, network bandwidth,
cache [18], I/O-bandwidth and memory bandwidth. The
machine-global resource manager enforces reservation. Ad-
ditionally, time-sharing applications are conceptually inte-
grated into the resource management design to allow strict
separation from guaranteed services.

Requirements. Applications using L4ATM require: (1)
Guaranteed throughput; (2) Bounded latency; and (3)
Bounded jitter. These requirements are expressed in terms
of a traffic specification and mapped to actual resource
reservation by the host (within L4ATM and driver) and by
the network (within ATM switches).
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Figure 2. Integration of the L4ATM protocol
server into the DROPS framework.

For practical reasons we rejected the full implementa-
tion of heavy-weight transport protocols in favor of a na-
tive ATM protocol stack. Figure 2 shows the overall de-
sign and its integration into the DROPSframework. Note
that API calls unsupported by real-time servers are trans-
parently redirected to L4Linux by the client library and a
“SRT server” task. ATM signalling is performed by a Linux
daemon, which is part of the Linux-ATM distribution [3].

2.1. Process structure

For L4ATM, we chose a multi-threaded design. ATM
connections are associated with dedicatedworker threads.
Using BSD-socket terminology, worker threads handle
read() andwrite() calls. Additionally, traffic manage-
ment algorithms (with the exception of admission control)
run in worker thread context.

A service threadhandles non-time-critical requests, such
as connection establishment, admission control, and con-
nection tear-down.



Finally, apseudo interrupt threadtakes incoming proto-
col data units from the hardware driver, buffers messages if
necessary and triggers activation of a worker thread block-
ing on this connection.

The resulting concurrent server is scalable and fits well
to L4’s synchronous IPC. Most importantly, however, an ef-
ficient implementation of real-time policies is possible (i.e.,
per-connection priorities and L4ATM’s thread suspension
technique used for enforcing resource reservation). Thread
support—conforming to POSIX threads—for L4ATM is
contained in the platform dependent layer, providing an 1:1
mapping of pthreads to L4’s kernel threads. Synchroniza-
tion primitives (mutexes) support priority inheritance to
avoid priority inversion.

2.2. Data transfer

To achieve low communication latencies and preserve
the high bandwidth offered by network hardware, our de-
sign reduces data copying costs as much as possible without
compromising protocol functionality and system integrity.

Transmit data path. Traditionally, the data path looks
as follows: Application data is copied into protocol mem-
ory. Protocol buffers are then copied by the network in-
terface card into the internal send FIFO and are transmit-
ted. No CPU involvement is necessary for the last data
copy (DMA). Thus,write() calls are possible with a sin-
gle CPU-initiated copy. Additionally, L4ATM offers an-
other, zero-copy, interface. Using the page re-mapping
scheme, the copy operation between application and L4ATM

is avoided and replaced by a temporary or permanent map-
ping operation (Figure 3).
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Receive data path. L4ATM employs both a two-copy ar-
chitecture (for the standardread()-interface) and a single-
copy architecture (for the real-time interface). As can be
seen from Figure 4,read() calls require an extra data
copy. Typically, a receive interrupt activity has to identify
the higher-level protocol of a PDU, allocate buffer mem-
ory, copy the PDU into the protocol buffer and return the
old buffer to the ATM device driver. In addition, receive
control flow is divided into the pseudo interrupt activity and
theread() activity initiated by the receiving application,
which blocks until data arrives. It is feasible to get rid of

this last CPU-initiated data copy, even without special sup-
port by the ATM board. However, explicit synchronization
and feedback are necessary to signal possible buffer re-use
to the hardware driver, requiring knowledge and coopera-
tion by the application.
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L4ATM uses linear buffers, similar to Linux’sk buffs.
For the single-copy and zero-copy variants, protocol buffers
carry only a reference to the actual user buffer.

2.3. Real-time extensions

Real-time behavior is implemented by inserting a set of
traffic management algorithms into L4ATM, which imple-
ment functionality to enforce meeting of QoS objectives of
connections compliant to their traffic specification.

Based on resource requirements computed from the
specified traffic parameters,Connection Admission Control
decides on feasibility of new guaranteed connections, main-
tains resource utilization statistics and triggers actual re-
source reservation.Usage Parameter Control (UPC)de-
tects non-conforming connections and triggers the local
policing function. Note that UPC applies to both real-time
and non-real time traffic. Non-conformingconnections (i.e.,
connections exceeding their reserved bandwidth) are sub-
ject to policing. Thepolicing functionprovides flow control
by restricting the data rate.

