Ten Years of Research on L4-Based Real-Time Systems

Hermann Hartig and Michael Roitzsch
Department of Computer Science
Technische Universitat Dresden
01062 Dresden, Germany
{haertig,mroi}@os.inf.tu-dresden.de

Abstract

Microkernels are an intriguing technology for operating systems research in general and for real-time
systems in particular. To gain experience and to explore new ground, the OS research group at Technische
Universitat Dresden has been developing L4/Fiasco, a real-time implementation of the L4 microkernel

specification.

Using this kernel, we built an architecture that supports legacy software and provides

real-time guarantees. In this paper, we will describe and discuss the design decisions that led us to this
architecture. Based on this system, we set out to explore interesting real-time research areas such as
networking, disk scheduling and real-time graphics. The results have been published separately, but we
will use this article to give a concise overview and present the rationale of our platform strategy as a

whole.

1 Introduction

The ideas behind the L4 microkernel were born
back in the mid-1990’s when Jochen Liedtke reexam-
ined the design of the earlier generation microkernels
around Mach. Trying to prove that a minimal kernel
can still provide a high system performance, he de-
veloped first L3, then L4. The fundamental principle
of his microkernels is that a concept will only be al-
lowed inside the kernel, if user-land implementations
would be unable to achieve the required functional-
ity. This leads to truly minimalist kernels supporting
only address spaces, threads and interprocess com-
munication. These basic services are enough to run
isolated user-level processes on top of L4. Any addi-
tional functionality must be implemented as a server
process. This includes components like file systems,
networking and even device drivers, all of which are
usually subsumed as an operating system personal-

1ty.

1.1 Diverse Platforms

Roughly at the same time, multimedia applications
were pushing forward into mainstream computing,
because the required performance became increas-
ingly available to consumers. The characterising new
requirement of those systems was the coexistence of
highly dynamic real-time and non-real-time work-

loads, sharing computer cores, disks, video subsys-
tems and networks. Previously, real-time systems
used to be dedicated, having the complete hardware
for themselves. Now, both real-time and non-real-
time applications are started and stopped side by
side at the user’s discretion. But although the re-
quirements towards the system changed, the basic ar-
chitecture of the underlying operating systems stayed
the same. Instead, software vendors tried to solve the
emerging problems in middleware. We believe this
approach is misleading, because no middleware can
isolate real-time from non-real-time tasks or reliably
enforce resource guarantees for real-time applications
without proper core operating system support.

1.2 Resource Throwing

Advancements in computer hardware achieved enor-
mous performance improvements by using caches
to exploit the locality of the applications’ behav-
ior. However, those techniques are not necessarily
useful for real-time systems, because they tend to
concentrate on improving the average case, whereas
real-time applications must consider the worst case.
For the longest time, dedicated real-time systems
had been using less powerful, yet expensive special-
ized hardware to overcome this. On standard com-
puter hardware, these problems were traditionally
dealt with either not at all or by spending enormous

amounts of resources. But all those overprovided re-
sources are usually wasted, because the average case
behavior is much more benign than the rare but dev-
astating worst case situations, and this gap contin-
ues to widen as technology progresses. We intend
to solve this problem by dealing with overload situ-
ations in ways other than the resource throwing ap-
proach. Making the powerful commodity hardware
predictable, we can allocate resources much closer to
the average case.

1.3 Overview

We do not want to explore our ideas just theoreti-
cally, but strive to build a system usable on a daily
basis. To this end, we had to consider the matu-
rity and stability of the system. This causes a lot
of “unscientific” work, but enforces honesty. Thus,
we first present our design decisions for the entire
system architecture in Section 2. We include a thor-
ough analysis of the costs caused by this design in
Section 2.3. In Section 3, we discuss our solution to
handling overload conditions. With those key ele-
ments in place, we continue to deal with the man-
agement of reservations for resources such as disk,
network and graphics bandwidth in Section 4. In
Section 5, we conclude by tying all the pieces to-
gether into a real-time component architecture that
makes the research results readily available for the
software development process.

