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1 Aufgabenstellung
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2 Einleitung

Mikrokerne sind kleine Betriebssystemkerne, die nur die notwendigen Grundfunktionen bereitstellen. Die hö-
heren Funktionen des Betriebssystems werden durch Server bereit gestellt, welche sich in separate Adressräu-
men befinden. Es soll dadurch eine größere Modularität, Flexibilität und Sicherheit erreicht werden.

Ein Mikrokern der 1. Generation war Mach [ABB+86]. Mach entstand, indem man aus einem monolithischen
System immer mehr Funktionen in Nutzerprogramme auslagerte und nur noch diese Funktionen im Kernel
lies, welche nicht sicher auf Nutzerebene implementiert werden können. Mikrokerne der ersten Generation
zeigten erhebliche Geschwindigkeitsdefizite, so dass in späteren Versionen wieder Funktionen zurück in den
Kern verlagert wurden.

Mikrokerne der 2. Generation wurden unter Berücksichtigung von Geschwindigkeit [Lie93] und Minimalis-
mus entworfen. Es wird dem Kern nur das hinzugefügt, dass nicht sicher im Nutzerbereich implementiert
werden kann. Die Mikrokerne der 2. Generation zeigten, dass man mit ihnen auch effiziente Systeme bauen
kann.

Der L4-Kern [Lie96] ist ein Mikrokern der 2. Generation. Er ist ein Nachfolger des L3-Systems [Lie88]. Der
L4 Mikrokern stellt folgende Mechanismen zur Verfügung.

• Adressräume: Adressräume bilden die Schutzdomäne. Sie enthalten einen oder mehrere Threads.
Adressräume werden rekursiv durch Pager konstruiert, mit Sigma0 als initialen Adressraum. Bei einem
Seitenfehler in einem Adressraum, generiert der Kern eine Nachricht an seinen Pager. Dieser kann dann
in diesen Adressraum eine Seite einblenden, um den Seitenfehler aufzulösen. Damit ist es möglich, eine
Hierarchie von Adressräumen rekursiv aufzubauen.

• Threads: Threads sind die Aktivitätsträger. Die Threads werden entsprechend ihrer Prioritäten vom
Scheduler eingeplant und ausgeführt. Alle bisherigen L4-Implementationen verwenden Kernthreads,
die dem Kern, im Gegensatz zu Threads auf Nutzerebene, bekannt sind. Die Threads werden im Kern
durch eine Kontrollstruktur, dem Thread-Kontroll-Block (TCB), repräsentiert.

• IPC: Threads können miteinander mittels Interprozesskommunikation, engl. Inter Process Commu-
nication, kurz IPC, kommunizieren. Die L4-IPC bietet als Operationen das Sendensend, das Emp-
fangenreceiveund wait, und das kombinierte Senden und Empfangen,reply_wait und call an. Alle
IPC-Operationen sind synchron, d.h. die Nachrichtenübertragung findet erst statt, wenn Sender und
Empfänger bereit sind. Um nicht erfolgreiche IPC-Operationen nach einer bestimmten Zeit abzubre-
chen, können Timeouts gesetzt werden. Nachrichten können aus einfachen Registerwerten, Speiche-
rinhalten und Flexpages1 [HWL96] bestehen. Für die Behandlung von IPCs ist der IPC-Codepfad des
Kerns zuständig.

Ein L4-Mikrokern-System besteht aus dem L4-Kern, mehreren Servern, welche die Dienste wie Dateisysteme,
Netzwerkdienste und grafische Oberfläche zur Verfügung stellen, sowie den Nutzerprogrammen.

1Flexpages sind Speicherseiten, welche im Adressraum des Empfängers eingeblendet werden können.
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2 Einleitung

Die Nutzerprogramme kommunizieren über IPC mit diesen Servern, wenn sie einen bestimmten Dienst in
Anspruch nehmen wollen. Daher ist die IPC-Performance entscheidend für ein effizientes System.

Heute bezeichnet L4 eine Mikrokernfamilie. Es existieren verschiedene L4-Schnittstellen. Es gibt die originale
Schnittstelle,V2 genannt, und die experimentellen SchnittstellenX.0 [Lie99] undX.2 [Tea05]. Weiterhin gibt
es noch eine hoch experimentelle SchnittstelleL4.sec[Kau05], die besonders Rechte- und Ressourceprobleme
adressiert.

2.1 Gliederung

In dieser Arbeit wird ein neuer IPC-Pfad für den L4-kompatiblen und echtzeitfähigen Mikrokern Fiasco imple-
mentiert. Im nachfolgendem Kapitel gebe ich einen Überblick über den Fiasco-Kern. Insbesondere umfasst
dies alle Aspekte des Kerns, welche für die IPC-Performance und Echtzeit entscheidend sind. Eine kurze
Erläuterung der vorhandenen IPC-Implementation wird auch gegeben. Im 3. Kapitel gehe ich auf die Eigen-
schaften von Hardware und Software, im Hinblick auf Echtzeit, ein. Das 4. Kapitel beschreibt den Entwurf
des neuen IPC-Pfades und geht dabei auf verschiedene Probleme ein. Die Implementierung und einige damit
verbundene Probleme werden im 5. Kapitel kurz erläutert. Die Auswertung im Hinblick auf Performance und
Echtzeitfähigkeiten, im Vergleich zum bisherigen Kern, erfolgt im 6. Kapitel. Im 7. Kapitel erfolgt eine kurze
Zusammenfassung, welche Ziele wurden erreicht und welche Probleme bestehen noch.

2.2 Danksagung

Hier möchte ich mich bei Prof. Dr. Hermann Härtig für die Möglichkeit bedanken, in der Betriebssystem-
gruppe zu arbeiten. Mein besonderer Dank gilt auch meinem Betreuer, Dr.-Ing. Michael Hohmuth. Weiterhin
möchte ich mich bei Jean Wolter, Dr.-Ing. Frank Mehnert, Dietrich Clauß, Bernhard Kauer und Adam Lackor-
zynski bedanken.
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3 Hintergrund

3.1 Fiasco

Fiasco [Hoh98, Hoh02a] ist ein L4-kompatibler und echtzeitfähiger Mikrokern, entworfen und implementiert
von Michael Hohmuth. Es war der erste L4-Kern, welche in einer Hochsprache geschrieben wurde und bei
dessen Entwurf besonders Wert auf sehr gute Echtzeiteigenschaften gelegt wurde. Der Fiasco-Kern imple-
mentiert die V2, X0 und X.2-Schnittstelle. Es gibt auch eine stark abgeänderte Version, welche die L4.sec
Schnittstelle implementiert.

Fiasco läuft auf IA-32, IA-64 [War02] und ARM [War03]. Eine x86-64 und Power-PC Portierung sind in
Arbeit. Desweiteren Fiasco als Nutzerprogramm auf einem Linuxsystem [Ste02] verfügbar. Fiasco ist in C++
implementiert. Michael Peter implementierte zusätzlich einen IPC-Shortcut in Assembler [Pet02].

Fiasco ist ein Echtzeitkern und garantiert kurze und begrenzte Verzögerungszeiten bei der Zustellung von
Ereignissen. Um dies zu erreichen, ist der Kern sehr oft unterbrechbar, nur kurze kritische Abschnitte werden
durch das Sperren von Interrupts geschützt. Für größere kritische Abschnitte nutzt Fiasco nichtblockierende
Synchronisation, deren Details in [Hoh02b] erläutert werden.

Einen anderen Ansatz als die L4-Kerne, insbesondere Fiasco geht der Fluke-Mikrokern. Der Fluke-Kern bietet
nur atomare Operationen an, längere Systemaufrufe werden in mehrere atomare Teiloperationen aufgespalten
[BF98]. Der Zustand zwischen diesen Operationen wird vollständig zum Nutzer exportiert, so dass der Kern
sich keine Zustände im Kern merken muss.

3.2 Aufbau von Fiasco

Adressräume

Adressräume bilden die Schutzdomäne und enthalten einen oder mehrere Threads, die Aktivitätsträger. Die
V2-Schnittstelle unterstützt maximal 128 Threads pro Adressraum, die V4-Spezifikation setzt keine solche
Grenze. Für das Einblenden und Entfernen von Flexpages in anderen Adressräumen, verwaltet der Kern eine
Mapping-Datenbank, wo für jede physische Speicherseite ein Mapping-Baum angelegt wird. Wird eine Flex-
page entfernt, wird über diesen Baum iteriert, und die Seite wird aus betroffenen Unterbäumen entfernt, oder
deren Rechte modifiziert.

Der Adressraum ist auf der IA-32 Architektur in einen, drei Gigabyte großen, Nutzeradressraum und in einen,
ein Gigabyte großen, Kernadressraum aufgeteilt. Der Kernadressraum ist für den Nutzer nicht zugreifbar und
ist in jedem Adressraum eingeblendet.

Er enthält den TCB-Bereich und die IO-Bitmap, sowie die Region für den verfügbaren physischen Kernspei-
cher, siehe Abb. 3.1. In einigen unbenutzten Einträgen des Seitenverzeichnis, werden auch Task-spezifische
Variablen eingetragen.
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3 Hintergrund
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Abbildung 3.1:Aufteilung des Kernspeicher.

Threads

Threads sind die Aktivitätsträger, und können erzeugt, verändert und gelöscht werden. In der V2 und X0-
Spezifikation erfolgt dies über denthread_ex_regs-Systemaufruf. In der X.2-Spezifikation dientthread_ex_-
regsnur zum Modifizieren von Threads, Erzeugen und Löschen erfolgt durchThread_control-Systemaufruf.

Jeder Thread wird durch seinen TCB repräsentiert, welcher im TCB-Bereich des Kernadressraumes zu fin-
den ist. Der TCB besteht aus einemThread-Objekt, welches Thread-spezifische Variablen enthält, und dem
Kernstack dieses Threads.

Fiasco implementiert das “Prozessmodell”, d.h. jeder Thread besitzt einen Kernstack. Darauf wird der aktuelle
Zustand des Threads automatisch gesichert, ein Umschalten der Threads erfolgt durch Umschalten des Kern-
stacks. Dadurch ist unterbrechbarer Kerncode sehr einfach zu implementieren, da der Zustand des Threads
jederzeit auf dem Stack gespeichert ist. Der Gegensatz dazu ist das “Interruptmodell“. Hier gibt es nur einen
Kernstack pro CPU. Der Zustand eines Threads muss beim Kontextwechsel explizit in einerContinuation1

gesichert werden. Daher kann dieser Thread nur an dafür vorbereiteten Punkten unterbrochen werden.

Die KlasseThread ist von den KlassenReceiverund Senderabgeleitet, siehe auch Abb. 3.2. Diese beiden
Klassen entsprechen der Empfänger- und Senderrolle einer IPC-Operation. Die KlasseReceiverist weiterhin
von Contextabgeleitet. Die KlasseContextist der Ausführungskontext. Sie stellt den den Scheduler (sche-
dule)und Funktionen zum Umschalten des Ausführungskontextes (switch_to, switch_exec) zur Verfügung.
Details sind in [Hoh02a] zu finden.

Ein Thread kann sich in verschiedenen Zuständen befinden, diese werden durch eine Kombination von Flags
im Zustandswort derContext-Klasse beschrieben.

1Continuation: Eine Datenstruktur, welche die benötigte Informationen enthält, um den Zustand des Threads wiederherzustellen und
die Operation fortzusetzen.
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3.2 Aufbau von Fiasco

Receiver

+ sender_ok() : bool

+ sender_list() : Sender**

+ rcv_regs() : Sys_ipc_frame*

Thread

+ sys_ipc() : void

− do_send() : Ipc_err

− ipc_send_regs() : Mword

Context

+ schedule() : void

+ switch_to() : void

+ ready_enqueue() : void

Sched_context

+ set_prio() : void

+ qnantum() : Unsigned64

+ owner() : Context*

Preemption

+ ipc_receiver_ready() : void

+ send() : void

− setup_msg() : void

Sender

+ ipc_receiver_ready() : void

# sender_enqueue() : void

# id() : Global_id

Dirq

+ hit : void

Irq

+ ipc_receiver_ready() : void

+ lookup() : Irq*

Activation

+ ipc_receiver_ready() : void

+ send() : void

− setup_msg() : void

Abbildung 3.2:Übersicht über die benötigten Klassen und deren Beziehungen.