Traffic parameters. To express bandwidth and jitter re-
quirements, applications submit a parameter set to the pro-
tocol, using thesetsockopt() call. The parameter set
contains: (1) A qualitative description of the requested ser-
vice, expressed in terms of ATM traffic classes. ATM po-
tentially supports Constant Bit Rate (CBR) service, real-
time Variable Bit Rate (rt-VBR) service and a number of
non-real-time service classes. (2) Maximum data rate. (3)
Sustainable data rate. This is intended for support of stag-
gering streams and maps to the rt-VBR traffic class. For
streams with constant data rate, both rates are equal. (4)
Maximum service data unit length. (5) Delay variation tol-
erance (DTV). Applications announce their sensibility re-
garding jitter.

The purpose of this parameter set is twofold: Firstly,
L4ATM performs local admission control, triggers resource
reservation and initializes local management information
used for the UPC algorithm. Secondly, the same parame-
ter set is signalled to the network to be used for ATM-level
admission control and resource allocation.



Integration of time-sharing applications. Applications
without guaranteed performance potentially suffer from two
handicaps. First, real-time connections use higher pri-
orities than all non-real-time connections, controlling la-
tency. Note that, due to the use of the priority inheri-
tance protocol for mutexes, waiting time at critical sections
for high-priority worker threads is bounded. Second, non-
real-time connections share the remaining unreserved band-
width, which is dynamically adapted on start and termina-
tion of guaranteed connections. For non-real-time traffic a
minimum amount of host resources must be available to al-
low at least discarding data.

Design of traffic management algorithms is discussed
next, implementation issues are described in Section 3.

2.4. Admission control

Admission control for the protocol is designed to man-
age the resources CPU, buffer space and network band-
width. From application-supplied parameters and param-
eters configured statically (such as maximum available net-
work bandwidth) and dynamically (such as CPU speed) re-
quired CPU time and parameters for UPC are determined.
In case a new connection cannot be accommodated, admis-
sion control recommends a modified traffic parameter set to
the client, in order to ease re-negotiation.

Buffer space. Buffer space needed for a connection is
computed from the following traffic parameters: For trans-
mitting real-time connections, transmit buffers are sized ac-
cording to the maximum service data unit. For real-time
receiving, receive buffers sizes are determined from both
bandwidth parameters and the jitter tolerance specified by
the client, as can be seen from the following example.

Using the generalized framework developed in [9]: Let
D be the minimum inter-arrival time of two conforming
packets, defined by the reciprocal of the maximum data rate:
D = 1

Rmax
. Let T be the average inter-arrival time of two

conforming packets, defined by the reciprocal of the sus-
tainable data rate:T = 1

Ravg
. Further, let� be the maxi-

mum acceptable delay variation,L be the maximum burst
length andP be the buffer size. Then, the following holds1:

L = 1 +

�
�

T � D

�
(1)

P =

l �
T

m
(2)

As an example, consider a request which adheres to the
following traffic parameters:Rmax = 125Mbps, Ravg =

93:75Mbps, a data size ofmax sdu = 8192 bytes and

1We have to refer to [9] for a complete treatment.

a delay variation tolerance of� = 2ms. Plugging in the
numbers, Equations 1 and 2 yield a maximum burst size of
L = 13 packets and a required buffer sizeP = 24KB.

L4ATM also maintains network bandwidth utilization.
Contrary to network devices, L4ATM has knowledge of
the locally achievable throughput. Otherwise, consider-
ing a fast network interface, networking hardware may ac-
cept bandwidth reservations which cannot be preserved by
host systems. Furthermore, this concept allows bandwidth
management in environments not supporting network level
bandwidth negotiation, for instance due to limited sup-
port in network interface cards or in a statically config-
ured ATM environment (using Permanent Virtual Circuits
(PVCs) where no dynamic QoS negotiation takes place).

2.5. Usage parameter control and policing

Both algorithms are closely related and are in practice
often implemented together. While admission control en-
sures that enough resources are available for this connec-
tion, UPC is responsible for detection of non-conforming
connections, that is, connections exceeding their requested
bandwidth. After detection of non-conforming traffic polic-
ing takes over and guarantees isolation of non-conforming
traffic. UPC and policing are always performed in worker
thread context.