2 Designing the System

A major change in computer systems was the emerg-
ing coexistence of real-time and non-real-time appli-
cations on the same machine. Today, a large variety
of systems has to support a diverse set of such use
cases:

e Multimedia applications are used on the aver-

age desktop. These applications have imme-
diate real-time requirements, because frames
need to be delivered to the display at fixed
time intervals. Although deadline misses are
not catastrophic, they diminish the user’s me-
dia experience because they will be visible as
motion judder or even frame drops.
At the same time, non-real-time components
may be running next to the player core. For ex-
ample the media library and subscription man-
agement common to today’s integrated client
applications such as iTunes are clearly non-
real-time tasks.

e Off-the-shelf computers are used for sound
applications like multitrack editing and live

recording of music instruments. Contrasting
the media player scenario, enforcing a lower
bound on throughput is not the only require-
ment, but a low latency is needed as well. Mu-
sic artists can notice delay, if the sound from
the speakers is more than 10 ms behind the key
hit on the keyboard.

But arranging the sound in the user inter-
face into multiple tracks, choosing instruments,
tweaking the sound and managing media assets
has no real-time requirements.

e Mobile phones are being used increasingly for
personal information management. Calendar
and address book applications are running, as
well as games. Sometimes an entire Java vir-
tual machine is used. Alongside, the phone
still needs to handle the GSM protocol in a
timely manner and once a call is accepted, the
speech encoder needs to deliver data from the
microphone to the mobile network within cer-
tain bandwidth and latency bounds.

From these examples, we can observe that applica-
tions with real-time requirements often have small,
isolated real-time core functionality surrounded by
a large and complex non-real-time part. Current
mainstream operating systems do not honor this sep-
aration but treat both parts equally, often they are
even co-located in the same address space, so proper
isolation of resource reservations is impossible. Con-
sequently, current systems have to overprovide re-
sources so that the requirements of the real-time part
are satisfied even if it is treated as a best-effort task
only.

2.1 Legacy Support

The obvious idea to derive from these findings is that
we should reuse an existing operating system per-
sonality for the non-real-time parts. This will enable
support for legacy software and will ease splitting ap-
plications into a real-time and a non-real-time part
that can then be treated by the OS differently. Be-
cause of its availability in source code and its wide
range of application software, the operating system
personality of choice is the POSIX personality of the
Linux kernel.

One way to implement this is by designing a real-
time kernel from the ground up and reimplement-
ing the interface of the legacy kernel in this system.
This is the approach taken by the QNX [1] real-time
operating system. However, matching the person-
ality of an operating system by reimplementing it
is very hard to do, because you are dealing with a
moving target. Every change in the semantics of the

legacy kernel must be followed to be fully compati-
ble, which invariably introduces a delay. The state
of the reimplementation will always be behind the
original, which limits the compatibility.

A better solution is to reuse an existing imple-
mentation of the OS personality. This is the ap-
proach taken by RTLinux [2], which runs the legacy
kernel next to high priority real-time processes on
top of a small real-time executive. However, all real-
time tasks run along with the real-time executive in
kernel mode. The real-time executive is responsible
for CPU scheduling and also supports interprocess
communication between tasks. But since the legacy
kernel is notoriously complex, it is difficult to en-
force real-time properties reliably. Furthermore, in
the design of RTLinux, there is no isolation between
different real-time tasks, which makes it harder to
rule out crashes. One real-time task alone can po-
tentially take over the entire system.

Fortunately, with the 1.4 microkernel technology,
we have another option: We can shift the legacy ker-
nel into user space and have it run as an operating
system personality server on top of our microkernel.
Our implementation of the 1.4 specification is named
Fiasco and it is fully real-time capable, because it
guarantees upper bounds for the execution times of
all critical operations. Moving Linux to a user space
application is possible with only little modifications
to the Linux kernel and without disrupting the real-
time properties of Fiasco. Consequently, our port of
Linux to L4 is called [*Linux [3].

2.2 Real-Time Support

Next to the I'Linux personality for non-real-time
tasks, our system provides a real-time personality.
Every basic resource such as CPU time and main
memory is wrapped by a manager which provides the
resource to real-time and non-real-time system com-
ponents and applications. Using this manager, real-
time components like a filesystem can provide an in-
terface with reservations and guarantees for real-time
applications and a best-effort interface for I!Linux.
This whole architecture on top of our Fiasco micro-
kernel is named the “Dresden Real-time OPerating
System”, in short DROPS [4].