Interrupts

Interrupts werden in L4 auf IPC abgebildet. Ein Thread kann sich mit einem Interrupt assoziieren. Er bekommt
eine Nachricht zugestellt, wenn dieser Interrupt ausgelöst wurde. Unterbrechungen werden durch Interrupt-
deskriptoren, die KlasseIrq, dargestellt Die KlasseIrq ist vonSenderabgeleitet, und besitzt damit auch die
Fähigkeit, IPC-Nachrichten zu verschicken. Die KlasseDirq leitet vonIrq ab, und ihrehit-Methode ist für die
Zustellung der Nachricht zuständig, welche aufgerufen wird, wenn ein Interrupt auftritt.

Scheduling

Scheduling umfasst den Bereich des Kerns, welcher sich mit der Auswahl und Ausführung von Threads
befasst. Der Scheduler wird durch dieschedule-Funktion implementiert. Die Scheduling-Informationen wie
Priorität, Zeitdauer und Besitzer dieser Zeitscheibe, sind im Scheduling-Kontext, repräsentiert durch die Klas-
seSched_context, getrennt vom TCB abgelegt.

Neben dem normalen Scheduling-Kontext, der im TCB des Threads aggregiert ist, kann ein Thread über
zusätzliche Real-Time-Scheduling-Kontexte verfügen. Ein Zeiger im TCB zeigt stets auf den aktivenSched_-
contextdieses Threads. Details dazu können in [Ste04] nachgelesen werden. Wenn ein Real-Time-Scheduling-
Kontext abgelaufen ist, wird eine Preemption-IPC an den Preempter des Besitzer-Threads generiert.

Es werden 256 Prioritäten zur Verfügung gestellt. Der Scheduler wählt immer den Thread mit der höchsten
Priorität aus. Threads mit gleicher Priorität werden nacheinander, mit einer Round-Robin-Strategie, ausge-
führt.
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3 Hintergrund

Zeitgeber

Die schedule() Funktion wird am Ende einer Zeitscheibe durch den Zeitgeber aufgerufen, um einen neuen
Thread auszuwählen. Der Zeitgeber kann auf IA-32 drei verschiedene Quellen nutzen, den PIT2, die CMOS
Echtzeituhr (RTC) und die Local-APIC3 der CPU. Der APIC-Timer kann als periodischer oder alsOne-Shot-
Timerkonfiguriert werden. Bei den periodischen Zeitgebern, beträgt die Frequenz 1000Hz (PIT) oder 1023Hz
(RTC), so dass die Zeitgeber-Routine rund jede Millisekunde aufgerufen wird. Bei demOne-Shot-Timerwird
immer nur ein Interrupt ausgelöst. Der Zeitgeber wird dann auf das nächste Ereignis neu programmiert. Dies
kann das Ende der neuen Zeitscheibe oder der Ablauf eines Timeouts sein. Der “One-Shot-Timer” bietet eine
Genauigkeit für Timeouts im Bereich von Mikrosekunden an. Man kann die Timeouts auf eine Mikrosekunde
spezifizieren, jedoch begrenzen die Verzögerungszeiten des Kerns die erreichbare Genauigkeit.

Ready-Liste

Die Bereitwarteschlange (Ready-Liste) enthält alle ausführbaren Threads. Es gibt jedoch eine Ausnahme, der
aktuell aktive Thread muss nicht in der Ready-Liste enthalten sein. Ferner können in der Ready-Liste auch
nichtbereite Threads enthalten sein. Sobald der Scheduler beim Iterieren über die Ready-Liste einen solchen
blockierten Thread entdeckt, wird dieser nachträglich aus dieser Liste entfernt.

Der Zweck dieser Optimierung (Lazy-Scheduling) ist, dass IPC-Operationen das Ein- und Ausketten von
Threads aus der Ready-Liste einsparen können. Bei einer kombinierten Sende- und Empfangsoperation wird
sofort zum Empfänger umgeschaltet, ohne diesen in die Ready-Liste einzutragen. Der alte Sender wird auch
nicht aus der Ready-Liste entfernt, obwohl er sich im IPC-Wartezustand befindet und nicht mehr lauffähig ist.
Die Aktualisierung der Ready-Liste erfolgt erst nachträglich im Scheduler. Diese Optimierung beschleunigt
besonders die Client-Server Kommunikation, wo viele kombinierten Sende- und Empfangsoperationen,call
und reply_wait, verwendet werden. Wenn zwei Threads miteinander Pingpong spielen, wird so das Aktuali-
sieren der Ready-Liste bei IPC-Operationen komplett eingespart.

Implementiert wird die Ready-Liste durch ein Array, dessen 256 Elemente doppelt verkettete Listen sind, wel-
che alle Threads derselben Priorität enthalten. Die Synchronisation von Änderungen der Ready-Liste erfolgt
durch das Sperren der Interrupts.

3.3 Synchronisation in Fiasco

Kritische Abschnitte in Fiasco werden nichtblockierend synchronisiert Dies bietet den Vorteil der vollen Un-
terbrechbarkeit und Prioritätsinversion wird vermieden. Nichtblockierende Synchronisation wird in sperrfreie,
engl.lock-freeund wartefreie, engl.wait-free, Synchronisation unterteilt.

• Wartefreie Synchronisation ist ähnlich Sperren, wobei das Blockieren durch Helfen ersetzt wird.
Wenn ein hoch priorisierter ThreadA einen Konflikt mit einem niedrig priorisierten ThreadB entdeckt,
hilft A, dassB seinen kritischen Abschnitt beendet. Dies wird dadurch erreicht, dassA seine CPU-Zeit
und seine Priorität anB weitergibt. SobaldB den kritischen Abschnitt verlässt, beginntA den kritischen
Abschnitt. Dieser Vorgang lässt sich transitiv fortsetzen.

Um die Prioritätsvererbung sicher zustellen, darf ein Thread in einem kritischen Abschnitt nie blockie-
ren. Dies umfasst z.B. auch Zugriffe auf den Nutzeradressraum, da diese Seitenfehler auslösen können.
Der Kern setzt generiert eine Seitenfehler-IPC und dieser Thread blockiert.

2PIT: Programmable Interrupt Timer
3Local advanced Interrupt Controller
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• Lockfreie Synchronisation kommt ohne Sperren aus. Threads berechnen die Ergebnisse lokal, und
versuchen sie dann mittels atomarer Speicheroperationen auf die gemeinsamen globalen Daten zu über-
tragen. Schlägt dies fehl, wird die Operation wiederholt. Fiasco verwendet als atomare Maschinenin-
struktion diecompare-and-swapOperation (CAS). Diese Operation vergleicht zuerst, ob der übergebe-
ne alte Wert noch mit dem Speicherinhalt übereinstimmt. Wenn ja, wird der Speicher mit dem neuen
Ergebnis überschrieben. Wenn der Vergleich fehlschlägt, wird die Operation in einerRetry-loopwie-
derholt. Diese teuren Maschineninstruktionen, dieRetry-loopund die notwendigen Prüfungen sind ein
Grund, warum der bisherige IPC-Pfad sehr langsam ist.

Atomare Speicheroperationen

Atomare Speicheroperationen sind das normale CAS, das Doppelwort compare-and-swap (CAS2), welches
CAS auf zwei Wörter erweitert, oder die load-locked(LL) und store-conditional(SC) Instruktionen, welche
auf RISC-CPUs zu finden sind. Die x86-Architektur bietet nur CAS und andere einfache atomare Operatio-
nen, wie Inkrement und Dekrement an. Für Multiprozessorsysteme, können diese Instruktionen mit einem
speziellen Lockprefix versehen werden, welche den Bus sperren und somit die Konsistenz auch bei mehreren
CPUs sicher stellen.

Diese Instruktionen sind nur bei Modifikation von einzelnen Worten verwendbar. Um etwas komplexere Da-
tenstrukturen und mehrere Worte atomar zu verändern, wie zum Beispiel doppelt verkettete Listen, werden
für sehr kurze Zeit die Interrupts gesperrt. Das Sperren der Interrupts reicht auf Multiprozessorsystemen, nur
für lokale Daten aus, für globale Daten sind zusätzlich Spin-Locks notwendig. Obwohl die Interrupts gesperrt
werden, sind die Zeiten dennoch sehr kurz, und die Verzögerungszeiten verschlechtern sich nur unwesentlich.

Sperren der Interrupts

Das Sperren der Interrupts erfolgt bei x86-Prozessoren durch Löschen des Flags für Interrupts mittels der CLI-
Instruktion. Das Freigeben der Interrupts erfolgt durch die STI-Instruktion. Diese sind erheblich schneller als
das Sperren der Unterbrechungen am Interruptcontroller. Bei Fiasco-UX erfolgt dies auch durch die CLI
oder STI-Operation. Sobald eine dieser Instruktionen auftritt, generiert der darunterliegende Linuxkern ein
Signal, dessen Signalfunktion die Interrupts sperrt. Die KlasseCpu_lockstellt für das Sperren und Freigeben
der Interrupts eine allgemeine Lock-Schnittstelle zur Verfügung. Intern verwendet diese Klasse die CLI- und
STI-Operationen.

Im aktuellen Fiasco-Kern sind nach einem Kerneintritt die Interrupts noch gesperrt. Die Freigabe der Interrupts
erfolgt, nach dem Sichern der Register dem Kernstack, sofort durch den Kern.

Locks

Neben derCpu_lockKlasse gibt es weitere Locks zur wartefreien Synchronisation. Wenn bei dem Betreten des
kritischen Abschnittes ein solches Lock schon gesperrt ist, wird dem Lock-Besitzer durch Leihen der CPU-
Zeit und Priorität geholfen, seinen kritischen Abschnitt zu beenden. Innerhalb der Lock-Methoden erfolgt die
Synchronisation durch Sperren der Interrupts.

Im Detail, sieht das folgendermaßen aus: Wenn der Thread versucht, sich das Lock zu holen und feststellt,
dass es bereits durch einen anderen Thread gesperrt ist, schaltet er zu dem Lock-Besitzer mittelsswitch_to
um, ohne jedoch den Scheduling-Kontext umzuschalten. Es wird vorher noch ein Hinweis im TCB des Lock-
Besitzers gesetzt und der alte Thread bleibt weiter rechenbereit. Wenn sein Scheduling-Kontext abgelaufen
ist, und der Scheduler diesen Thread erneut auswählt, prüft er erneut, ob das Lock frei ist, und wenn nicht,
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wird der Vorgang wiederholt. Bei der Freigabe eines Locks wird anhand des Hinweises im eigenen TCB
nachgeschaut, ob dem Thread geholfen wurde, den kritischen Abschnitt zu beenden. Wenn ja, wird zu dem
Helfer umgeschaltet, da in diesem Fall der Helfer eine höhere Priorität besitzt.

Lock-Klassen

Es gibt neben demCpu_lockweitere Klassen von Locks in Fiasco. DasSwitch_lockbildet die Grundlage,
auf dem dasHelping_lockundThread_lockaufbauen. DasHelping_lockentspricht demSwitch_lock, jedoch
wird zusätzlich der Fall des nicht initialisierten Scheduling-System betrachtet. Dies ist beim Booten des Kerns
wichtig.

Die KlasseThread_lockdient zum Sperren von anderen Threads. Gesperrte Threads, werden bis auf eine
Ausnahme, nie vom Scheduler ausgewählt. Wenn zu einem gesperrten Thread umgeschaltet werden soll, wird
automatisch zu seinem Lock-Besitzer umgeschaltet. Eine Ausnahme bildet das Zerstören von Threads durch
Thread::kill. Dort läuft ein gesperrter Thread solange, bis er alle seine gehaltenen Locks freigegeben hat. Ein
Zähler im TCB wird inkrementiert, wenn dieser Thread ein Lock in Besitzt nimmt, und dekrementiert, sobald
dieses Lock freigegeben wird. Dadurch kannThread::kill feststellen, ob der zu zerstörende Thread noch Locks
besitzt. Es wird solange zu dem zerstörendem Thread umgeschaltet, bis dieser alle Locks freigegeben hat.

Die Lock-Klassen, inklusiveCpu_lock, werden nie direkt verwendet, sondern über einen Wächter, denLock_-
guard. Der Konstruktor dieser Klasse nimmt ein Zeiger auf ein Lock-Objekt entgegen, und greift dann das
Lock im Konstruktor. Im Destruktor wird dieses Lock dann wieder freigeben. DerLock_guardbehandelt auch
das verschachtelte Sperren und Freigeben ein- und desselben Locks.

3.4 IPC-Architektur

Als IPC-Operationen werden das Senden einer Nachricht zu einem bestimmten Thread, kurzsendund das
Warten auf eine Nachricht angeboten. Es kann auf eine Nachricht von einem beliebigen Thread, das offene
Warten (open-wait), und eines bestimmten Threads, das geschlossene Warten (closed-wait), gewartet werden.