Packet-based UPC requires a granularity which we find
too fine to be implemented in practice.2 Therefore, L4ATM

adopts a mechanism comparable to a token bucket scheme.
Each real-time connection has a control interval associated
with it. At the beginning of each interval, the connection re-
ceives new credit3. When transferring data, connections are
conforming to their traffic specification as long as enough
credits for the current PDU are left. If not, the policing
function, which is described below, takes over. Note that
this credit-based scheme behaves oblivious. That is, con-
nections do not receive additional credit for using less than
its reserved share in earlier intervals.

Worker threads exceeding their announced peak rate are
suspended until the start of the next interval (at that point
the connection receives new credits). In combination with a
synchronous API, this design enforces flow control.

Finding the optimum interval length involves a tradeoff
between accuracy of rate control and burst size (“clumping”
of packets). Long intervals yield more exact rate control
for bursty streams and induce less overhead for the UPC
algorithm itself. On the contrary, short intervals bound the
maximum burst size and have a smoothing effect on the data

2For example, when requesting an 80 Mbps stream consisting of 8 KB-
sized packets, average inter-arrival time for a single packet is 0.78 ms.

3Credits and intervals are direction-specific, that is, connections may
maintain separate credits and intervals for both directions, provided that
real-time service has been requested for both directions.



stream. Figure 5 illustrates this for a connection which has
50% reserved bandwidth.
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Figure 5. Influence of interval length.

It can be seen that for an asynchronous interface (e.g.,
the DROPS stream model and the receive direction from
the network) short intervals potentially lead to dismission
of packets considered conforming when using longer inter-
vals4. In practice, very short intervals additionally suffer
from rounding errors.

2.6. Driver interaction

This section closes by describing protocol interaction
with the driver. The hardware driver provides two IPC in-
terfaces, a send interface and a receive interface. Current
design and implementation uses a synchronous send inter-
face, which eases transmit buffer management due to its im-
plicit feedback. That is, using page re-mapping techniques,
the application’s buffer (or any other producer’s buffer) is
transmitted to the driver interface, where the ATM board
performs AAL processing (e.g., segmentation and check-
summing) and transfers the data via DMA into its transmit
FIFO queue. On return from this operation, the applica-
tion’s buffer can be recycled safely.

On data receive, the ATM board reassembles the PDU
and copies it (via DMA) into host-resident buffers. These
buffers are handed to the driver by the protocol on startup.
The board triggers an interrupt, causing the ATM driver’s
receive thread to transmit a reference to this buffer. The
pseudo-interrupt thread within the protocol classifies the
PDU, physically copies the buffer into a connection-specific
buffer and callswake up() on this connection.

Driver real-time support. To allow for separation of
real-time from best-effort traffic, the driver uses two receive
buffer pools. The protocol conveys knowledge about the na-
ture (guaranteed or best effort) of a new connection to the
driver when opening a connection. This allows for early dis-
card of non-guaranteed traffic on system overload induced

4In the example, assume the packet at time 6 arrives early at time 4.
Depending on available buffer space, this packet could be dismissed in
scenario b), but not in scenario a).

by arriving ATM traffic. While the protocol has more infor-
mation available for making competent QoS decisions, con-
sistent real-time support on all system level maps well into
a general DROPSparadigm. Particularly, on hosts with fast
networking hardware attached, real-time support already at
the driver level is imperative.

While the above scheme is not yet implemented in the
driver, the Linux version of the PCA-200E driver already
supports the simple cell rate control mechanism offered by
the hardware.

2.7. Application interfaces

The interface provided by L4ATM is based on L4’s syn-
chronous IPC. Two principal application interfaces are in-
cluded, which are encapsulated by a library.

Socket Interface. To ease usage of L4ATM and—
because the synchronous nature of most socket-level calls
maps well to L4’s IPC—a BSD-socket compatible inter-
face is provided. Initial test applications and applications
ported to native L4 are expected to primarily use this in-
terface. The interface handles both real-time and time-
sharing services. Users convey traffic parameters via the
setsockopt() call, similar to the design of Linux’ ATM
API [2]. It is important to note that no QoS-related knowl-
edge (except the traffic spec) is needed by applications. The
API is extended by calls where user$L4ATM data transfer
is performed via map operations. All measurements in Sec-
tion 4 have been performed using this interface.