Non-Real-Time Real-Time
Applications Applications
Real-Time Real-Time
Filesystem Transport
Binux T—— v
Real-Time Real-Time
—>
SCSI Ethernet
v L 2

| CPU / Main Memory |

| L4 Microkernel |

FIGURE 1: The DROPS Architecture. [4]

The key advantage of our design over the ap-
proach taken by QNX is that we can use the original
Linux implementation with only few modifications.
Thus, it is a lot easier for us to maintain a current
and compatible version of our [*Linux legacy OS per-
sonality. And other than RTLinux, our DROPS ar-
chitecture allows for strong separation of real-time
tasks from each other and of real-time tasks from
the kernel, because those tasks all run in their own,
isolated address space.

2.3 Paying the Price

Unfortunately, the separation of non-real-time tasks,
real-time tasks and system servers into their own ad-
dress spaces comes at a price: Every time an appli-
cation wants to access a service from another appli-
cation or server, interprocess communication across
address spaces is required and this causes numer-
ous additional context switches. This is one of the
major reasons why many people in the OS research
community argued that the layer of abstraction pro-
vided by a pure microkernel is too low to sustain
acceptable performance. However, the non-real-time
applications running on top of and therefore heavily
communicating with the I!Linux server are a good
example to prove otherwise. A performance decrease
of a Linux application running on I*Linux instead of
native Linux is expected, so we used the AIM mul-
tiuser benchmark suite VII to quantify the slowdown
[3]. The benchmark tests, how well multiuser sys-
tems perform under different application loads. Fig-
ure 2 compares monolithic Linux with I*Linux. To
compare the performance of Linux on different mi-
crokernels, results for an in-kernel and a user-level
version of MkLinux, a port of Linux to the Mach
microkernel, are also listed. The numbers were ob-
tained in 1997 on a 133 MHz Pentium.

7000F T
eooof
5000
4ooof

& 3000

2000f

1000}

PR U RS RS R
0 25 50 75 100 125

FIGURE 2: Time per benchmark run de-
pending on AIM load units. [3]

Averaged over all loads, I*Linux is 2.2 % slower
than native Linux. User-mode MkLinux is on av-
erage 29 % slower than native Linux, the co-located
in-kernel version of MkLinux is 21 % slower. This
demonstrates that L*Linux performs sufficiently close
to native Linux, even under high load. Typical penal-
ties range from 2% to 10%. The comparison with
MkLinux shows, that the performance of the under-
lying microkernel has a profound influence on the
performance of the applications.

One of the goals of our architecture was to en-
sure guarantees for the real-time tasks even when
they are running next to I*Linux. Some additional
modifications to I!Linux are necessary to achieve
this [5]: Special measures must be taken to tame
the locking mechanism of Linux so it cannot dis-
able interrupts any more. We confirmed the effec-
tiveness of our solution by measuring the actual pe-
riodicity of an L4 real-time tasks that requests a
100 ms period from the system. Running standalone
on L4, the period length deviates by about 1 to 7 us.
With the untamed I!Linux, entire periods are lost
because response times increase beyond the 100 ms
bound. This is because untamed I*Linux can disable
interrupts and thus prevent any scheduler activity
for arbitrarily long intervals. Our tamed version of
[*Linux however shows deviations of 24 ms, so the
response times do increase compared to a real-time
task running standalone on L4, but the periodicity
of 100ms can be supported. These results were ob-
tained in 1998 on the original L4 implementation by
Jochen Liedtke and motivated the development of Fi-
asco as a real-time time microkernel to improve the
response times.

To further evaluate the real-time performance
of our system, we wanted to compare it against
RTLinux. With our DROPS system using a sepa-
rate address space for each real-time task to increase
fault-tolerance, a degradation of response times is
expected compared to RTLinux, which runs all real-
time tasks as kernel-level threads. To compare both
systems, we developed the L4RTL library, which im-
plements the RTLinux API on DROPS and mea-
sured interrupt response times on 1.6 GHz Pentium 4
[6]. To actually get worst case behavior, we en-
sured that caches and TLBs were always cold when
an interrupt occurred. The measurements yield a
worst case latency of 24 us on RTLinux and 33 us
on DROPS. This shows that the cost of using ad-
dress spaces for real-time tasks is not significantly
larger than uncertainties introduced by dirty caches
or blocked interrupts, which designers of real-time
systems seem to accept readily.