Ferner gibt es noch das kombinierte Senden und Empfangen, welches aus einer Sendeoperation gefolgt vom
Empfangen einer Antwort vom gleichen Thread (call), oder offenes Warten (reply_wait) umfasst. Diese kom-
binierten Operationen garantieren ein atomares Umschalten zwischen dem Sende- und Empfangszustand. Da-
durch kann ein Server dem Client mit Timeout Null antworten, ohne dass die IPC mit einem Timeout-Fehler
abgebrochen wird.

Timeouts bilden ein eigenes Untersystem im Fiasco-Kern. Auf Timeouts werden IPC-Timeouts, Timeslice-
Timeouts und Deadline-Timeouts abgebildet. Der IPC-Timeout dient dazu, Zeitbeschränkungen für IPC-
Operationen durchzusetzen. Der Timeslice-Timeout bildet Zeitscheiben und deren Ablauf auf Timeouts ab.
Deadline-Timeouts dienen zum Durchsetzen von Perioden und Deadlines.

Sende- und Empfangsrolle

Für die Senderolle ist die KlasseSenderzuständig, für die Empfangsrolle, die KlasseReceiver. Jeder Sen-
der, also Threads, Interrupts, Preemptions und Activations [Cla05], leitet sich von derSender-Klasse ab. Da
Threads auch Nachrichten empfangen können, leitet sich die KlasseThreadauch vonReceiverab. Die Sender-
Klasse enthält die Absenderadresse (Absender-ID), und implementiert die Senderwarteschlange. Sie stellt mit
der ipc_receiver_readyMethode eine Schnittstelle bereit, welche alle Sender implementieren müssen. Die
KlasseReceiverenthält den IPC-Zustand, den Kopf der Senderwarteschlange und den IPC-Partner. In Fiasco
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ist der Sender das aktive Element in einer IPC-Operation, der Empfänger bleibt bis auf wenige Ausnahmen
inaktiv.

Passive Sender

In Fiasco gibt es neben Threads als aktive Sender, auch passive Sender. Sie sind nicht lauffähig und implemen-
tieren nur die Schnittstelle derSender-Klasse, dieipc_receiver_readyMethode. Der Empfänger ist in diesem
Fall das aktive Element der IPC, der sich die Daten direkt von dem Sender holt. Beispiele für passive Sender
sind Interruptdeskriptoren, Preemptions und Activations.

Passive Sender überschreiben dieipc_receiver_readyMethode derSender-Klasse. Der Empfänger ruft diese
Methode auf, wenn er einen Sender in seiner Senderwarteschlange findet. Ein aktiver Sender (Thread) schaltet
in dieser Methode zum Sender-Thread um, welcher den Datentransfer durchführt. Bei einem passiven Sender
erfolgt der Transfer der Nachricht jedoch direkt in dieser Methode, die auf in dem Kontext des Empfängers
ausgeführt wird. Die Nachricht wird aus gespeicherten Informationen innerhalb des passiven Senders konstru-
iert, und in die Empfangsregister geschrieben.

Weiterhin hat die Aufteilung in aktive und passive Sender zur Folge, dass der Empfänger keine Threads, son-
dern nur noch Sender kennt. Ein Vorteil dieser Aufteilung ist die hohe Flexibilität. Es kann damit problemlos
fast jedes Ereignis auf eine IPC-Nachricht abgebildet werden. Ein Nachteil sind die notwendigen virtuellen
Methoden in der Senderklasse, da jeder Sender über andere Attribute verfügt.

Nachrichtenformat

Der Nachrichteninhalt kann aus einfachen Registerinhalten, Speicherseiten (Flexpages), und Speicherinhalten
bestehen. Da die Kommunikation synchron ist, müssen die Nachrichten nicht im Kern zwischengespeichert
werden.

Man spricht von einerShort-IPC, wenn kein Zugriff auf den Nutzeradressraum notwendig ist. Sie umfasst
den einfachen Transfer von Registerwerten und Flexpages in Registern. UnterLong-IPC werden die IPC-
Operationen zusammengefasst, bei denen ein Zugriff auf den Nutzeradressraum erfolgt. Hier können Sei-
tenfehler auftreten. In diesem Fall wird laufende IPC-Operation suspendiert, und der Kern generiert eine
verschachtelte Seitenfehler-IPC an den Pager des betroffenen Threads, um den Seitenfehler aufzulösen.

• Die Registerwerte-IPCdient zum Übertragen von Registerinhalten und ist sehr schnell, da kein Zu-
griff auf den Nutzerspeicher erforderlich ist. Die Werte können gleich in den Registern gelassen werden.
Zwischen zwei Adressräumen werden zusätzliche TLB-Misses vermieden, da kein Zugriff auf Nutzer-
speicher erforderlich ist. Seitenfehler können hier nicht auftreten, so dass keine Maßnahmen zu ihrer
Behandlung notwendig sind.

• Flexpagesdienen dazu, um Speicherseiten von dem Senderadressraum in den Adressraum des Emp-
fängers einzublenden. Ein Pager kann auf eine Seitenfehler-IPC mit einer Flexpage antworten, um den
Seitenfehler aufzulösen. Flexpages können in Registern oder in speziellen Nachrichtenstrukturen einer
Long-IPC enthalten sein.

• Long-IPC umfasst direkte und indirekte Zeichenketten (Strings), sowie Flexpages. In der V2-Schnittstelle
wird die Nachricht durch eine spezielle Struktur, demMessage-Dopebeschrieben. Diese kann Flexpa-
ges, mehrere Speicherwörter und Zeiger mit Größenangabe zu den indirekten Zeichenketten enthalten.
In der X.2-Schnittstelle wird die Nachricht durch die Nachrichtenwörter in den UTBCs4 beschrieben.

4Die UTCBs sind ein Teil des TCBs, welcher für den Nutzer zugreifbar im Adressraum eingeblendet ist.
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Die darin enthaltenen Wörter und die Inhalte der indirekten Zeichenketten werden durch den Kern in
den Empfängeradressraum kopiert. Um doppeltes Kopieren vom Sender zum Kern und vom Kern zum
Empfänger zu vermeiden, nutzt der L4 Kern das IPC-Fenster. In den Senderadressraum wird ein Teil des
Empfängeradressraumes, das IPC-Fenster, eingeblendet. Der Sender kann nun direkt die Speicherinhal-
te von seinem Adressraum in das IPC-Fenster kopieren. Seitenfehler können im Senderadressraum und
im IPC-Fenster auftreten und müssen entsprechend unterschiedlich behandelt werden.

Aufbau einer IPC-Operation

Die Sende und Empfangsoperationen lassen sich in mehrere Teile, das Setup, Rendezvous, Datentransfer und
Abschluss aufteilen.

• Setup & Rendezvous: Im Setupteil werden aus den übergebenen IDs die Sender und Empfänger be-
stimmt. Der Zustand wird auf Senden bzw. Empfangen gesetzt. Beim Sender wird sich zusätzlich in
die Senderwarteschlange des Empfängers eingekettet. Bei einer kombinierten Sende- und Empfangen-
operation, wird das Setup der Empfangsphase vor der Sendeoperation ausgeführt, damit später atomar
zwischen dem Sende- und Empfangszustand umgeschaltet werden kann. Dadurch kann ein Server sei-
nem Client mit Timeout Null antworten, um DoS-Angriffe zu vermeiden.

Beim Rendezvous versucht der Sender mitipc_send_regs, und der Empfänger mitipc_receiver_ready
die IPC zu beginnen. Wenn dies nicht möglich ist, blockiert der Thread solange, bis sein IPC-Partner
das Rendezvous erneut versucht, oder der Timeout überschritten wird.

• Datentransfer: Der Sender ist während des Datentransfers der aktive Teil, der Empfänger bleibt passiv.
Ausnahmen sind die passiven Sender und die Behandlung von Seitenfehlern im IPC-Fenster bei einer
Long-IPC. In diesem Fall wird der Empfänger vom Sender aufgeweckt, damit dieser eine Seitenfehler-
IPC an seinen Pager senden kann. Wenn diese vom Pager des Empfängers beantwortet wird, weckt der
Empfänger den Sender wieder mitipc_continueauf. Der Sender übernimmt wieder die aktive Rolle,
und führt die Nachrichtenübertragung fort.

• Abschluss: Im der Abschlussphase weckt der Sender den Empfänger auf, indem er die IPC-Zustandsbits
im Zustandswort des Empfängers löscht und ihn lauffähig setzt. Ferner kann eine IPC auch durch ei-
ne Timeoutüberschreitung, oder durch den Abbruch der IPC-Operation mittelsthread_ex_regsbeendet
werden. Wenn eine laufende IPC mitthread_ex_regsabgebrochen wird, wird die IPC beendet und der
Sender und Empfänger kehren zum Nutzer mit einem Fehler zurück.

Assemblershortcut

Der Assemblershortcut [Pet02] ist eine Abkürzung im IPC-Pfad, welcher nur den einfachen Registerwerte-
transfer ohne Flexpages behandelt. Es werden als IPC-Operationen das Senden und das kombinierte Senden
und Empfangen unterstützt. Als Timeouts sind nur Timeout Null oder unendlich möglich. Es ist die schnellste
IPC-Implementation von Fiasco. In den anderen Fällen erfolgt die Nachrichtenübertragung durch den norma-
len IPC-Pfad. Der Shortcut läuft mit gesperrten Interrupts.

Obwohl nur der einfache Registerwertetransfer unterstützt wird, profitieren viele Applikationen, z.B. L4Linux
davon, da oftmals nur sehr wenige Wörter übertragen werden. Oft wird IPC zur Synchronisation innerhalb
eines Adressraums verwendet, so dass hier der Assemblershortcut sehr hilfreich ist.

Da der Kernadressraum verzögert zwischen den Adressräumen synchronisiert wird, kann der Fall eintreten,
dass der IPC-Shortcut, bei dem Zugriff auf einem nicht eingeblendeten Empfänger-TCB, einen Seitenfehler
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auslöst. In diesem Fall setzt die Routine zur Behandlung des Seitenfehlers nur ein Flag, und kehrt sofort
zurück, ohne jedoch die Unterbrechungen freizugegeben. Der Assemblershortcut testet nach diesem ersten
Zugriff dieses Flag, und bricht die IPC ab, wenn es gesetzt ist. Er ruft den generischen IPC-Pfad auf, welcher
die IPC dann behandelt. Dies ist notwendig um größere Verzögerungszeiten durch die Seitenfehlerbehandlung
zu vermeiden, damit mit gesperrten Interrupts keine Seiten alloziert werden müssen.

Time-Slice-Donation

Nach Abschluss der IPC wird im Normalfall immer vom Sender zum Empfänger umgeschaltet. Es wird zwar
der Ausführungskontext umgeschaltet, der Scheduling-Kontext jedoch nicht. So wird, ähnlich dem Helfen
bei Locks, dem Empfänger die verbleibende Zeit der aktuellen Zeitscheibe geschenkt. Dies ist besonders bei
Client-Server-Szenarios sehr nützlich, der Client schenkt dem Server seine Zeit, damit dieser die Anfrage
möglichst schnell beantworten kann, und Prioritätsinversion wird so vermieden

Weil das Umschalten zum Empfänger und die Weitergabe der Zeitscheibe nicht immer gewünscht ist, wurde
derDeceite-Bit-Hackeingeführt. Hier wird ein unbenutztes Bit, dasDeceite-Bit5 genutzt, als Information für
den Kern, dass er nach der IPC-Operation nicht automatisch zum Empfänger umschalten soll. Es erfolgt damit
keine Weitergabe der Zeitscheibe.

5Deceite-Bit: ein Bit in dem Sende-Deskriptor, welches für dasClan & Chief Sicherheitsmodell von Bedeutung war. Da dieses
Modell zu unflexibel ist, wird es jedoch in fast keinem L4-Kern implementiert
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Um Aussagen über die notwendige Häufigkeit und Verteilung von Unterbrechungspunkten, an denen der IPC-
Pfad vom Zeitgeber und Interrupt unterbrochen werden kann, zu erhalten, wird der Zeitbedarf von Operationen
der Hardware und Funktionen des Fiasco-Kerns ausgemessen.