DROPS Stream Interface. To allow interoperability
with other DROPScomponents, the design contains an asyn-
chronous interface based on timed page mapping and page
unmapping operations. No explicit flow control is provided
here, applications are expected to be able to reserve their
resources and conform to their traffic specification. Imple-
mentation of this interface is yet incomplete.

L4Linux Interface. As seen by L4Linux server, L4ATM

behaves like a device driver. Data is transmitted via a
worker thread. For receive, no buffering of Linux traffic
is performed in L4ATM, since L4Linux handles buffering it-
self.

3. Implementation

Implementation of L4ATM’s design is fairly complete.
This section reviews selected aspects and mentions remain-
ing discrepancies compared to the design.

Traffic management algorithms work well and exact (see
Section 4). Static ATM connections (PVCs) are fully func-
tional. Transparent usage by the L4Linux server (including
SVCs, IP encapsulation) is stable. Support for DROPS-type
chains is yet untested. Driver real-time mechanisms are im-
plemented at the moment.



Hardware. Development platform for the DROPSproject
are Intel PCs. Testing and measurements (Section 4) were
performed on off-the-shelf Pentium-90 machines5 and Pen-
tium Pro-200 machines6. All machines included FORE
PCA-200E PCI network interface adapters. The boards
support a line rate of 155.52Mbps and are capable of
AAL5 processing in hardware and bus-master DMA trans-
fer. The machines are physically connected to a FORE
ASX-200WG ATM switch using OC-3 optical fiber.

Software. The ATM device driver for Linux has been de-
veloped in our group and is freely available [5]. The L4ATM

version is a port of the Linux driver [6].
Protocol implementation is based on the ATM suite for

Linux [3]. As a first step, the Linux implementation has
been moved to user level [24]. The L4-specific platform-
dependent layer of L4ATM is built using an early version
of the OSKit distribution of the University of Utah [8], a
port of the Linux Pthread implementation and a library re-
building some of typical Linux’ kernel functionality (e.g.,
sleep on() andwake up()) with L4 primitives.

3.1. Resource management

Until we attain more detailed experience using the real-
time components a few simplifying assumptions are used
in the implementation. Resource amounts are assumed to
be linear7. In particular, this applies to network bandwidth,
buffer space and processor as resources.

Due to requirements for DMA-able buffers (i.e., contigu-
ous physical memory) cache-partitioning schemes are not
applied yet.

For simplicity, admission control manages utilization of
resources independently. We use known dependency rela-
tions of resources. For instance, PCI bus and memory bus
usage is strongly correlated with CPU usage. Therefore—
lacking better techniques—strong dependencies among re-
sources allow a reasonable approximation in practice.

The assumptions made reduce the number of resources
considered in the implementation to CPU time, network
bandwidth and buffer space.

CPU time. Machine speed is measured at protocol ini-
tialization time. Average cycles needed for protocol and
driver processing have been measured. The implementation
bases admission control on linear CPU utilization. Mea-
sured values for maximum achievable transmit and receive
bandwidth are the basis for CPU resource management. For
example, a slow P-90 machine has peak transmit rates of

5256 KB Cache, 64 MByte RAM, Intel Neptune-based boards
6256 KB Cache, 64 MByte RAM, ASUS main boards P/I-XP6NP5
7That is, CPU time required for a 80 Mbps flow is assumed to be twice

as high as for a 40 Mbps connection.

about 133 Mbps and peak receive rates of about 90 Mbps
in the current non-optimized implementation. Increase in
processing time for small packets is compensated for by in-
troduction of a scaling factor�. Equation 3 is used on the
P90 (� denotes packet size):

� �

��������

1 if � � 4096

� 1

1878
� + 3:238 1024 � � < 4096

2201

�
0 < � < 1024

0 otherwise

(3)

Total CPU timeU needed for L4ATM and ATM driver
processing ofn transmit flows andm receive flows is thus
computed as follows:

U =

Pn

i=1 ti�i

tmax

+

Pm

j=1 rj�j

rmax

(4)

In Equation 4,ti indicates a guaranteed transmit flow,
ri a guaranteed receive flow,tmax maximum achievable
transmit bandwidth andrmax maximum achievable receive
bandwidth.U = 1 indicates full CPU utilization.
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Figure 6. CPU load for a 40 Mbps transmit con-
nection (P90).