We summarize that modifying Linux to run on
top of our L4 microkernel Fiasco allows a perfor-
mance close to native Linux without compromis-
ing the real-time properties of the system. Using
separate address spaces for real-time tasks increases
the fault-tolerance of the system without a signifi-
cant impact on response times. This allows running
real-time and non-real-time applications side by side,
which we believe to be a key feature for today’s com-
puting requirements. With the presented system ar-
chitecture, we can also support tasks that want to
use both real-time and non-real-time services. Those
hybrid tasks can communicate with the I*Linux part
and with the real-time resource managers.

2.4 IPC Scheduling

Because a lot of system services are separated into
dedicated servers, clients are required to communi-
cate often. This drives the need for component in-
teraction that is both fast and predictable. Such
interaction is performed on L4 via synchronous in-
terprocess communication (IPC). A successful mes-
sage transfer requires a rendezvous between the send-
ing and the receiving thread. However, synchronous
message passing also introduces dependencies among
components. Combined with fixed-priority schedul-
ing of threads, this can lead to the infamous priority-
inversion problem:

1
1
1 1
Bl ! =>
1 2
_____ g [x] e [x] -
o1 o 19
(9] (9] =
<] ol
@I [®)] Ig
1 el 1=
£ Sli1T
O ol g
B ol la -
ol c 1 o
ol o :
1 .
ongoing v!
request 1

low

FIGURE 3: Priority inverston during mes-
sage passing. [7]

The example shows a high-priority client C re-
questing a service from a low-priority server S. Be-
cause it is currently engaged in communication with
another client, S cannot respond immediately. Be-
fore S can answer C, it is preempted by a medium-
priority thread X, which leads to the high-priority
client C waiting for X although X’s priority is lower
and although C has no communication relationship
to X. Well known methods to avoid such a priority in-
version are priority inheritance and stack-based pri-
ority ceiling. The basic message passing mechanism
of our system must support those methods without
sacrificing performance.

Our approach is to divide the thread context that
is held in the kernel into two separate contexts:

e an execution context that keeps track of saved
CPU registers and the thread state and

e a scheduling context which represents a time
quantum coupled with a priority.

Thanks to this separation, the kernel can switch both
contexts independently, which enables the implemen-
tation of a time donation scheme named capacity-
reserve donation from one thread to another [7]: The
kernel tracks references to the current execution con-
text and the current scheduling context. On regular
thread switches, the kernel will switch both contexts.
However, when a request is sent from a client to a
server thread, the kernel switches only the execution
context, but keeps the client’s scheduling context. In
doing so, the client effectively donates its time quan-
tum and priority to the server for the time the server
executes the request on behalf of the client. When
the server replies, the kernel switches back to the
client’s execution context and the client reobtains its
donated scheduling context. If a server needs to con-
tact another server to fulfill a request, the scheduling
context donation is transitive. This scheme allows
for fast message passing, because scheduling is elim-
inated from the critical path by directly switching

from the sender to the receiver of a message with no
priority changes. The consumed CPU time is always
correctly accounted to the client that originated the
request.

With capacity-reserve donation, the priority in-
heritance and stack-based priority ceiling protocols
can be implemented efficiently. This elegantly solves
the priority inversion problem and makes component
interaction more predictable, while preserving the
high performance of the interprocess communication
primitive of the underlying microkernel.

3 Probabilistic Scheduling

As the basic architecture of the system is now in
place, it is time to consider resource scheduling in
real-time systems. The primary resource real-time
system designers focus on is CPU time, because it
provides the basis for all subsequent resource ac-
cesses. Scheduling the CPU is all about timeliness:
Real-time applications provide a deadline and re-
quire sufficient CPU time to finish their job before
the deadline is reached. The system scheduler must
guarantee this property to all real-time tasks it ad-
mitted to run. However, the key problem here is how
to determine, what “sufficient CPU time” means.
Today’s hardware makes a lot of effort to speedup
applications in the average case by using caches to
exploit locality in the application’s behavior. Unfor-
tunately, this widens the gap between the average
case and the worst case time consumption. In ad-
dition, a common real-time application in desktop
computing is video playback, which per se does not
have a fixed execution time per job.

[0 N B ——

60 70

FIGURE 4: Measured distribution of total
decoding times per group of pictures. [8]

These two factors cause execution time distribu-
tions to have a long tail. If the CPU resource was
always allocated for the worst case, the system’s uti-
lization would be very low, because only few jobs can
be admitted and large amounts of resources would
be wasted. But media applications are an exam-
ple for a class of real-time tasks that can tolerate
occasional deadline misses, if this does not happen
too frequently. With this observation, we devised a
system that can handle overload predictably with-
out dedicating enormous amounts of resources [8].
Our idea is to allow a percentage of deadlines to be
missed; applications can configure this percentage as
a quality level. Resource reservation is based on the
distribution of the execution time instead of just the
worst case value. Competing approaches in this area
such as Imprecise Computation [9] and Statistic Rate
Monotonic Scheduling [10] are either based on deter-
ministic duration of resource usage or cannot guar-
antee a desired quality.