4.1 Hardware

Die Hardwarekosten für verschieden Operationen unterscheiden sich auf modernen Prozessoren um mehrere
Größenordnungen. Ein einfaches Ausnullen eines Registers ist erheblich schneller als der Zugriff auf einen
IO-Port. Dies muss bei der Platzierung von Unterbrechungspunkten berücksichtigt werden, damit die Verzöge-
rungszeiten nicht zu groß werden. Als Testrechner wird 1.6Ghz Pentium IV verwendet, auf dem verschiedene
Maschineninstruktionen ausgemessen werden, um einen Überblick über die Kosten zu gewinnen.

Bis auf wenige Ausnahmen sind die meisten Instruktionen sehr schnell. Ausnahmen sind zum Beispiel , der
Kernein- und Kernaustritt, sowie bestimmte Systembefehle, welche nur dem Betriebssystem erlaubt sind.
Tabelle 4.1 und 4.2 gibt einen Überblick darüber. Besonders teure Instruktionen sind der Kernein und -austritt
mittels INT+IRET und Zugriffe auf IO-Ports (IN8, OUT8). SYSENTER wird nur bei IPC-Systemaufrufen
genutzt, alle anderen Systemcalls nutzen die INT-Instruktion zum Kerneintritt. Aus Kompatibilitätsgründen
ist auch der IPC-Systemaufruf mittels INT-Kerneintritt möglich. Dies muss berücksichtigt werden, da diese
Instruktion signifikant zur Laufzeit des IPC-Pfades beiträgt.

Die Routinen von Zeitgeber und zur Interruptbehandlung führen IO-Zugriffe aus, um die Unterbrechung am
Interruptcontroller zu quittieren. Fiasco-x86 betreibt den Interruptcontroller (PIC1) im “Special Fully Nested
Mode”, um auch die Interruptprioritäten des Slave-Interruptcontrollers zu berücksichtigen. Dies erzwingt ein
besonderes Protokoll zur Bestätigung von Interrupts, die vom Slave-PIC ausgelöst werden. Eine Bestätigung
eines Interrupts, welcher durch den Slave-PIC ausgelöst wurde, kann bis zu drei IO-Ausgabe- (OUT8) und
eine IO-Eingabeoperation (IN8) erfordern.

Bei dem Kontextwechsel spielt besonders die INVLPG-Instruktion, zum Invalidieren eines TLB-Eintrags,
und das Neuladen des CR3-Registers2 eine große Rolle. Wenn zwischen zu einem Threads innerhalb eines
Adressraumes umgeschaltet wird, welcher eine eine Long-IPC-Operation durchführt, muss das IPC-Fenster
im TLB mit INVLPG ungültig gemacht werden, damit jeder Thread stets das richtige IPC-Fenster vom
Adressraums des Empfängers besitzt.

Wenn zwischen Adressräumen umgeschaltet wird, muss der komplette TLB durch Neuladen des CR3-Registers
invalidiert werden. Das Invalidieren des IPC-Fensters erfolgt dabei implizit. Da der Fiasco-Kern zum größtem
Teil global markierte Seiten im Kernadressraum verwendet, welche bei einem Löschen des TLBs nicht ent-
fernt werden, halten sich die zusätzlichen Kosten der nachfolgenden Zugriffe im Kernadressraum in Grenzen.

1Programmable Interrupt Controller
2Dieses Maschinenregister zeigt auf das aktuelle Seitenverzeichnis, welches den Adressraum beschreibt
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Weiterhin muss der Fliesskommaprozessor (FPU) mit CLTS gesperrt werden, wenn von einem Thread, für den
die FPU freigeschalten ist, weggeschaltet wird. Dadurch erfolgt das verzögerte Sichern und Wiederherstellen
des FPU-Kontextes.

Ein Unterbrechungspunkt besteht aus Sperren (CLI) und Freigeben (STI) der Interrupts, sowie einer Null-
operationen dazwischen. Bei mehreren Unterbrechungspunkten summieren sich diese Kosten, so dass sie
durchaus mehr als zehn Prozent der benötigten Kosten für eine IPC ausmachen. Die CAS-Instruktion kann
eingespart werden, da bei deaktivierten Interrupts, die normalen Instruktionen ausreichen.

Maschineninstruktion Taktzyklen Zeit
Neuladen CR3 252 158ns

invlpg 516 323ns
in8 1491 0.93µs

out8 1392 0.87µs
int + iret 1364 0.85µs

sysenter + sysexit 167 104ns
cli (34 Takte) + sti (44 Takte) 78 49ns

clts 268 168ns
cmpxchg(CAS) 26 17ns

cmpxchg(CAS) + lock-Prefix 147 92ns

Tabelle 4.1:Ausführungszeiten von speziellen Maschineninstruktionen

Cache

Die Lücke zwischen CPU-Geschwindigkeit und Geschwindigkeit beim Speicherzugriff wird immer größer.
Die heutigen Speicher verfügen zwar über eine Bandbreite von mehreren Gigabyte in der Sekunde, aber die
Zugriffszeit auf zufällige Speicherwörter hat sich nur unwesentlich verbessert. Es dauert immer noch sehr lan-
ge, vom Beginn des Zugriffs, bis das erste Datenwort gültig ist. Caches dienen dazu, den schnellen Prozessor
vom langsamen Speicher zu entkoppeln. Sie machen aber die genaue Voraussage über Ausführungszeiten im
schlechtesten Fall sehr schwer.

Bei einem Burstzugriff werden gleich mehrere Datenwörter übertragen, zum Beispiel zum Füllen oder Schrei-
ben einer Cachezeile. Bei SD-RAM ist ein üblicher Burstmode 5-1-1-1, dies heißt, das erste Datenwort steht
nach fünf Bustakten zur Verfügung, die nachfolgenden Datenworte nach einem Takt. DDR-RAM verbessert
zwar den Durchsatz bei einem Burstzugriff erheblich, die Zugriffszeit verbessert sich aber nur unwesentlich.

Während ein Cache-Miss im L1-Cache rund 20 Takte (Tabelle 4.2) beträgt, ist ein Miss im L2-Cache signifi-
kant teurer. Wenn bei einer Schreiboperation im L2-Cache ein Cache-Miss auftritt, lädt die verwendete CPU
die Cachezeile in den Cache, auchWrite-Allocationgenannt. Dadurch profitieren nachfolgende Leseoperatio-
nen, wenn sie von der gleichen Cachezeile lesen. Ferner verfügt die CPU über mehrere Schreibpuffer, welche
begrenzt die zusätzlichen Kosten für einen Schreib-Cache-Miss abfangen können.

Ein weiterer Cache ist der TLB, welcher die Umsetzung von virtuellen in physische Speicheradressen be-
schleunigt. Der verwendete Pentium IV Prozessor besitzt einen getrennten TLB für Daten und für Code, beide
mit 64 Einträgen. Wenn für eine virtuelle Adresse kein passender Eintrag im TLB gefunden wird (TLB-Miss),
muss der Prozessor die Seitentabelle traversieren und den neuen Eintrag in den TLB eintragen. Wenn sich die
benötigten Einträge der Seitentabellen im Cache befinden, kostet ein TLB-Miss 40 Takte. Bei kalten Caches,
können bei dem Lesen der Einträge im Seitenverzeichnis und Seitentabelle zwei Cache-Misses auftreten, was
in der Summe dann rund 400 Takte benötigt.
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Die Kosten für einen Cache-Miss zeigen deutlich, dass der Cache nicht ignoriert werden kann. Die Ausfüh-
rungszeiten können im schlechtesten Fall ein oder zwei Größenordnungen über dem durchschnittlichen Fall
liegen.

Seitenfehler- und Interruptlatenz

Seitenfehler

Weitere Kosten entstehen durch Seitenfehler, welche im Kern durch die verzögerte Synchronisation der TCBs
oder bei Long-IPC-Operationen auftreten können. Mit einem kalten Cache kann es mehr als 2000Takte dauern,
bis nach einem Seitenfehler die Routine zur seiner Behandlung angesprungen wird.

Die Bestimmung der Kosten durch einen Seitenfehler erfolgte durch Auslesen des Time-Stamp-Counters
(TSC3), Auslösen eines Seitenfehlers, und erneutes Auslesen des TSCs und Bildung der Differenz. Als Er-
gebnis wurden über 2200 Takte für einen Lesezugriff und 2000 Takte für einen Schreibzugriff ermittelt.

Der Assemblercode am Einsprungspunkt der Funktion zur Seitenfehlerbehandlung sichert die benötigten Re-
gister, darunter auch das CR2 Register, welches die Adresse des Seitenfehlers enthält. Dieser Code läuft mit
gesperrten Interrupts, um ein Überschreiben des CR2-Registers durch einen möglichen Kontextwechsel zu
verhindern, denn bei einem Kontextwechsel wird dieses Register nicht gesichert.

Es muss also stets berücksichtigt werden, dass ein Zugriff auf einen TCB in wenigen Fällen einen Seitenfehler,
zur Synchronisation der TCBs, auslösen kann.

Interrupts

Weiterhin wurden die Verzögerungszeiten zwischen dem Auslösen eines Interrupts und dem Aufruf der
Interrupt-Routine bestimmt. Zum Ermitteln der benötigten Zeit liest ein Nutzerthread in einer Schleife ständig
den TSC aus. Nach dem Auftreten des Interrupts werden in der Interrupt-Routine die benötigten Register
gesichert, der TSC erneut ausgelesen und die Differenz gebildet.

Als Interruptquelle diente der Interrupt der seriellen Schnittstelle. Die gemessenen Zeiten beinhalten also das
Erkennen des Interrupts durch den Controller der seriellen Schnittstelle, das Auslösen des Interrupts am PIC
und die Zustellung zur CPU, die dann die passende Routine aufruft.

Die Ergebnisse zeigen, wenn die CPU, nach einem STI, Interrupts erneut entgegen nimmt, dauert es mitunter
über 2000 Takte, bis die Interrupt-Routine angesprungen wird.

4.2 Software

Es werden verschiedenste Operationen und Funktionen von Fiasco analysiert, um eine Aussage über die zu er-
wartenden Kosten und erreichbaren Verzögerungszeiten zu erhalten. In Fiasco laufen bestimmte Operationen
mit gesperrten Interrupts ab, um kurze kritische Abschnitte zu synchronisieren. Darunter fallen der Kontext-
wechsel, zum Teil dieschedule-Funktion, die Timer-Interrupt-Routine und der Code zur Interruptzustellung.

3Time-Stamp-Counter: Dieser Zähler wird bei jedem Taktzyklus inkrementiert. Der TSC bietet die beste und genaueste Möglichkeit
die Kosten für verschiedenste Operationen auszumessen
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Ereignis Taktzyklen Zeit
Cache Miss(L1) 23 14ns

Cache Miss(L2) Lesen 197 124ns
Cache Miss(L2) Schreiben 275 172ns

TLB Miss Daten (4k) 44 28ns
TLB Miss Code (4k) 40 25ns

Seitenfehler Lesen 2204 1.3us
Seitenfehler Schreiben 1972 1.2us

Latenzzeiten von Interrupts 2424 1.5us

Tabelle 4.2:Hardware Verzögerungszeiten

Kontextwechsel

Bis auf Ausnahmen ist der Kontextwechsel sehr schnell. Ausnahmen sind zum Beispiel das Löschen des
IPC-Fenster oder die Umschaltung des Adressraumes. Beim Löschen des IPC-Fensters wird zweimal die
INVLPG-Instruktion aufgerufen. Beim Neuladen des CR3-Registers für das Umschalten des Adressraumes
spielen erstens die Kosten für das Neuladen eine Rolle. Die weitaus teureren Kosten entstehen jedoch durch
die nachfolgenden TLB-Misses. Obwohl die meisten TLB-Seiten als global markiert sind, und bei einem Neu-
laden des CR3-Registers nicht aus dem TLB entfernt werden, können sie doch von anderen TLB-Einträgen
verdrängt worden sein. So können zu den Kosten für das Neuladen noch zusätzliche Kosten entstehen, wenn
nach dem Umschalten des Adressraumes auf Seiten zugegriffen wird, dessen Adressen nicht mehr im TLB
enthalten sind.

Eine Besonderheit ist beim Kontextwechsel zu beachten. Die Thread-Lock Semantik erfordert, dass keine ge-
sperrten Threads eingeplant werden, Ausnahme istThread::kill. Um dies zu erreichen, wird beim Umschalten
zu einem gesperrten Thread, stattdessen zu seinem Lock-Besitzer umgeschaltet. Dieser Vorgang ist transitiv,
wenn der neue Thread auch wieder gesperrt ist, wird zu seinem Lock-Besitzer umgeschaltet. Dieses Traversie-
ren der Lock-Besitzerkette mit gesperrten Interrupts kann potentiell sehr lange dauern. Wenn die TCB durch
Seitenfehler nachträglich eingeblendet werden, verzögert sich das Durchlaufen dieser Kette noch weiter. Ver-
meiden kann man dies nur, wenn die Synchronisation im Fiasco-Kern komplett überarbeitet wird, welches
aber nicht im Blickpunkt dieser Arbeit liegt.