Enforcement of CPU reservation is not yet integrated
in the current prototype, but implementation of DROPS’
scheduling framework and system-global CPU resource
management is underway. CPU time reservation is em-
ulated using priority hierarchies in conjunction with the
policing function.

A temporary solution is used for the problem of in-
coming traffic overloading the receiving machine. A high-
priority driver will consume all available CPU time, trans-
mit incoming data to the protocol’spseudo interrupt thread
which will buffer the data for readers. However, readers
will get preempted almost instantly by the driver, leading
to excessive data loss due to overflowing buffers in the pro-
tocol. A workaround, using a low priority for the device
driver, has proved satisfactory in the implementation. Obvi-
ously, the problem will be permanently solved by integrated
scheduling support, driver real-time support and appropriate
configuration of the network.



Management of network bandwidth and core buffers are
handled straightforward. L4ATM is configured with the
maximum achievable network bandwidth and mainly keeps
track of the bandwidth used. Actual reservation is han-
dled by the network either statically or dynamically. Buffer
space is computed based on application-provided traffic pa-
rameters. Allocation and deallocation of buffer space is per-
formed by the system’s resource manager.

3.2. Implementation of UPC and policing

For Usage Parameter Control, values for interval length
and credits are chosen based on the delay variation tolerance
requested by the client (see Section 2.5). For jitter sensitive
applications, small intervals (equaling 2 PDUs) are chosen,
for the default case the algorithm tries to fit the equivalent
of 10 PDUs into an interval, while jitter insensitive applica-
tions use larger intervals (equaling 50 PDUs).

When performing UPC, the current interval is deter-
mined by reading the L4 kernel’s real-time clock. Thread
suspension is implemented using L4 IPC, specifying a rel-
ative timeout. Thus, the suspended thread is woken up by
the L4 kernel at the beginning of the next interval, when it
resumes execution. Using the L4 real-time clock implies a
maximum resolution of 2 ms on our test hardware.

3.3. Building the data path

When setting up connection parameters via the
setsockopt() interface, L4ATM establishes distinct per-
manently mapped memory segments for the transmit and
receive direction. This has the advantage of speed and faster
IPC compared to temporary mappings. Furthermore, it does
not suffer from alignment restrictions. The driver interface
is copy-free for the transmit direction (see Section 2.2). For
the receive path, the current implementation still features
one extra copy compared to the design presented.

Transmit and receive buffers are implemented as ring
lists, where only current index position and data size are
exchanged between L4ATM and client library.

4. Evaluation

L4ATM has matured during numerous stress tests per-
formed in the last few months. While a multi-threaded
design is traditionally prone to sporadic synchronization
errors (implementing synchronization primitives used up
a significant share of total programming time), L4ATM

routinely handles a number of concurrentread() and
write() connections under competing load when running
overnight.

Real-time overhead. At run time, additional cost is in-
troduced by the call to the UPC function for each packet.
The overhead associated with this function has been mea-
sured: It takes slightly more than 300 CPU cycles to call the
UPC function, read the�kernel’s real-time clock, check the
conformity of the current packet, adjust connection credits
and return to the caller. Cycles required on the P90 for the
completesend path are in the range of11577 : : :351060,
depending on packet size. No visible run time overhead is
expected by the real time extensions. This has been verified
experimentally.

Throughput. Using 8 KB sized packets, Table 1 com-
pares throughput for L4ATM against native ATM perfor-
mance under Linux on the same hardware (P90).

Avg Max Min
L4ATM RX 79.8 84.2 74.2

TX 130.6 130.6 130.6
Linux RX 58.3 62.8 52.4

TX 129.5 130.6 126.4

Table 1. Throughput for 8 KB packets for
Linux and L4ATM.