The task model of our Quality-Assuring Schedul-
ing (QAS) allows each real-time task to be split into
mandatory and optional parts. The mandatory parts
are always guaranteed to be executed before their
respective deadline, so worst case reservation is per-
formed. Of the optional parts only the percentage
requested with the quality parameter is guaranteed
to be completely executed before the deadline. For
these parts, admission and reservation is performed
using the distribution of the execution time. Caused
by the typical long tail of these distributions, even re-
quested qualities only slightly below 100 % cause con-
siderably less resources to be reserved, which greatly
increases the overall utilization of the system. Al-
though the scheduling is probabilistic, the requested
quality levels are matched quite accurately, as the
following table proves. The results were obtained for
MPEG decoding with the I- and P-frames as manda-
tory parts and the B-frames as optional parts with
the given quality.

Requested | Reservation Time | Achieved
Quality | for Optional Parts Quality
0.95 55 ms 0.9506

0.90 53 ms 0.8588

0.80 47 ms 0.7875

0.70 39ms 0.6740

0.60 32ms 0.5804

0.40 23 ms 0.4063

0.20 9ms 0.2451

TABLE 1: Requested quality, derived reser-

vation time and measured quality of the op-
tional parts. [8]

Unfortunately QAS’ applicability is limited be-
cause it only handles periodic tasks with uniform and

harmonic periods and the admission is expensive, es-
pecially when the distributions are to be calculated
with a high resolution. The model can handle ar-
bitrary periods as well, but then the admission cost
is increased beyond practical applicability. There-
fore, the designated successor of QAS is QRMS,
the Quality-Rate-Monotonic Scheduling. It simpli-
fies QAS by assigning the mandatory and optional
parts a unified reservation time, which is regarded
as constant in the admission control. Thus, QRMS
ignores situations where jobs do not completely con-
sume their reservation. QRMS is therefore more pes-
simistic than QAS, but has a tremendously simpler
admission even for arbitrary periods. The results
convince of the accuracy and feasibility of the model:

Requested | Quality Achieved | Quality Achieved
Quality with QAS with QRMS
0.70 0.7001 0.7024

0.50 0.5019 0.6742
0.7323 0.7326 0.7324

TABLE 2: Requested and achieved quality
of QAS and QRMS for a task system with

three concurrent tasks.

Another interesting property of both QAS and
QRMS is that applications can be notified when the
optional parts overrun their deadline. This way, an
application can react, for example by reducing qual-

1ty:

set_period(period);
reserve_time(mand_time, mand_priority) ;
reserve_time(opt_time, opt_priority);
do {
begin_period();
try {
do_something() ;
} catch {
exceeded:
adjust_quality();
}
next_reservation();
try {
do_something_else();
} catch {
exceeded:
discard_result();
}
} while (!end);
end_period();

With these unified admission and scheduling
schemes, we can give probabilistic guarantees for pe-
riodic real-time tasks. Considering the variation of
execution times allows us to admit far more appli-
cations and thus achieve better resource utilization
than in systems based on worst-case admission.

4 Resource Management

The previous chapter dealt with scheduling the CPU,
but this is not the only resource a real-time appli-
cation might need. In our DROPS system archi-
tecture, all resources used concurrently by multiple
tasks must be encapsulated and scheduled by a re-
source manager running as a server in user-land. In
the following, the design of such managers for re-
sources like disk, network and graphics bandwidth is
presented.

4.1 Disk Requests

Disk usage in modern systems combines traditional
best-effort file access with storage and retrieval of
real-time streams, such as audio and video data.
The former has relatively weak requirements while
the latter must meet deadlines for individual disk
requests. For good overall performance, the disk-
request scheduler has to optimize the disk utilization
as well. This is challenging, because the construc-
tion of disk drives causes a poor ratio of average and
worst-case execution times. However, the same idea
that has been successfully applied to CPU schedul-
ing as discussed in the previous section also helps
here: If an application can tolerate occasional dead-
line misses, probabilistic service guarantees can sub-
stantially improve the disk utilization compared to
guarantees based on the worst case [11].