Scheduler

Die schedule-Funktion ist der Scheduler und dieser wählt unter Beachtung der Prioritäten einen neuen aktiven
Thread aus. Es muss berücksichtigt werden, dass in der Ready-Liste Threads enthalten sind, welche nicht re-
chenbereit sind. Diese werden dann nachträglich ausgekettet.Scheduleiteriert absteigend von der maximalen
Priorität im System, über die Listen von Threads gleicher Priorität. Das Iterieren über die Elemente einer die-
ser Listen erfolgt mit Unterbrechungspunkten und endet sobald ein lauffähiger Thread gefunden wird. Nicht
bereite Threads werden aus der Liste ausgekettet und nach einem Unterbrechungspunkt wird zum nächsten
Element übergegangen.

Wenn der aktuelle Thread bei dem Aufruf vonschedulenoch lauffähig ist, muss er nachträglich in die Ready-
Liste eingekettet werden. Wenn er nicht mehr lauffähig ist, sein Ready-Flag ist gelöscht, wird er dagegen aus
der Ready-Liste entfernt. Dies ist der Fall, wenn ein Thread blockiert, indem er sein Ready-Flag in seinem
Threadzustand löscht undscheduleaufruft. Selbst wenn sofort ein neuer Thread gefunden wird, und kein Un-
terbrechungspunkt notwendig ist, ist der Aufwand signifikant. Es wird der aktuelle Thread in die Ready-Liste
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eingekettet und zu dem nächsten Thread umgeschaltet. Dieser Kontextwechsel umfasst auch ein Umschalten
des Scheduling-Kontextes.

Timer-Interrupt

Die Zeitgeberroutine gehört neben der normalen Interruptbehandlung zu den Programmteilen, welche für
einen Großteil der Verzögerungszeiten verantwortlich sind [Hoh02b]. Die Timer-Interrupt-Routine läuft die
meiste Zeit mit gesperrten Interrupts. In der Timer-Interrupt-Routine erfolgt die Bestätigung der Unterbre-
chung am PIC und gegebenenfalls am Zeitgeber. Ferner werden die Timeouts behandelt. Zum Schluss erfolgt
bei Bedarf ein Aufruf vonschedule.

Die benötigte Zeit zum Bestätigen des Interrupts hängt stark vom verwendeten Zeitgeber ab. Die APIC und
der PIT sind nicht zeitaufwendig. Bei Verwendung der RTC als Zeitgeber, ist die Bestätigung des Interrupts
sehr teuer. Es muss der RTC-Interrupt am Slave-PIC und Master-PIC bestätigt werden, welches bis zu drei
OUT8 und eine IN8 Instruktion erfordern kann. Zweitens ist auch das Bestätigen des Interrupts an der RTC
sehr teuer. Dies erfolgt zweimal, um Inkompatibilitäten mit verschiedener Hardware zu vermeiden.

Nach dem Bestätigen des Interrupts erfolgt die Behandlung der Timeouts. Dort wird über die sortierte Liste
der Timeouts iteriert, die betroffenen Timeouts werden behandelt und ausgekettet. Das Behandeln der Ti-
meouts umfasst zum Beispiel Änderung eines Threadszustandes und Einketten in die Ready-Liste bei einem
IPC-Timeout. Zum Schluss wird beiOne-Shot-Timernder Zeitgeber neu programmiert, damit er den nächsten
Interrupt auslöst. Das Behandeln der Timeouts kann, ähnlich wie das Traversieren der Lock-Besitzer-Kette
bei dem Kontextwechsel, zu erheblichen Verzögerungszeiten führen. Die Funktion zum Behandeln der Ti-
meouts liefert zurück, ob ein Aufruf vonschedulenotwendig wird. Beispiele sind der Ablauf eines Timeslice-
Timeouts, oder der Ablauf eines IPC-Timeouts eines Threads mit höherer Priorität als der aktuelle Thread.

Interupt-Routine

Die Interrupt-Routine dient dazu, für aufgetretene Interrupts eine IPC-Nachricht zu generieren und dem Nut-
zer zustellen. Dies ist neben der Timer-Interrupt-Routine einer der längsten Abschnitte im Programmcode,
welcher mit geschlossenen Interrupts ausgeführt wird. Durch eine Konfigurationsoption kann beim Kompilie-
ren des Fiasco-Kerns weiter festgelegt werden, ob der Kern oder der Nutzer den Interrupt am PIC bestätigen
muss.

Es muss eine IPC-Nachricht für diesen Interrupt generiert werden. Der Interruptdeskriptor wird dazu in die
Senderwarteschlange des assoziierten Empfängers einkettet. Der Zustand des Empfängers wird auf lauffähig
gesetzt, und wenn der Empfänger eine höhere Priorität als der aktuelle Thread besitzt, erfolgt ein Kontext-
wechsel, welcher auch das Umschalten des Scheduling-Kontext umfasst. Dies erfolgt alles mit gesperrten
Interrupts. Es gibt auch einen Interrupt-Shortcut, welcher den Kernstack des Empfängers modifiziert und di-
rekt zu ihm umschaltet. Durch das Modifizieren des Kernstacks wird erreicht, dass der Empfänger sofort zum
Nutzer zurück kehrt, ohne dass er vorher alle Stackrahmen4 auf dem Kernstack aufgeräumt werden müssen.

Weitere Operationen

Lock-Operationen: Die Synchronisation innerhalb der Lock-Methoden erfolgt durch Sperren und Freigeben
der Interrupts. Wenn das Lock nicht frei ist, wird ein Kontextwechsel zu dem Lock-Besitzer ausgeführt. Bei

4Der Stackrahmen beinhaltet die Rücksprungadresse und lokale Variablen der aktuellen Funktion und wird auf dem Stack angelegt.
Bei verschachtelten Funktionsaufrufen stapeln sich dann ihre Stackrahmen auf dem Stack
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dem Freigeben von Locks kann auch ein Kontextwechsel notwendig werden, wenn dem bisherigen Lock-
Besitzer durch einen höher priorisierten Thread geholfen wurde. Bei Thread-Locks ist besonders bei dem
Freigeben des Locks noch ein weiterer Kontextwechsel, oder ein Aktualisieren der Ready-Liste notwendig,
wenn der gesperrte Thread lauffähig ist. Tabelle 4.3 gibt dazu einen Überblick über die Kosten.

Da der IPC-Code zum größten Teil mit geschlossenen Interrupts läuft, ist bei den Lock-Operationen die Über-
prüfung, ob die Interrupts gesperrt sind, nicht notwendig. Deshalb werden dafür optimierte Funktionen bereit-
gestellt. Im Durchschnitt sinkt dadurch die Zeit um ein Thread-Lock zu holen und freizugeben von 274 auf
167 Takte.

Listenoperationen: Für die Ready-Liste, die Present-Liste5 und die Senderwarteschlange werden doppelt
verkettete Listen verwendet. Die Synchronisation erfolgt durch Sperren der Interrupts. Die Listenelemente
sind TCBs, welche dieprev- undnext-Zeiger enthalten.

Da diese Zeiger nebeneinander und damit oftmals innerhalb einer Cachezeile liegen, tritt nur ein Cache-
Miss beim Zugriff auf denprev und next-Zeiger eines Elementes auf. Zwar wird der einzukettende TCB
im Cache enthalten sein, die angrenzenden Elemente dieser Liste jedoch nicht, so dass im ungünstigen Fall
zwei Cache-Misses und zwei TLB-Misses auftreten koennen. Die Kosten für das Einketten kann dadurch
rund 480 Takte (2x200 Takte für den Cache-Miss und 2x40 Takte für den TLB-Miss) betragen. Wenn sich
die benötigten Einträge der Seitentabelle und des Seitenverzeichnis nicht mehr im Cache befinden, fallen die
Kosten noch höher aus. Schon eine einfache Beispielrechnung zeigt, dass der Cache erheblichen Einfluss auf
die Verzögerungszeiten besitzt.

Es zeigt sich auch hier der Nachteil der verzögerten Synchronisation des Kernadressraumes. Im schlechtesten
Fall können die angrenzenden TCBs noch nicht im aktuellen Kernadressraum eingeblendet sein. In diesem Fall
kommen noch die Kosten für einen Seitenfehler und dessen Behandlung dazu. Obwohl dessen Behandlung
sehr kurz ist, es werden nur zwei Einträge im Seitenverzeichnis kopiert, können dadurch die Kosten noch
erheblich ansteigen.

IPC-Shortcut: Den IPC-Shortcut gibt es in der Assembler- und in der C++-Version. Der Shortcut läuft mit
gesperrten Interrupts. Er behandelt den einfachen Registerwertetransfer und wird mittels SYSENTER und INT
betreten. Die Kosten mit heißen und kalten Caches für den Shortcut sind in Tabelle 4.3 zu finden. Ferner kann
noch ein Seitenfehler beim Zugriff auf den Empfänger-TCB auftreten, falls dieser TCB nicht eingeblendet
ist. Deshalb soll nach einem Abbruch des Shortcuts ein Unterbrechungspunkt folgen, bevor der generische
IPC-Pfad aufgerufen wird.

4.3 Zusammenfassung

Der Zeitbedarf für bestimmte Maschineninstruktionen und Fiasco-Kernoperationen hat einen sehr großen Ein-
fluss auf die Verzögerungszeiten. Bestimmte Verzögerungszeiten können sich dazu noch addieren. Zum Bei-
spiel, wenn der IPC-Shortcut aktiv ist, muss ein anderer Interrupt am PIC solange warten, bis die CPU die
Interrupts wieder zulässt. Dazu kommen die Kosten für die Zustellung und die Behandlung des neu ausge-
lösten Interrupts. Selbst auf aktuellen CPUs entspricht dies Verzögerungszeiten im Bereich von mehreren
Mikrosekunden.

Schon das einfaches Laden und Schreiben eines Registers in den Speicher kann im ungünstigen Fall sehr
lange dauern. Selbst wenn man nur TLB- und Cache-Misses durch den Datenzugriff betrachtet, können bei
dem Lesezugriff auf eine richtig angeordnete Adresse, ein TLB- und drei Cache-Misses auftreten, wodurch
die Kosten auf 640 Takte steigen. Der Fall, dass die Adresse des Speicherworts falsch angeordnet ist, und der
Zugriff damit noch länger dauern kann, tritt im Fiasco-Kern nicht auf.

5Die Present-Liste enthält alle Threads im System
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Operation Taktzyklen Zeit
Holen und Freigeben eines Thread-Locks

Kalter Cache 1242 (577+665) 0.7µs
Heißer Cache 274 172 ns

Kontextwechsel
innerhalb eines Adressraums 214 134ns

zwischen Adressräumen 557 349ns
Kontextwechsel + Umschalten der Zeitscheibe

innerhalb eines Adressraums 426 267ns
zwischen Adressräumen 720 450ns

Assembler-Shortcut (heißer Cache)
innerhalb eines Adressraums 320 200ns

zwischen Adressräumen 720 450ns
Assembler-Shortcut (kalter Cache)

innerhalb eines Adressraums ≈1800 ≈1.1µs
zwischen Adressräumen ≈3100 ≈1.9µs

Tabelle 4.3:Verzögerungszeiten von Kernoperationen

Um die Verzögerungszeiten zu minimieren, sollten oft Unterbrechungspunkte gesetzt werden, besonders vor
längeren Kernoperationen. Diese erhöhen jedoch die Laufzeit des IPC-Pfades signifikant. Wenn man zu wenig
Unterbrechungspunkte setzt, besteht aber das Problem höherer Verzögerungszeiten im ungünstigen Fall. Ein
möglicher Ausweg ist das verzögerte Sperren von Interrupts, welches später kurz beschrieben wird.