Performance of L4ATM was very satisfactory. Send per-
formance is close to the maximum AAL5 rate. Average re-
ceive performance of L4ATM was found to be 36.8 % higher
compared with Linux. L4ATM’s gain is due to the smarter
(e.g., more efficient) distribution of processing time: In
Linux, data is enqueued in socket specific buffers by an in-
terrupt service routine. A problem occurs when incoming
ATM load is high. For the remaining path within the Linux
kernel and within the application available processing time
is not sufficient. Thus, a number of packets is dropped by
Linux’ interrupt thread due to the unavailability of buffer
space at the socket queue. In contrast, L4ATM makes sure
that enough processing time is available for theworker
thread. (Applications get guaranteed processing time by
means of either DROPS’ scheduling framework or static
priorities.) This advantage outweighs the additional IPC op-
erations required compared to Linux’ in-kernel driver.

4.1. Predictability

Regarding deterministic behavior, Table 2 presents the
requested sustainable data rate versus perceived data rates
for two concurrent writer applications. After requesting a
rate, both applications sent with full speed (In all scenar-
ios in this section, applications are “dumb”—sending data
in tight loops without QoS awareness.). L4ATM transpar-
ently performs adaptation to the requested rate. The first
two columns show the rate as requested by the application;



the third column the maximum data unit size specified by
the application; the forth and fifth column displays interval
length and credits chosen for UPC; the sixth column shows
the data rate as measured by the writing application and the
last column shows the received data rate on the peer ma-
chine.

Requested
rate
(Bytes)

Requested
rate
(Mbps)

Data
size
(Bytes)

Interval
length
(ms)

Credits
(Bytes)

Rate
sent

Peer
rate

8 � 10
6 61.03 8192 10 79990 60.98 60.89

3 � 10
6 22.89 4096 13 39000 22.91 22.90

Table 2. Precision of UPC and policing algo-
rithm for concurrent real-time write().

Pre-scheduled writers. The previous measurement
has sparked interest in the following question: How does
L4ATM’s predictability depend on number and aggregated
load imposed by several competing clients? To answer this
question, a schedule has been pre-configured which tries to
maximize the number of different combinations of concur-
rently running clients. During the total duration of about
4 hours, competing connections are periodically set up and
terminated. Figure 7 shows the schedule used and gives in-
formation on the individual connections.

Type Rate

1 CBR 10
2 CBR 20
3 CBR 30
4 CBR 40
5 UBR -

2 3

2
3
4
5

10

1

Figure 7. Concurrent writer schedule.

Results are given in Figure 8. Dots denote the received
data rate as measured on the peer machine.
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Figure 8. Five pre-scheduled concurrent writ-
ers.

During the first 80 minutes, the real-time connections
ran separately. As expected from previous measurements,

L4ATM enforces the requested bandwidth perfectly. At the
later stages of the measurement, competition between the
connections exists.

The upper part of the plot displays the remaining band-
width used by the UBR connection. On start and termina-
tion of real-time connections, L4ATM’s admission control
decreases or increases the rate available for all best effort
connections.

4.2. Separation—AIM

The commercial AIM multiuser benchmark suite VII [1]
simulates typical multi-user application load. Using a set
of subtests, relevant components of an operating system are
stressed. The load mix used by AIM is designed to resem-
ble typical system load. While increasing system load until
response time becomes unacceptable (cross-over), the num-
ber of jobs handled by the system is measured8.

A P90 machine ran both the time-sharing L4Linux server
and the L4ATM server concurrently on top of the L4�kernel.
A fast peer machine (Pentium Pro 200 machine running
Linux) was connected via a standard OC-3 multimode fiber
and a FORE ASX-200WG ATM switch.

The test duration for the complete AIM measurement
(until occurrence of cross-over) is about 10 hours. A L4
real-time application requested a guaranteed ATM con-
nection with a constant bandwidth of 40 Mbps with 8 KB
sized datagrams. Within a total time frame of 22 hours,
about 5000 spot checks on received throughput on the peer
machine—each consisting of 10000 datagrams or 80 MB
data—were made.

Performance degradation of time-sharing component.
Figure 9 compares the performance of L4Linux in terms of
jobs processed per minute.
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Figure 9. Achieved performance of the con-
currently running time-sharing OS server.

In the top-most curve no real-time jobs exist—L4Linux
uses all hardware resources fully. Cross-over occurs at a

8The measurements are not certified by AIM Technology.



load index of 75. Under concurrent real-time ATM load (see
lower curve), system performance was expected to suffer by
about31:2%9. Both estimated and measured performance
are given. As can be seen from the graph, time-sharing sys-
tem performance measured closely fits the estimate.