Thus, the basic idea is again to split real-time
disk requests into mandatory and optional requests
and to assign a quality parameter to the optional
requests, which denotes the percentage of requests
that must be completed. To optimize utilization, re-
quests should be scheduled with the SATF (shortest
access time first) algorithm, which is aware of the
position of the drive’s head on the disk. However,
this scheduler does not know anything about dead-
lines. But instead of implementing a new scheduler,
we devised a method to decouple the scheduling of
the disk requests from the deadline and reservation
enforcement [11]: The Dynamic Active Subset (DAS)
always includes all pending requests that can be ex-
ecuted in any order without violating any deadline
or reservation. This subset of disk requests is recal-
culated after every request completion and if enough
time is available, the set even includes non-real-time
requests to increase utilization. The SATF scheduler
or any other scheduler can be run on this set to pick
the request to execute next without having to know
about deadlines.

With this technology, the disk request scheduler
matches the desired quality levels of the tasks.

Bandwidth | Requested | Achieved Achieved
Quality Quality Bandwidth

640KB/s 0.99 0.9973 | 638.54KB/s
2560 KB/s 0.95 0.9798 | 2509.12KB/s
1280KB/s 0.90 0.9444 | 1209.36 KB/s
640KB/s 0.85 0.9004 | 576.44KB/s
1280KB/s 0.60 0.6705 | 858.65KB/s

TABLE 3: Requested and achieved quality

for a disk (IBM Ultrastar 36Z15) loaded with

five concurrent streams. [11]

Even quality levels only slightly below 100 %
push the disk utilization close to the peak best-effort
bandwidth.

1

FIGURE 5: DBandwidth that can be as-
signed to an optional stream. [11]

4.2 Ethernet Transmission Delays

With the deployment of switches, Ethernet as the
most widely used commodity network becomes in-
teresting for real-time communication. Each port of
a switch provides its own collision domain, so colli-
sions do not occur in a star topology network. How-
ever, switches generally lack traffic policy features.
Thus, if too many Ethernet frames are being sent to
a machine that does not receive them fast enough,
the switch will enqueue the frames internally, which
causes transmission delays. If the internal queueing
storage of the switch is depleted, it will even drop
frames.

A mathematical model of the network traffic can
be used to predict the buffer fill levels in the switch.
If the nodes within the network cooperate, this model
can be used to parametrize a traffic shaper running
on each node that keeps buffer lengths and thus
transmission delays within specified bounds [12].

Shaping Buffer | Calculated Observed
Interval Bound | Max. Delay | Max. Delay
10ms | 111.8KB 9357 us 8759 us
lms | 15.7KB 1380 s 1300 ps
100 us 6.1 KB 582 us 438 us

TABLE 4: Buffer bounds in the switch and

transmission delay bounds. [12]

The achievable delay bound mainly depends on
the granularity of the traffic shaping. This results in
a trade-off between delay bound and CPU load.

1 °F

us

FIGURE 6:
trade-off. [12]

Delay bound / CPU load

Because all nodes on the network must cooper-
ate to ensure the guaranteed delay bounds, each node
must run an instance of the traffic shaper. However,
not all nodes must run a real-time operating system.
The shaping capabilities of the machines influence
the delay bound, but we successfully shared the net-
work with Linux machines while still observing pre-
dictable delays.

4.3 Screen Real Estate and Screen
Updates

Today’s modern desktops feature a graphical user in-
terface. Furthermore, modern real-time applications
like media players also feature a graphical output.
This drives the need for a real-time capable win-
dow manager that can provide guaranteed redraw-
ing rates for the real-time windows while providing
best-effort services to the remaining non-real-time
windows and auxiliary operations such as the user
reordering windows. Therefore, the design goal of
our DOpE (Desktop Operating Environment) win-
dow server [13] was to multiplex the singleton re-
source of physical screen real estate to client appli-
cations. For real-time clients, quality of service is
guaranteed even in overload situations, which can be
caused by massive screen updates of non-real-time
applications. DOpE can therefore sustain real-time
client windows running next to I*Linux and X11 on
the same desktop.

