Slice-Balancing H.264 Video Encoding for Improved Scalability of Multicore
Decoding

Michael Roitzsch
Department of Computer Science
Technische Universitdt Dresden
01062 Dresden, Germany
mroi@os.inf.tu-dresden.de

Abstract

With multicore architectures being introduced to the
market, the research community is revisiting problems to
evaluate them under the new preconditions set by those new
systems. Algorithms need to be implemented with scalabil-
ity in mind. One problem that is known to be computation-
ally demanding is video decoding. In this ongoing work,
we will present a technique that increases the scalability of
H.264 video decoding by modifying only the encoder stage.
Speedup improvements up to 4.7 times can be achieved. The
key idea is to equalize the potentially differing decoding
times of one frame’s slices by applying decoding time pre-
diction at the encoder stage. Virtually no added penalty is
inflicted on the quality or size of the encoded video. In addi-
tion, apart from a decoder capable of slice-parallel decod-
ing, no changes to the installed client systems are required,
because the resulting bitstreams will still be fully compliant
to the H.264 standard.

1. Introduction

The industry is currently seeing the advent of multi-
core processor technology: Because of the well known en-
ergy consumption and heat dissipation problems with high-
speed single-core CPUs, the mainstream computer market
is switching to systems with lower nominal clock frequency,
but with multiple CPU cores. Right now we see dual-
core processors even in entry-level notebook computers and
companies like Intel have announced to ship quad-core con-
sumer systems early next year. But this new technology
comes with a downside: To approach peak performance, al-
gorithms have to take advantage of more than one CPU,
otherwise they may even run slower than on yesterday’s
hardware. Never before has the continuing advancement
of Moore’s law relied so much on software.

Parallelizing algorithms is no easy task. And paralleliz-
ing them close to linear speedup is even harder. This paper
focuses on the problem of decoding H.264 video. This is

known to be computationally demanding and even the lat-
est single-core machines are just outside the recommended
requirements for full HD resolution (1920x1080) H.264
playback [dI]. Therefore, this task is an obvious candidate
for parallelization. Section 2] briefly elaborates, how the
H.264 standard supports parallelization. However, this is
not the main contribution of this work. In Section B} we
present the scalability problems of the resulting paralleliza-
tion and discuss the approaches to overcome them. Sec-
tion [f] features the intended solution of applying video de-
coding time prediction to improve scalability at virtually no
cost. Section [5]concludes the paper. The reader is expected
to be roughly familiar with the H.264 video coding standard

While previous work optimizing either the encoder [2]] or
the decoder [[7]] for multiprocessing is available, the novelty
of our approach is the modification of only the encoder to
improve performance of the decoder.

2. Parallelizing H.264 Decoding

Modern video codecs such as those in the MPEG stan-
dard family allow parallel decoding through a coding fea-
ture called slices. These are sets of macroblocks within one
frame that are decoded consecutively. For the following rea-
sons and solution details, slices are the most promising can-
didates for independent decoding by multiple cores:

e Individual frames have complex interdependencies due
to the very flexible usage of reference pictures in
H.264. Therefore it is hard to parallelize at frame level.

e Other than frames, slices are the only syntactical bit-
stream element, whose boundaries can be found with-
out decompressing the entropy coding layer of the
video stream. This decompression would otherwise
be impossible to parallelize efficiently, so it has to be
avoided for the sake of good scalability.

e H.264 uses spatial prediction, which extrapolates al-
ready decoded parts of the final picture into yet to be
decoded areas to predict their appearance. Only the

residual difference between the prediction and the ac-
tual content is encoded. However, this coding feature
was carefully crafted so that such predictions never
cross slice boundaries and thus do not introduce de-
pendencies among the slices of one frame.

e For global picture coding parameters (e.g., video res-
olution), which must be known before a slice can be
decoded, the standard ensures that they do not change
between different slices of the same frame.

o H.264 also uses a mandatory deblocking filter. This
filter can operate across slice boundaries, which would
defer the deblocking to the end of the decoding pro-
cess of each frame, outside the slice context. If this
is not desired, a deblocking mode which honors slice
boundaries is available, but must be requested by the
video bitstream. Therefore, it is an option that has to
be enabled in the encoder. But since we plan to modify
the encoder anyway, this does not pose a problem.

e Decoders usually organize the final picture and any
temporary per-macroblock data storage maps as two-
dimensional arrays in memory. Because the mac-
roblocks of one slice are usually spatially compact
and not scattered over the entire image, every decoder
thread will operate on different memory areas when
reading from or writing to such arrays. This mini-
mizes the negative effects of false cacheline sharing.
The notable exception to this is an H.264 coding fea-
ture called flexible macroblock ordering, which allows
the encoder to arrange macroblocks in patterns other
than the default raster scan order. But this feature is
not commonly used.