Anzumerken ist, bei einem IPC-Pfad, welcher mit gesperrten Interrupts ausgeführt wird, treten Cache- und
TLB-Misses nur bei den ersten Zugriffen auf, danach liegen die benötigten Werte im Cache. Deshalb reicht
schon eine mittlere Anzahl von Unterbrechungspunkten aus, um kleine Verzögerungszeiten zu erhalten. Das
inoffizielle Ziel jedoch, eine Latenz zu erreichen, deren Kosten in der gleichen Größenordnung wie für die
längste verwendete Maschinenoperation liegen, ist, wenn man den Cache berücksichtigt, nicht erreichbar,
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Der ursprüngliche IPC-Pfad gliedert sich in mehrere Teile. Die Hauptteile sind der Kerneintritt, das grund-
legende Setup, eine mögliche Sende- und Empfangsoperation, sowie der Abschluss. Den größten Teil der
IPC-Operationen stellencall und reply_waitOperationen, welche immer den Sende- und Empfangsteil um-
fassen und atomar zwischen diesen beiden Teilen umschalten. Diese IPC-Operation gilt es daher besonders zu
optimieren.

Die Sende- und Empfangsoperationen untergliedern sich weiter in eine Setup-, Rendezvous-, Datentransfer-
und Abschlussphase. Der Datentransfer kann nochmals in Registerwertetransfer und Long-IPC-Transfer auf-
geteilt werden.

Bisher wird nur der Kerneintritt und gegebenenfalls der IPC-Shortcut mit geschlossenen Interrupts ausgeführt,
die anderen Teile sind voll unterbrechbar. Die Idee ist es, bis auf den Long-IPC-Transfer, alle Teile nicht
unterbrechbar zu machen, um so die Kosten für die Synchronisation einzusparen und die Geschwindigkeit zu
maximieren. Um geringe Latenzzeiten zu garantieren, müssen an bestimmten Stellen Unterbrechungspunkte
eingefügt werden, damit dort der aktive Thread verdrängt werden kann.

Der Long-IPC-Transfer umfasst das Kopieren von Speicherinhalten und das Einblenden von Flexpages in
den Adressraum des Empfängers. Das Kopieren von Speicherinhalten ist sehr zeitaufwendig, besonders bei
dirty Cachezeilen, weil vorher der alte Inhalt der Cachezeile in den Speicher zurückgeschrieben werden muss.
Durch das Sperren der Interrupts wird nur die Zeit für Setup der Long-IPC-Operation geringfügig besser.
Deshalb wird der Nachrichtentransfer bei Long-IPC-Operationen mit freigegebenen Interrupts ausgeführt.
Ferner ist die Behandlung von Flexpages durch die Änderung der Mappingdatenbank teuer. Wenn also bei
einem Registerwertetransfer die Register Flexpages enthalten, werden Interrupts zugelassen.

Folgende Phasen werden mit geschlossenen Interrupts ausgeführt, Kerneintritt, Setup, Rendezvous, Register-
transfer, sofern er keine Flexpages umfasst, und die Abschlussphase. Innerhalb und zwischen diesen Phasen
werden Unterbrechungspunkte eingefügt, um geringe Verzögerungszeiten zu erreichen.

5.1 Kernspeicher

Im aktuellen Fiasco wird aus der Thread-ID die Adresse des zugehörigen TCBs mittels einfacher Bitoperatio-
nen errechnet, Grafik 5.1 zeigt dies für die V2-Schnittstelle. Ein Hauptproblem mit dem bisherigen Verfahren,
ist die verzögerte Aktualisierung des TCB-Bereichs im Kernadressraum. Wie schon erwähnt, müssen die Än-
derungen im TCB-Bereich durch neu angelegte Threads, allen Adressräumen bekannt gemacht werden. Dies
erfolgt nachträglich bei der Behandlung von Seitenfehlern im TCB-Bereich.

Jedesmal wenn ein Zugriff auf einen nicht eingeblendeten TCB erfolgt, wird durch die CPU ein Seitenfehler
ausgelöst. Die Seitenfehler-Routine kopiert dann aus dem Kernhauptverzeichnis den passenden Eintrag in das
aktuelle Seitenverzeichnis, und kehrt anschließend zum ursprünglichen Kontext zurück. Die Interrupts bleiben
dabei gesperrt. Erst wenn neue Seiten alloziert werden müssen, oder eine Seitenfehler-IPC aufgesetzt wird,
werden die Interrupts in der Seitenfehler-Routine freigegeben.
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task(11) lthread(7) 0(11)110
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Abbildung 5.1:TCB Zugriff.

Dieses Verfahren verschwendet keinen unnötiger Speicher, aber aufgrund der Kosten zur Seitenfehlerbehand-
lung, erhöhen sich die Verzögerungszeiten. Die Messungen ergaben über 2000 Takte bis zum Aufruf der
Seitenfehler-Routine. Dazu kommen noch die Kosten der Seitenfehlerbehandlung. Im ungünstigen Fall kön-
nen diese Seitenfehler eine große Rolle spielen.

In vielen Listen sind die Elemente TCBs, zum Beispiel die Ready-Liste, die Senderwarteschlange, diePresent-
Liste und die Timeout-Liste. So kann beim Einketten eines Threads in die Ready-Liste ein Seitenfehler, beim
Aktualisieren derprevundnext-Zeiger, auftreten, wenn die angrenzenden TCBs in der Liste nicht eingeblendet
sind. Das Traversieren der Lock-Besitzer-Kette beim Kontextwechsel inswitch_toist auch davon betroffen.

Die meisten Systemaufrufe, die andere Threads modifizieren, überprüfen zuerst den Zustand des Ziel-Threads.
Der erste Zugriff auf den TCB liefert einen ungültigen Threadzustand, wenn der TCB mit der Nullseite hinter-
legt ist. Die Operation wird dann mit einem Fehler abgebrochen. Ein Seitenfehler tritt bei einem Lesezugriff
nur dann auf, wenn der TCB mit keiner Seite hinterlegt ist.

Da die Nullseite schreibgeschützt ist, treten beim Schreiben auf den TCB Seitenfehler auf. Dies spielt jedoch
nur beim Erzeugen eines Threads eine Rolle. Andere Systemaufrufe lesen vorher den Zustand des Threads,
und ermitteln einen ungültigen Zustand. Sie brechen dann mit einem Fehler ab.

Keine spezielle TCB Region

Dieser Ansatz verzichtet komplett auf einen speziellen TCB-Bereich im Kernadressraum. TCBs werden nur
in der 1:1 Abbildung des physischen Kernspeichers angelegt. Diese Abbildung wird beim Booten des Kerns
angelegt, so dass neue Adressräume schon über diese Einträge im Seitenverzeichnis verfügen. Dadurch werden
Seitenfehler beim Zugriff auf TCBs vermieden.

Auf die TCBs wird indirekt über eine Tabelle, siehe Abb. 5.2, zugegriffen. Diese Tabelle enthält dann die
Adressen der TCB, welche direkt in der 1:1 Abbildung des physischen Kernspeichers liegen.

Dies erfordert zusätzliche Kosten bei der Bestimmung der TCB-Adresse aus einer gegebenen Thread-ID, da
jetzt die TCBs nicht mehr an festen Adressen liegen. Diese zusätzlichen Kosten bestehen im größten Teil durch
eine zusätzliche Indirektion. Es kann aber der bisherige dedizierte TCB-Bereich im Kernadressraum einge-
spart werden. Dort können dann weitere kleine Adressräume (SMAS) oder ein vergrößerter Nutzeradressraum
liegen.
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Abbildung 5.2:Indirekter TCB Zugriff.

Ein weiterer Nachteil ist die Größe der Tabelle. Lösungen hierfür sind eine mehrstufige Tabelle oder Hashes.
Bei mehreren Stufen kann die erste Stufe in die Seitentabelle integriert werden, so dass die MMU1 einen
großen Teil der Arbeit abnimmt. Hier wird eine virtuelle Speicherregion von der Größe der benötigten Tabelle
reserviert. Bei 2048 Adressräumen mit je 128 Threads, wobei pro Eintrag vier Bytes notwendig sind, besitzt
die Tabelle eine Größe von einem Megabyte. Die hierfür notwendige gemeinsame Seitentabelle kann beim
Booten gleich reserviert werden. Leere Bereiche werden mit der schreibgeschützen Nullseite hinterlegt. Än-
derungen in dieser Tabelle sind durch die gemeinsame Seitentabelle sofort in allen Adressräumen sichtbar. Es
treten Seitenfehler nur beim Anlegen eines Threads auf, wenn die Tabelle modifiziert werden muss, und der
TCB-Zeiger in einen Bereich eingetragen wird, der mit der schreibgeschützten Nullseite hinterlegt ist.

Allozieren der benötigten Seitentabellen beim Booten

Hier werden beim Booten alle notwendigen Seitentabellen alloziert, um den 512MByte großen TCB-Bereich
im Kernspeicher abzudecken. Dies erfordert 512KByte Kernspeicher für die benötigten Seitentabellen. Da
diese Seitentabellen gemeinsam genutzt werden, können “leeren Stellen” im TCB-Bereich, schon mit der
schreibgeschützten Nullseite hinterlegt werden. Es treten Seitenfehler nur beim Erzeugen von Threads auf,
da andere Systemaufrufe beim ersten Lesen einen ungültigen Thread ermitteln und mit einem Fehlercode den
Systemaufruf abbrechen.

Diese Lösung hat den Nachteil, dass kostbarer Kernspeicher verschwendet wird, da oft nie die maximale
Anzahl von Threads genutzt wird. Aufgrund der Verschwendung von Kernspeicher, wird von dieser Lösung
Abstand genommen.

Aktualisierung des aktuellen Seitenverzeichnisse vor dem Zugriff

Eine andere Lösung ist, vor dem ersten Zugriff auf TCB-Adressen, welche Seitenfehler auslösen können,
den passenden Eintrag des aktuellen Seitenverzeichnis mit den Werten aus dem Master-Seitenverzeichnis des
Kerns zu aktualisieren. Dies erfordert eine zusätzliche Kopieroperation vor dem ersten Zugriff.

Diese Lösung ist jedoch nur bei bereits bestehenden Threads erfolgreich, da die dafür benötigten Seitenta-
bellen im Master-Verzeichnis eingetragen sind. Bei nicht existierenden Threads existiert im Hauptverzeichnis

1MMU: Hardwareeinheit zum Umsetzen von virtuellen Adressen in physische Adressen

35



5 Entwurf

auch kein entsprechender Eintrag, es kommt weiterhin zu einem Seitenfehler. Die Routine zur Seitenfehlerbe-
handlung hinterlegt bei einem Lesezugriff diesen TCB mit der Nullseite. Bei einem Schreibzugriff wird eine
neue Seite alloziert und an dieser Stelle eingeblendet.

Diese Lösung besitzt den Nachteil der recht teuren Aktualisierung des aktuellen Seitenverzeichnisses. Ferner
treten weiterhin Seitenfehler bei dem Zugriff auf den TCBs von nicht existenten Threads auf, zum Beispiel
wenn der Nutzer eine ungültige Thread-ID bei der IPC-Sendeoperation angibt. Die Lösung kann bei verschie-
denen Listenoperationen Seitenfehler vermeiden, da diese Listen nur bestehende Threads enthalten.

Zusätzliche Unterbrechungspunkte

Um die mögliche erhebliche Verzögerungszeit von Seitenfehlern abzufangen, wird vor jedem Zugriff auf einen
TCB, der einen Seitenfehler auslösen kann, ein zusätzlicher Unterbrechungspunkt eingefügt. Diese Lösung
benötigt keinen zusätzlichen Kernspeicher, geht jedoch auf Kosten der Laufzeit.

Das Freigeben der Interrupts kann auch verzögert in der Seitenfehler-Routine erfolgen. Dieses Verfahren hat
jedoch etwas schlechtere Verzögerungszeiten zur Folge, da sich die Kosten für das Auslösen des Seitenfehlers
zu den Verzögerungszeiten addieren. Die Seitenfehler-Routine gibt dann die Interrupts sofort wieder frei und
behandelt den Seitenfehler. Deshalb ist der erste Zugriff auf den TCB wie ein Unterbrechungspunkt anzuse-
hen. Der IPC-Code muss danach prüfen, ob der IPC-Zustand des aktuellen Threads noch gültig ist.

Eine Ausnahme bilden Zugriffe auf existierende TCBs, die noch nicht im aktuellen Adressraum eingeblen-
det sind. In diesem Fall wird nur das aktuelle Seitenverzeichnis mit dem Werten aus dem Hauptverzeichnis
aktualisiert. Die Interrupts bleiben weiterhin gesperrt. Dies ist notwendig, da viele Listenoperationen zum
Modifizieren der Ready-Liste,Present-Liste und Senderliste die Interrupts zur Synchronisation explizit sper-
ren.