Client trigger redraw

Application

Window
Server

'draw

| Frame-Buffer |

FIGURE 7: Design of the DOpE window
server. [13]

Shared Representation
of client application

The architecture of DOpE separates the client’s
updates to the user interface from the server updates
of the representation on screen. The client and the
server share a description of the layout and content of
the client’s user interface. This allows the client to
update the shared description without interference
of the server and then trigger a redraw operation.
The server can then interpret the shared window de-
scription and perform the necessary updates to the
on-screen representation independently of the client.
Because the execution time of such a redraw is known
beforehand, the window server can guarantee previ-
ously negotiated refresh rates to admitted real-time
clients. A real-time client can subscribe to periodic
notifications of completed redraw operations. Up-
dating the shared representation in a timely manner
is entirely the responsibility of the client.

This separation of cause and execution of redraw
requests allows us to display real-time graphics and
windows of non-real-time clients seamlessly side by
side.

4.4 Second-Level Cache

One easily overlooked resource used concurrently by
real-time and non-real-time tasks are CPU caches.
They are an especially interesting resource for real-
time applications, because every task switch poten-
tially disrupts cache working sets and thus makes
execution times unpredictable. To avoid this, the
CPU caches should be managed like all the other re-
sources discussed above to isolate the real-time tasks
from cache interference by other tasks or the operat-
ing system. A well-known solution for this problem
is cache partitioning: portions of the cache are ded-
icated exclusively to specific applications. For our
system, we developed a cache partitioning technique
that operates without any hardware modifications
[14].

A page size of 2P divides the cache in banks of 2P
bytes, if the cache is direct-mapped. The least signifi-
cant p bits are used to index an element within such a
bank. Assuming a cache size of 2¢, the next ¢— p bits
in the address select the cache bank. The remaining
part of the address is compared against the tag. For

an n-way set-associative cache, a cache size of n2¢
and a bank size of n2P are to be used. The division
of the cache into banks also divides the main mem-
ory into classes, whose physical page frames all fall
into the same cache bank. Those classes are called
colors. Cache conflicts can only occur between page
frames of the same color, so such conflicts can be
avoided between any two tasks, if both tasks use dis-
joint colors. Since the L4 microkernel allows user
level memory management, the mapping of physical
to virtual addresses can be controlled by a memory
server that assigns colors to tasks exclusively.

The problems with this approach are: Being
based on the mapping of pages, it can only be ap-
plied to physically-indexed caches and only with page
granularity. Additionally, if a certain percentage of
the cache is to be dedicated to a task, the same per-
centage of the main memory is implicitly reserved
for that task as well. On the other hand, the tech-
nique provides a way to close the gap between the
average case and the worst case execution time for
real-time tasks. This greatly helps when schedul-
ing real-time tasks with hard deadlines, because less
CPU resources need to be reserved.

5 Conclusion

With the Fiasco real-time L4 microkernel and the
real-time enabled managers for various system re-
source, the DROPS system described in the previous
sections provides all the building blocks for writing
real-time applications. Legacy support for running
non-real-time software and real-time tasks side by
side is provided by the I*Linux server. The Quality
Assuring Scheduling and Quality-Rate-Monotonic
Scheduling provide the mathematical foundation to
handle overload situations

5.1 Real-Time in Software Develop-
ment

However, what is still missing is a comprehensive way
to open this technology to software developers. All
the elegant solutions and advancements in real-time
systems research are of limited use, if they are not
accessible to the engineers in need. To this end,
a joint team of members from our research group
and from the software technology group of our de-
partment developed the COMQUAD component ar-
chitecture. This architecture allows to specify non-
functional properties like quality levels and resource
usage of a component implementation in the compo-
nent quality modelling language (CQML+). These
properties are then used to derive contracts between
components which are translated by the component

runtime environment into resource reservations. Our
real-time operating system and its resource managers
enforce these reservations at runtime. This way, a
component-based software development process was
created, that supports adaptive real-time systems
from specification all the way to the running system
[15].

5.2 Current State and Outlook

Most of the software discussed here is available for
download [16] under the terms of the GNU General
Public License. The resource managers are still pro-
totypes, but the foundation of the system is usable.
A demo CD is available as well [17]. We hope to
spark a wider interest amongst operating system en-
thusiasts for design, implementation and deployment
of real-time systems on everyday computers. With
the knowledge we gained from the DROPS architec-
ture, we are currently exploring new ground in the
areas of virtualization and hierarchical system de-
sign. We expect to present more fascinating research
results and we will always ensure that our systems
are designed to be useful beyond mere academic pur-
poses.