In our work, we parallelized the open-source H.264 decoder
from the FFmpeg project [3]] to decode multiple slices si-
multaneously in concurrent threads. This allows us to per-
form measurements on real-life decoder code.

3. Scalability Concerns

In this section, we examine the scalability problems with
naively encoded slices and provide possible solutions to
overcome those problems.

3.1. Scalability of Uniform Slices

Starting from the source material listed in Table [T} we
used the x264 encoder to encode an ensemble of test videos.
Every one of the source videos was encoded with 1, 2, 4, 8,
16, 32, 64, 128, 256, 512, and 1024 slices per frame, keep-
ing the quality constant. We made sure that the slices within
each frame are uniform, meaning that they are all of the
same size in terms of macroblocks they contair|'} because
this is what naive encoding usually yields. Using our par-
allelized FFmpeg encoder, we measured the decoding time

IDifferences of one macroblock have to be tolerated, because the over-
all macroblock count per frame of the given video resolutions might not be
integer divisible by the desired slice count.

for each slice when every thread runs on its own CPU core.
Since CPUs with a parallelism of up to 1024 threads are not
available yet, we simulated the dedicated, interference-free
execution by running all threads on a single CPU core, forc-
ing sequential execution of one thread after another. This is
similar to a standard decoder run on a single CPU, but it
still contains the overhead caused by the code added to en-
able parallelization. All results presented in this paper have
been obtained under Linux on an AMD Sempron 2200+
(1.5 GHz).

In the uniprocessor case, a frame is complete, when all
slices of that frame are fully decoded. In the multiprocessor
case, each frame’s decoding is finished after the slice with
the longest execution time is fully decoded. Thus, for each
encoded video, the speedup can be calculated by dividing
the time required on a uniprocessor by the time required
on a multiprocessor. The results can be seen in Figure [Ta]
Although the parallel efficiency is acceptable, it still offers
room for improvement.

3.2. Target Clock Speed of Uniform Slices

One of the goals of multicore computing is to reduce the
clock speed of the individual cores to reduce power con-
sumption. The same idea applies to power-aware comput-
ing when systems can adapt their clock frequency on de-
mand. Thus, it is interesting to see, what clock speed reduc-
tions are possible with the given parallelization using uni-
form slices. Since every single video frame must be read-
ily decoded within a fixed time interval, the target clock
speed of the system cannot be designed for the average load
of a video stream, but it must be designed for the peak
load, which is the frame that takes the longest time to de-
code. To not catch a runaway value and also because today’s
video players are capable of tolerating a limited overload by
buffering some decoded frames, we decided not to use the
single longest per-frame decoding time, but rather the 95 %
quantile of all frame decoding times. The resulting target
clock speeds of the individual cores, scaled to the single-
slice case, can be seen in Figure@

3.3. Improving Parallel Efficiency

Parallel efficiency suffers because of sequential portions
of the code that cannot be parallelized or because of syn-
chronization overhead or idle time. The latter appears to be
the main issue here: The frame is not fully decoded until the
last of its slices is finished. The decoding of the upcoming
frame cannot commence either, because inter-frame depen-
dencies usually require the previous frame to be complete.
Therefore, all threads that already finished decoding their
respective slice must wait for the last thread to finish. This
situation is common with uniform slices, because the time
it takes to decode a slice does not depend so much on the
macroblock count, but instead largely depends on the cod-
ing features that are used, which in turn are chosen by the
encoder according to properties of the frame’s content like
speed, direction and diversity of motion in the scene.