Ich habe mich aus folgenden Gründen für diese Lösung entschieden:

• Es ist keine Aktualisierung des Seitenverzeichnisses vor dem Zugriff notwendig

• Es sind nur wenig zusätzliche Unterbrechungspunkte im IPC-Pfad notwendig

• Die Ermittlung der TCB-Adresse aus der Thread-ID ist weiterhin schnell möglich

• Es wird kein zusätzlicher Kernspeicher benötigt

• Die ausgereifte Implementierung der Kernspeicherverwaltung kann beibehalten werden

Etwas längere Verzögerungszeiten werden in Kauf genommen, da ihre Kosten akzeptabel sind. Dieses Pro-
blem besteht zum Teil auch im bisherigen IPC-Pfad, so dass die Verzögerungszeiten nur unwesentlich schlech-
ter ausfallen dürften.

5.2 Synchronisation

Im bisherigen IPC-Pfad werden zur Synchronisation verschiedene Primitive genutzt.

Der passive IPC-Partner wird, bis auf seinen Threadzustand, durch ein Thread-Lock geschützt. Der TCB des
aktiven Threads wird jedoch sperrfrei mittels CAS-Operationen synchronisiert. Dies erfordert auch die schon
erwähnten zusätzlichenRetry-loops, um die Konsistenz sicherzustellen, da in der Zwischenzeit, durch einen
anderen Thread, Änderungen erfolgen können.
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Synchronisation des Threadzustandes

Der Threadzustand wurde bisher durch atomare Maschineninstruktionen, wiecompare-and-swap, konsistent
gehalten. Mit deaktivierten Interrupts ist dies auf Uni-Prozessorsystemen nicht mehr notwendig, hier kann
der Threadzustand direkt verändert werden. Es entfallen die bisher notwendigenRetry-loopsim IPC-Pfad.
Es kann sogar bis zum nächsten Unterbrechungspunkt, das Setzen eines gültigen Threadzustandes verzögert
werden.

Nur nach einem Unterbrechungspunkt muss geprüft werden, ob der aktuelle IPC-Zustand noch gültig ist. Ne-
ben den expliziten Unterbrechungspunkten, gibt es weitere Operationen, welche unterbrochen werden kön-
nen. Dazu gehört auch der erste Zugriff auf den Empfänger-TCB, und die Freigabe eines Locks, wenn andere
Threads auf dieses Lock warten.

Thread-Locks

Da der neue IPC-Pfad die Interrupts sperrt, stellt sich die Frage, ob Thread-Locks zur Synchronisation der
Zugriffe auf TCBs weiterhin verwendet werden sollen.

Die Interrupts können nur kurz gesperrt werden, d.h. bei längeren Operationen müssen Unterbrechungspunkte
eingefügt werden. Vor jedem Unterbrechungspunkt muss der Zustand des passiven IPC-Partners in einen kon-
sistenten Zustand gebracht werden, und nach dem Unterbrechungspunkt muss geprüft werden, ob der Zustand
des IPC-Partners noch gültig ist. Die Verwendung von Versionsnummern, welche bei jeder Modifizierung in-
krementiert werden, kann in diesem Fall sehr hilfreich sein, da ein Vergleich ausreicht, der überprüft, ob der
Zustand des IPC-Partners noch gültig ist.

Bei SMP wäre es möglich die Threads als CPU-lokale Datenstrukturen aufzufassen, wobei Änderungen nur
durch diese CPU erfolgen dürfen. Threads sind also an eine CPU gebunden. IPC zwischen Threads auf ver-
schiedenen CPUs werden mittels IPI2 und Proxy-Threads erfolgen. Dadurch würde garantiert, dass Threads
nur von der lokalen CPU modifiziert werden.

Die Abschaffung von Thread-Locks und die nachfolgende Anpassung der Synchronisationstrategie würden
sich durch den ganzen Kern ziehen, jeder Systemaufruf, welcher bisher Thread-Locks verwendet, muss an-
gepasst werden. Die Codekomplexität steigt, da nach jedem Unterbrechungspunkt geprüft werden muss, ob
der Zustand des Partners noch gültig ist. Längere kritische Abschnitte müssen in kleinere Abschnitte aufge-
brochen werden. Es ist nicht erkennbar, ob damit die Echtzeitfähigkeit und Effizienz weiterhin gewährleistet
werden kann. Aus diesen Gründen werden die Thread-Locks weiter verwendet. Es werden jedoch einige Op-
timierungen verwendet, um die Geschwindigkeit zu erhöhen.

Bei Locks ist zu beachten, dass zur Vermeidung von Deadlocks bei dem Holen von mehreren Locks eine
bestimmte Reihenfolge eingehalten werden muss. Die Adressräume werden beisys_task_newsynchronisiert,
indem der erste Thread des Adressraumes gesperrt wird. In der V2-Spezifikation müssen beim Löschen eines
Chiefs alle seine Untertasks gelöscht werden. Der Systemaufrufsys_task_new, welche die Tasks löscht, sperrt
also rekursiv alle ersten Threads der betroffenen Adressräume, wenn er einen Chief löscht. Dadurch wird
es sehr schwer im restlichen Kerncode gleichzeig mehr als ein Thread-Lock zu holen, da die Gefahr eines
Deadlocks besteht. Problematisch ist dies im IPC-Pfad beim kombinierten Senden und Empfangen, wenn
neben dem alten Empfänger auch der wartende Sender berücksichtigt werden muss. Um dies zu vermeiden,
besitzt der IPC-Pfad zu jeder Zeit höchstens ein Thread-Lock. In der X.2-Schnittstelle ist das Löschen von
Tasks ein nichtrekursiver Prozess, so dass dies dort kein Problem ist.

2IPI: Interprozessor-Interrupt, damit kann eine CPU einen Interrupt auf einer anderen CPU auslösen, um ihr eine Nachricht zuzu-
stellen

37



5 Entwurf

Optimierungen

Zur Optimierung wird das Thread-Lock nur gegriffen, wenn der entsprechende TCB schon gesperrt ist, oder
der aktuelle Codeabschnitt unterbrechbar ist. Es wird also das Holen von Locks solange verzögert, bis Inter-
rupts wieder zugelassen werden.

Diese Optimierung erlaubt es, eine Short-IPC durchzuführen, ohne ein Thread-Lock zu greifen, falls der
betroffene IPC-Partner nicht gesperrt ist. Erst bei komplexeren Nachrichten, welche Unterbrechungspunkte
erfordern, wird der IPC-Partner gesperrt.

Desweiteren wird der der Umstand ausgenutzt, dass der TCB nur durch das Thread-Lock geschützt wird, der
Threadzustand und die verschiedenen Listen werden getrennt synchronisiert. Deshalb kann man den Thread-
zustand und die Warteschlangen auch ohne Halten des Thread-Locks modifizieren. Es muss nur sichergestellt
werden, dass der Zustand des Threads noch gültig ist.

5.3 Senderwarteschlange mit Prioritäten

Die bisherige Senderwarteschlange garantiert keine Prioritäten, dies ist ein Problem, wenn Threads mit unter-
schiedlichen Prioritäten, Anfragen an den selben Server stellen.

Die Implementierung ist eine unsortierte, doppelt verkettete Liste. Neue Sender ketten sich stets am Ende
dieser Liste ein, und Empfänger betrachtet immer nur den Kopf dieser Liste. Dadurch wird eine einfache
FIFO3-Strategie implementiert. Da die Prioritäten nicht berücksichtigt werden, besteht das Problem der Prio-
ritätsinversion. Um dies zu vermeiden, werden im folgenden verschiedene Ansätze vorgestellt, Prioritäten bei
der Senderwarteschlange durchzusetzen.

Die Elemente der Senderwarteschlange sind Threads, Interrupts, Preemptions und Activations, welche die
Senderschnittstelle implementieren. Das Ein- und Ausketten ist sehr schnell und in konstanter Zeit möglich.
Das Ausketten von Sendern ist in jeder Position schnell durchführbar. Dies ist wichtig, wenn eine Sendeope-
ration durch einen Timeout abgebrochen wird.

Sortieren der Liste nach Prioritäten

Die Liste wird einfach nach Prioritäten sortiert. Sie wird solange beim Einketten durchlaufen, bis die richtige
Position gefunden ist. Das Einketten erfolgt mit linearen Aufwand, das Ausketten ist weiterhin mit konstanten
Aufwand möglich.

Als Optimierung kann man Sender von gleichen Prioritäten zu Blöcken zusammenfassen, so dass beim Durch-
laufen der Liste nur einzelne Blöcke betrachtet werden müssen. Wenn der passende Block gefunden ist, wird
der Sender am Ende dieses Blocks eingekettet. Dadurch reduziert sich der Aufwand für das Einketten im
schlechtesten Fall auf die maximale Anzahl von Prioritäten im System. Der Sender mit der höchsten Priorität
befindet sich dann am Kopf dieser Liste.

Da das Einketten Durchlaufen sehr zeitaufwendig ist, kann es nicht mit deaktivierten Unterbrechungen er-
folgen. Dadurch wird jedoch eine Synchronisation notwendig, welche über ein Lock erfolgt, da die IA-32-
Architektur über kein MWCAS4 verfügt.

3First-In, First-Out
4MWCAS: Multi Word Compare nd Swap, Eine Maschineninstruktion, welche atomar mehrere Worte vergleichen und vertauschen

kann
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5.3 Senderwarteschlange mit Prioritäten

Eine bessere Lösung sind so genannteSkip Lists[Pug89]. Dies sind mehrfach verkettete und sortierte Listen
siehe Abb. 5.3, welche im Durchschnitt einen logarithmischen Aufwand zum Einketten eines Elements anbie-
ten. Sie sind oftmals schneller als ausgeglichene sortierte Bäume, da keine Rotationen durchgeführt werden
müssen. Im schlechtesten Fall ist jedoch weiterhin ein linearer Aufwand notwendig.
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Abbildung 5.3:List als Senderwarteschlange.

Sortierter Binärbaum

Die Implementation der Senderwarteschlange erfolgt mit einem sortierten Binärbaum. Ein unausgeglichener
Binärbaum ist im schlechtesten Fall nicht besser als eine sortierte Liste. Er bringt nur Vorteile im Durchschnitt,
wo das Einketten mit logarithmischem Aufwand erfolgt. Im schlechtesten Fall degeneriert der Baum zu einer
Liste und, das Einketten erfordert einen linearen Aufwand.

Bei einem ausgeglichenen Baum wird der Baum bei jedem Ein- und Ausketten ausbalanciert. Sie garantieren
auch im schlechtesten Fall logarithmischen Aufwand zum Ein- und Ausketten. Das Ein- und Ausketten, kann
trotzdem sehr aufwendig werden, wenn teure Rotationen zum Ausgleich notwendig sind. Das Bestimmen des
maximalen Elements ist weiterhin in konstanter Zeit möglich.

Es ist möglich, Sender mit gleicher Priorität als ein Baumelement zu betrachten. Es entsteht ein Baum, dessen
Elemente wieder doppelt verkettete Listen von Sendern gleicher Priorität sind. Dadurch verkürzt sich die Zeit
zum Einketten vonO(ln(N)) auf maximalO(ln(256)).

Beim Einketten von mehreren Sendern gleicher Priorität, wird zuerst die entsprechende Liste gesucht und der
neue Sender am Ende dieser Liste eingekettet. Dadurch wird auch die Fairness bezüglich Sendern gleicher
Priorität garantiert.

Tries

Tries sind sortierten Binärbäumen ähnlich. Sie basieren jedoch nicht auf dem Vergleich des Schlüssels. Statt-
dessen machen sie sich die digitale Natur des Schlüssels, hier die Priorität, zu Nutze. Sie betrachten den
Schlüssel als Beschreibung, wie der Baum zu durchlaufen ist, um die passende entsprechende Stelle zu fin-
den. Ein Beispiel für Tries sind mehrstufige Seitentabellen.

Tries garantieren Einfügen und Ausketten mit logarithmischem Aufwand Auch hier kann die Optimierung,
die Zusammenfassung von Sendern gleicher Prioritäten, eingesetzt werden, siehe Abb. 5.4. Es wird dann
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5 Entwurf

die Fairness von Sendern gleicher Priorität garantiert. Die maximale Tiefe von Tries hängt stark von der
verwendeten Struktur ab. Die Tiefe eines binären Tries ist identisch zur Anzahl der Bits in dem verwendeten
Schlüssel. Bei 256 Prioritäten sind dies maximal acht Ebenen (ld(256)).

Im Gegensatz zu ausgeglichenen Bäumen sind keine aufwendigen Operationen beim Ein- und Ausketten
notwendig, jedoch sind die Tries im Durchschnitt weniger gut ausgeglichen.
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Abbildung 5.4:Senderwarteschlange-Trie.