ATM performance under heavy local load. The second
question of interest concerns L4ATM’s ability to preserve
guarantees under heavy time-sharing competition. Fig-
ure 10 shows the bandwidth received on a peer machine.
During measurement of samples1 : : : 2398 AIM load in-
creased until crossover occurred. At sample 2399, the AIM
benchmark was completed. Except for periodic mainte-
nance services in L4Linux, only protocol processing was
running on the test machine at this stage.
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Figure 10. Measured throughput for guaran-
teed ATM connection under heavy concurrent
load.

As can be seen from the results, L4ATM always meets or
exceeds the reserved rate, even under high load. However,
the measurement also reveals an anomaly: While L4ATM

exactly meets the reserved bandwidth when using the ma-
chine exclusively, it exceeds the reserved bandwidth un-
der extreme load conditions. This unexpected behavior
is caused by the L4�kernel, which wakes up suspended
threads under this circumstances prematurely.

5. Related work

Similar to DROPS, Rialto [14] envisions coexisting real-
time applications and time-sharing applications. Both prag-
matic and practical assumptions have been made to aid ac-
tual implementation.

A theoretical model for QoS management has been pro-
posed by [22] which intends to improve resource utiliza-
tion for a single resource for perceived quality by the user.
DROPSfocuses on determining resource requirements, en-
forcing reservations and protection against time-sharing
tasks. We do not explicitly optimize resource utilization,

9Based on L4ATM’s resource requirements estimate.

rather we provide techniques for integration of component-
specific parameters sets into a generalized model.

Issues in designing zero-copy user-level protocols are
subject of, for example, the U-NET project [25]. An ex-
perimental setup for a zero-copy architecture using ATM
hardware is described in [15].

In the context of Real-Time Mach [16] many related as-
pects were subject to research. Predictable protocol pro-
cessing has been attempted by separating protocol code
from the Mach UNIX server [20] and linking it to applica-
tions (instead of a dedicated task protecting protocol code).
Contrary to L4ATM, resource reservation issues exclusively
apply to processor time. The problem of priority inversion
is addressed by dynamic adaptation of thread priority (in-
stead of per-connection threads). Resource requirements
are estimated by monitoring (instead of measuring). Appli-
cations are expected to scale (instead of L4ATM’s assump-
tion on “dumb” applications).

A related approach with very similar goals on designing
end system’s communication subsystem is proposed in [19],
based on thex-kernel. A thread-per-connection model is fa-
vored there, too. L4ATM improves on this approach in sev-
eral ways: (1) Multitasking in L4ATM is fully preemptive,
and not cooperative. (2) Suspending threads in the L4ATM

implementation is work-preserving (e.g., no busy waiting is
involved). (3) Guarantees in L4ATM hold under existence of
exclusively misbehaving time-sharing or real-time applica-
tions. (4) L4ATM uses an off-the-shelf network adapter (as
opposed to a software null device).

6. Conclusion and future work

The DROPS architecture, simultaneously supporting
real-time and time-sharing applications, has been intro-
duced. DROPS integrates multiple personalities, one such
component—an ATM-based protocol server targeting de-
terministic network communication support—is the center-
piece of the work presented.

Design and implementation of L4ATM has been dis-
cussed and selected aspects of the implementation on top
of the L4�kernel have been described.

Experiences with L4ATM give us reason to be optimistic.
Using highly implementable, efficient L4-based techniques
for host resource management, UPC and policing, a running
system has matured. Applications are provided with a stan-
dard interface, and do not need particular QoS awareness.

L4ATM outperforms classic monolithic kernels in terms
of throughput. Traffic management algorithms have been
shown to work in real-world scenarios, enforcing precise
control over requested rates.

Separation from time-sharing traffic has been demon-
strated by running a benchmark on the time-sharing
L4Linux server. Overhead caused by implementation of



real-time support is well below 1 %, except for very small
packet sizes.

The mechanisms designed and implemented have been
integrated into a prototype “DROPSchain” (a media server
formed by a real-time file system and L4ATM) and have
passed initial tests. We expect to learn more from refining
this scenario.

The main future task involves integration of DROPS’
scheduling mechanisms. Experiments with staggering
streams will lead to refinement of interval length determi-
nation. Porting Linux’ ATM signalling support to native
L4—to allow for generic propagation of traffic parameters
to the network—is a useful implementation step.
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