’ Name ‘ Content Duration Resolution | Properties
Shore | flight over a shoreline at dawn 0:27 min 720%576 | camera moving all the time
BBC compilation of broadcast quality clips from BBC motion gallery | 1:29 min 1280x720 | clips with very different properties
Lady movie trailer for “Lady In The Water” 1:44min | 1920x1080 | high detail images with calm motion
Table 1. Test videos used for measurements and simulations.
1o T T T 70 I
—&— Shore —&— Shore
<& BBC n 3% BBC N
o 100 S 2 g 100 O Lady
3 3 =
2 8 2
50 50 ~ N
14
0 . L " " 1 " " " " 1 " " " " 0 A " " " I " " " " 1 " " " "
0 50 100 150 0 50 100 150
Slice Count Slice Count

(a) uniform slices

(b) balanced slices

Figure 1. Scalability of parallel decoding.

One obvious way to overcome this problem is to replace
the static mapping of slices to threads with a dynamic one:
When the video is encoded with more slices than the in-
tended parallelism, the slices can be scheduled to threads
dynamically. For example, each thread that has finished
decoding one slice can start to decode the next unassigned
slice until all slices are decoded. Since the individual slices
will take less time to decode, the waiting times for the
longest running thread to finish up are also reduced.

However, this implies using more slices than strictly re-
quired and this does not come for free. Every slice starts
with a slice header and due to the requirement of no depen-
dencies to other slices of the same frame, all predictions like
spatial prediction and motion vector prediction H.264 ap-
plies to reduce bitstream size are disrupted by slice bound-
aries. Consequently, to encode a video with more slices
while maintaining the same quality level, one has to dedi-
cate a larger bit budget to the encoder. Figure 3] shows the
bitstream growth at constant quality level. Of course this
penalty cannot be eliminated completely, because if a par-
allelism of n is intended, the video has to be encoded with
at least n slices. What can be avoided is the extra price to
be paid, when even more slices are used to increase parallel
efficiency. In some applications this extra size increase may
be unacceptable, especially since we believe we can provide
a way to achieve the same result without this size overhead.

3.4. Balanced Slices

Our idea is to considerably reduce waiting times by en-
coding the slices for balanced decoding time: The slice
boundaries shall no longer be placed in a uniform fashion,
but they are placed so that, for each frame, the decoding
times of all slices of that frame are equal. This invariably
means that slice boundaries in adjacent frames will gen-
erally not be at the same position, but this does not pose
a problem, since the H.264 standard allows different slice
boundaries for each frame without any penalty. It also does

not hinder parallelization, because the slice header always
contains the position of the slice’s first macroblock, so the
slice decoder threads will know where to write the decoded
data to. Further, this method is compatible to H.264’s ad-
vanced reordering feature called flexible macroblock order-
ing, which organizes arbitrary macroblock patters in slice
groups. As these are in turn subdivided into slices, the same
balancing can be applied to the slices of these slice groups.

Figures[Ib]andZb]show the theoretical parallel efficiency
of perfectly balanced slices. Although practical results will
probably not be as good, the scalability and clock speed
reduction can be improved considerably with this method.
The speedup increases by a factor up to 1.4 for 4 slices, 2.0
for 32 slices and 4.7 for 1024 slices. The remaining gap
to perfect parallel efficiency is due to code that cannot be
parallelized.

4. Applying Decoding Time Prediction

Balancing the slices according to their decoding time is
possible with a feedback process: The encoding is done in
a first pass with uniform slices, then information about the
resulting decoding times of the slices is fed back into the
encoder so it can iteratively change the slice boundaries to
approach equal decoding times. High-quality encoding uses
two or more passes anyway to optimize bit-budget assign-
ment in a similar iterative way, so we plan to combine those
passes to avoid inflicting a serious overhead on the encoding
process. As decoding time behavior is usually monotone in
the slice sizeﬂ the iteration should converge.

The decoding times in this feedback loop could be deter-
mined by simple measurement: Running the encoded video
through a decoder yields exact decoding times. However,
this may not be applicable, since encoding jobs might run

2Shrinking a slice reduces decoding time, enlarging it increases decod-
ing time, but not necessarily in a linear fashion.

Relative Clock Speed (log scale)

| n n n n |

Relative Clock Speed (log scale)

0 50 100 150
Slice Count

(b) balanced slices

Figure 2. Target clock speed of parallel decoding.