Acknowledgements

The authors would like to thank the researchers
who contributed all the findings that went into
this overview paper, including but not limited
to (list in alphabetical order): Ronald Aigner,
Robert Baumgartl, Martin Borriss, Norman Feske,
Claude-Joachim Hamann, Michael Hohmuth, Jochen
Liedtke, Jork Loser, Frank Mehnert, Martin Pohlack,
Lars Reuther, Sebastian Schonberg, Udo Steinberg,
and Jean Wolter.

References

1]

D. Hildebrand: An architectural overview of
QNX. In 1st USENIX Workshop on Microker-
nels and Other Kernel Architectures, pages 113~
126, Seattle, Washington, April 1992.

V. Yodaiken, M. Barabanov: A Real-Time
Linux. In Proceedings of the Linuz Applica-
tions Development and Deployment Conference
(USELINUX), Anaheim, California, January
1997. The USENIX Association.

H. Hartig, M. Hohmuth, J. Liedtke,
S. Schonberg, J. Wolter: The performance
of p-kernel-based systems. In 16th ACM
Symposium on Operating System Principles
(SOSP), pages 66-77, Saint-Malo, France,
October 1997.

H. Hartig, R. Baumgartl, M. Borriss, Cl.-
J. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schonberg, J. Wolter: DROPS:
OS Support for Distributed Multimedia Ap-
plications. In Proceedings of the Fighth ACM
SIGOPS European Workshop, Sintra, Portugal,
September 1998.

H. Hartig, M. Hohmuth, J. Wolter: Taming
Linux. In 5th Annual Australasian Conference
on Parallel And Real-Time Systems (PART),
Adelaide, Australia, September 1998.

F. Mehnert, M. Hohmuth, H. Hartig: Cost and
benefit of separate address spaces in real-time
operating systems. In Proceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS),
pages 124-133, Austin, Texas, December 2002.

U. Steinberg, J. Wolter, H. Hartig: Fast Com-
ponent Interaction for Real-Time Systems. In
Proceedings of the 17th Euromicro Conference
on Real-Time Systems (ECRTS), Palma de Mal-
lorca, Balearic Islands, Spain, July 2005.

C.-J. Hamann, J. Loser, L. Reuther,
S. Schonberg, J. Wolter, H. Hartig: Quality-
Assuring Scheduling - Using Stochastic
Behavior to Improve Resource Utilization.

10

[12]

[13]

[15]

[16]
[17]

In Proceedings of the 22th IEEE Real-Time
Systems Symposium (RTSS), London, UK,
December 2001.

K. J. Lin, S. Natarajan, J. W. S. Liu: Impre-
cise results: Utilizing partial computations in
real-time systems. In Proceedings of the IEEE
Real-Time System Symposium, 1987.

A. Atlas, A. Bestavros: Statistical Rate
Monotonic Scheduling. Technical Report 98-010,
Boston University, May 1998.

L. Reuther, M. Pohlack: Rotational-Position-
Aware Real-Time Disk Scheduling Using a Dy-
namic Active Subset (DAS). In Proceedings of
the 24th IEEE International Real-Time Systems
Symposium (RTSS), Cancun, Mexico, Decem-
ber 2003.

J. Loser, H. Hartig: Low-latency Hard Real-
Time Communication over Switched Ethernet.
In Proceedings of the 16th Euromicro Confer-
ence on Real-Time Systems (ECRTS), Catania,
Italy, June 2004.

N. Feske, H. Hartig: DOpE - a Window
Server for Real-Time and Embedded Systems.
In Proceedings of the 24th IEEE International
Real-Time Systems Symposium (RTSS), Can-
cun, Mexico, December 2003.

J. Liedtke, H. Héartig, M. Hohmuth: OS-
Controlled Cache Predictability for Real-Time
Systems. In Proceedings of the Third IEEE Real-
time Technology and Applications Symposium
(RTAS), pages 213-223, Montreal, Canada,
June 1997.

H. Hértig, S. Zschaler, M. Pohlack, R. Aigner,
S. Gobel, C. Pohl, S. Rottger: Enforceable
Component-Based Realtime Contracts — Sup-
porting Realtime Properties from Software De-
velopment to Execution. To appear in the Real-
time Systems Journal.

http://os.inf.tu-dresden.de/drops/

http://demo.tudos.org/