0.01 n n n n Il n n n n Il n n n n E
0 50 100 150
Slice Count
(a) uniform slices
S a00r —————y —————y
£ [
= F —— Shore]
g 30F1 o BBRC]
§ F O Lady]
S 200F .
jo3 r 4
9 r]
@ r
% 100; . Pe
Z ok g o 7
A 1 10 100 1000

Slice Count (log scale)

Figure 3. Bitstream size increase due to the
usage of multiple slices.

on hardware that differs from the systems targeted for end-
user decoding. In addition, the encoding could be running in
a distributed environment (encoder farm) or it might share
one machine with other computation tasks, so exact mea-
sures cannot be determined. Furthermore, it would be very
helpful to not only have decoding time information on the
slice level, but for individual macroblocks. This would al-
low much faster convergence of the feedback loop towards
balanced decoding times. But measurements on such a
small scale might be subject to imprecisions due to mea-
surement overhead.

For those reasons, we propose to use decoding time pre-
diction instead of actual measurement to determine the de-
coding times. We introduced a new technique to predict de-
coding times of MPEG-1/2 and MPEG-4 Part 2 video in [[]).
We are confident that this method can be adapted to H.264
video and we already presented a mapping of the H.264 al-
gorithm to the underlying generic decoder model in [B]]. A
preliminary decoding time prediction for a 20-slice version
of the “Lady” video results in an average relative error of
0.044 at a standard deviation of 0.130. 97.9 % of all predic-
tions are within £1 ms of absolute error.

5. Conclusion and Outlook

We presented a new technique to improve parallel effi-
ciency of multithreaded H.264 decoding. By using slices
balanced for decoding time, this method can achieve con-
siderable improvements in terms of scalability and clock
speed reduction. The latter is especially important on multi-

core systems and in power-aware computing since it allows
to run the cores at lower clock speeds, which can help con-
serving energy. Our idea imposes virtually no overhead on
encoding workload or video bitstream size. No modifica-
tions to the decoder other than enabling it for parallel decod-
ing are necessary, so for example out-of-the-box QuickTime
installations, which are capable of multithreaded decoding,
should work.

In the future, we plan to improve the H.264 decoding
time prediction and break it down to the macroblock level.
Feeding the predictions into the encoder, we will evaluate
how the actual parallel efficiency compares to the theoret-
ical results presented here. We will also examine the im-
pact on scalability, when a video with slices balanced for
one target architecture is decoded on a different system. Fi-
nally, we hope to establish a technology leading towards a
production-ready H.264 encoder capable of improving par-
allel efficiency for decoding on everyday systems.

References

[1] Apple Computer Inc. QuickTime HD Gallery System Recom-
mendations. |[http://www.apple.com/quicktime/|
lguide/hd/recommendations.html}

[2] Y. K. Chen, X. Tian, S. Ge, and M. Girkar. Towards effi-
cient multi-level threading of H.264 encoder on Intel hyper-
threading architectures. In Proceedings of the 18th Interna-
tional Parallel and Distributed Processing Symposium, 2004.

[3] FFmpeg project. [http://www.ffmpeg.org/}

[4] ISO/IEC 14496-10. Coding of audio-visual objects, Part 10:
Advanced Video Coding.

[S] M. Roitzsch. Principles for the Prediction of Video De-
coding Times applied to MPEG-1/2 and MPEG-4 Part 2
Video. |[http://os.inf.tu-dresden.de/papers_|
[os7roitzsch-beleg.pdf] 2005. GroBer Beleg (Under-
graduate thesis).

[6] M. Roitzsch and M. Pohlack. Principles for the Prediction
of Video Decoding Times applied to MPEG-1/2 and MPEG-
4 Part 2 Video. In Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS 06), Rio de Janeiro, Brazil, De-
cember 2006. IEEE. To appear.

[7] E. B. van der Tol, E. G. Jaspers, and R. H. Gelderblom. Map-
ping of H.264 decoding on a multiprocessor architecture. In
Proceedings of the SPIE, pages 707-718, May 2003.

http://www.apple.com/quicktime/guide/hd/recommendations.html
http://www.apple.com/quicktime/guide/hd/recommendations.html
http://www.ffmpeg.org/
http://os.inf.tu-dresden.de/papers_ps/roitzsch-beleg.pdf
http://os.inf.tu-dresden.de/papers_ps/roitzsch-beleg.pdf

	1 . Introduction
	2 . Parallelizing H.264 Decoding
	3 . Scalability Concerns
	3.1 . Scalability of Uniform Slices
	3.2 . Target Clock Speed of Uniform Slices
	3.3 . Improving Parallel Efficiency
	3.4 . Balanced Slices

	4 . Applying Decoding Time Prediction
	5 . Conclusion and Outlook