Heaps

Der Heap ist als die Prioritätswarteschlange bekannt und entspricht topologisch auch einem Baum.

Sie besitzen die Eigenschaft, dass der Schlüssel des Elternelements stets größer ist, als der Schlüssel der
Kinder. Dies gilt rekursiv für alle Unterbäume. Das Ein- Ausketten von Elementen in Heaps ist viel effizienter
als bei ausbalancierten Bäumen, da keine teuren Ausgleichoperationen notwendig sind.

Es ist nicht möglich, anstelle von einzelnen Sendern, Blöcke von Sendern mit der gleichen Priorität zu be-
trachten. Es muss stets jeder Sender einzeln eingekettet und ausgekettet werden, da der Heap kein effizientes
Suchen von Elementen anbietet. Es ist somit unmöglich, die passende Liste der benötigten Priorität schnell
zu finden. Ferner muss die Fairness von Sendern gleicher Priorität durch einen anderen Ansatz sichergestellt
werden.

Die meisten Implementierungen nutzen Felder für die einzelnen Elemente. Dadurch ist der Heap immer aus-
geglichen und es kann die logarithmische Komplexität garantiert werden. Eine Implementierung durch ein
Feld ist aber im diesem Fall nicht möglich.

Eine Möglichkeit zur Implementierung ist es, die Knoten des Baums mit Zählern zu versehen, um ein ausge-
glichenes Ein- und Ausketten zu erreichen. Die Fairness kann dadurch garantiert werden, dass beim Einketten
eine aufsteigende Nummer vergeben wird. Der Vergleich bezieht dann die Priorität und diese Nummer mit
ein.

Da Heaps nurO(ln(N)) und nichtO(ln(Prio)) anbieten, können die Zeiten im schlechtesten Fall signifikant
steigen, so dass der ausgeglichene Baum oder der Trie vorzuziehen ist.
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Abbildung 5.5:Senderqueue-Heap.

Zusammenfassung

Eine ideale Senderwarteschlange sollte nach Prioritäten sortiert sein und es erlauben die Elemente mit ge-
ringem und konstantem Aufwand einzufügen und zu entfernen. Die einfache Liste garantiertO(1) Aufwand
beim Ein- und Ausketten, aber sie setzt keine Prioritäten durch.

Wenn Prioritäten gewünscht sind, kommen nur der ausgeglichene Baum und der Trie in Frage. Um den Auf-
wand auch im ungünstigen Fall möglichst gering zu halten, werden alle Sender gleicher Priorität zusammen-
gefasst. Im schlechtesten Fall, bei 256 Prioritäten, garantiert der binäre Trie acht und ein Rot-Schwarz Baum
16 Iterationen, um ein Element einzufügen.

Ferner ist die Synchronisation ein limitierender Faktor. Bisher wurden die Interrupts gesperrt, um die Zugriffe
auf die Warteschlange zu synchronisieren. Es ist für einige Codeteile unmöglich Locks zu holen. Dies betrifft
besonders den Interruptcode zur Zustellung von Interrupt-IPCs.

Im Rahmen dieser Diplomarbeit wurde neben der bereits vorhandenen Lösung, auch eine Warteschlange im-
plementiert, welche die Prioritäten garantiert. Die verwendete Datenstruktur ist ein binärer Trie, dessen Ele-
mente doppelt verkettete Listen sind. Diese Listen enthalten alle Sender gleicher Priorität.

Konsistenz der Senderwarteschlange

Eine inkonsistente Senderwarteschlange enthält auch Sender, welche keine IPC mehr durchführen. Bei ei-
ner konsistenten Warteschlange ist garantiert, dass sie nur Sender enthält, welche die IPC noch durchführen
können.

Bei Threads als Sendern können Inkonsistenzen entstehen, wenn der IPC-Timeout des Threads überschritten
wird, oder die IPC durch einthread_ex_regsabgebrochen wird. Die Konsistenz der Warteschlange kann bei
Thread::kill und beim Abbrechen der IPC durchthread_ex_regssichergestellt werden, indem der betroffene
Sender aus der Warteschlange ausgekettet wird.

Bei einem Timeout ist dies auch möglich, hier ist aber folgendes zu beachten. Die Behandlung von Timeouts
erfolgt mit deaktivierten Interrupts in der Zeitgeber-Routine. Sie durchläuft die Liste von Timeouts und kettet
die betroffenen Timeout-Objekte aus. Um die Verzögerungszeiten gering zu halten, ist das Ausketten von
Sendern aus der Wartschlange nur möglich, wenn diese Operation sehr schnell ist. Dies wird nur durch die
doppelt verkettete Liste erreicht.
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Bei Activations können bestimmte Ereignisse neutralisieren, so dass auch hier keine IPC mehr durchgeführt
werden soll. Ein ähnliches Problem sind Unterbrechungspunkte zwischen dem Ausketten des Senders und
dem Start des Rendezvous. Dies können implizite Unterbrechungspunkte, wie das Holen eines Thread-Locks,
oder explizit gesetzte, z.B. vor einem Kontextwechsel sein, um die Verzögerungszeiten klein zu halten. Dies ist
besonders bei Preemption-IPC ein Problem, da mehrere Locks in ihreripc_receiver_readyMethode gegriffen
werden.

Eine Möglichkeit ist es, die Empfangsoperation mit einem Fehler abzubrechen, wenn der ausgekettete Sender
die IPC nicht mehr durchführen kann. Eine andere Lösung ist, solange durch die Warteschlange zu iterieren,
bis ein gültiger Sender gefunden wird, oder es keinen Sender mehr gibt. Bei einer Iteration über die Warte-
schlange müssen dann Unterbrechungspunkte gesetzt werden, damit die Verzögerungszeiten gering bleiben.

5.4 Aufbau IPC-Pfades

IPC Zustände

Sender und Empfänger durchlaufen während der IPC verschiedene Zustände, welche sich in vier grundlegende
Teile, Setup, Rendezvous, Datentransfer und Abschluss, umfassen. Die einzelnen Zustände werden durch
verschiedene Bitmuster, siehe Tabelle 5.1, im Zustandsword dargestellt. Der Sender übernimmt während der
IPC die aktive Rolle, der Empfänger wird nur aktiv, wenn bei einer Long-IPC-Operation Seitenfehler im
IPC-Fenster auftreten. Ein Zustandsdiagramm für die einzelnen IPC-Zustände ist in Abb. 5.6 zu sehen.

Zustand ready ipc recv transfer send poll busy poll rcv cancel
long long long

Senderzustände
send prepared + + - - + - - - - ?
sleep prepared + + - - + + - - - ?

sleep - + - - + + - - - ?
data transfer + + - + + - - - - ?

page fault
in IPC window + + - + + - - + - ?

page-in wait - + - + + - - + - ?
ipc finished + - - - - - - - - ?

Empfängerzustände
receiving + + + - - - - - - ?

try handshake + + + - - - - - - ?
waiting - + + - - - - - - ?

receiving data - + + + - - - - - ?
in long IPC - + - + - - - - + ?

page in + + - + - - + - + ?
receiving end + - - - - - - - - ?

Fehlerzustände
timeout + - ? ? ? ? ? ? ? ?
cancel + - ? ? ? ? ? ? ? +

kill - - - - - - - - - -
+ = Flag gesetzt, - = Flag gelöscht, ? = Flag kann gesetzt oder gelöscht sein

Tabelle 5.1:Sende- und Empfangszustände
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receive
prepare

page fault
in IPC window

receiving
Preemtion::send

Dirq::hit

waiting

prepare sleep

sleeping

ipc end

in long IPC

prepare send

data transfer

data transfer
finished

ready

going to receive

long IPC
in progress

page−in wait

page fault

page inacessible

resolved
ipc_finish

do_send_long

try rendezvous

get next sender
sender

no waiting

sender found

ready for rendezvous

ipc_receiver_ready
failed

transfer_msg

try_handshake
failed

ipc_receiver_ready

no receive

receiving data

ipc_continue page_in_request

page−in
ipc_finish

ipc_short_cut

recv end

ipc_finish

no long ipc

irq shortcut

transfer_msg successful
ipc_receiver_ready

(passive sender)

long ipc

ipc_continue

Abbildung 5.6:IPC-Zustandsdiagramm.
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Setup

Bei einem Kerneintritt im V2-Kern wird zuerst geprüft, ob es sich um eine normale IPC, oder um eine
Interrupt-Operation handelt. Bei einer normalen IPC erfolgt die Umrechnung der Thread-ID zu TCB-Adressen,
welche dann der generischen IPC-Funktion,do_ipc, übergeben werden.

Weiterhin umfasst das Setup das Setzen des Sende- und Empfangszustandes. Bei einer kombinierten Sende-
und Empfangsoperation, erfolgt das Setzen des Empfangszustandes vor dem Abschluss der Sendeoperation,
um das atomare Umschalten vom Senden zum Empfangen zu garantieren. Im bisherigen IPC-Pfad wird dies
schon vor dem Beginn der Sendeoperation durchprepare_receivegemacht, im neuen erfolgt dies erst am Ende
der Sendeoperation, um mögliche Fehler wie Prioritätsinversion zu vermeiden. Dafür wurden die früheren
do_sendunddo_receiveFunktionen zu einer einzigen Funktion,do_ipczusammen gefasst.

Nachdem das Setup erfolgt ist, kann das Rendezvous durch den neuen Sender erfolgen.

Nach dem Kerneintritt und vor dem Aufruf der IPC-Operation, wird ein Unterbrechungspunkt gesetzt. Da-
durch wird bei einem Kerneintritt mittels INT-Instruktion die Verzögerungszeit nicht zu groß.

Rendezvous

Wenn der Empfänger schon von einen anderen Thread gesperrt ist, versucht der IPC-Pfad sich das Lock
zu holen, sonst ist Sperren des Empfängers-TCBs nicht notwendig. Der Sender prüft nach, ob der Empfän-
ger empfangsbereit ist. Ist dies nicht der Fall, bricht er das Rendezvous ab und kettet sich erst jetzt in die
Senderwarteschlange des Empfängers ein. Er setzt, wenn nötig, einen Timeout, aktualisiert seinen Zustand
und blockiert, bis er vom Empfänger durchipc_receiver_readygeweckt wird. Im Gegensatz zum bisherigen
IPC-Pfad beginntipc_receiver_readydas Rendezvous, so dass der aufgeweckte Sender sofort die Nachricht
übertragen kann. Desweiteren kann er auch durch den Timeout undthread_ex_regswieder aktiviert werden,
welche die IPC-Operation abbrechen können. Der Sender muss diese Bedingungen prüfen, wenn er nach dem
Blockieren wieder aktiv wird.

Der Empfänger versucht nach dem Setup einen wartende Sender mitipc_receiver_readyaufzuwecken. Wenn
dieser Sender die IPC nicht mehr durchführen kann, wird er ausgekettet, und der Empfänger versucht das
Rendezvous nach einem Unterbrechungspunkt mit dem nächsten Sender.

Wenn kein Sender wartet, setzt der Empfänger einen optionalen Timeout, löscht sein Ready-Flag und blockiert
solange, bis ein neuer Sender das Rendezvous versucht. Der Empfänger kann auch durch den Ablauf eines
IPC-Timeouts oder durchthread_ex_regswieder aktiviert werden.

Datentransfer

Der Datentransfer gliedert sich in zwei Teile: Registerwertetransfer und Long-IPC. Der Registerwertetransfer
kann neben dem Kopieren der Registerinhalte auch das Einblenden von Flexpages in den Adressraum des
Empfängers umfassen. Das Kopieren der Registerinhalte passiert mit gesperrten Interrupts, während die Be-
handlung von Flexpages mit aktivierten Interrupts erfolgt, wobei der Sender vor dem Freigeben der Interrupts
mit einem Thread-Lock gesperrt wird.

Long-IPC umfasst das Kopieren von Speicherinhalten und das Einblenden von Flexpages. Da das Kopieren
von Speicherinhalten aus dem Nutzeradressraum blockieren kann, muss dies ohne Lock-Schutz erfolgen. Nur
bei der Behandlung von Flexpages und Abschluss der Long-IPC wird der Empfänger gesperrt.

Der Empfänger ist während dieser Zeit inaktiv. Wenn jedoch Seitenfehler im IPC-Fenster vom Adressraum
des Senders auftreten, weckt die Seitenfehler-Routine den Empfänger auf und setzt den Sender in denpage-in
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wait-Zustand. Der nun aktive Empfänger setzt eine IPC zur Seitenfehlerbehandlung auf. Nach der Antwort
weckt der Empfänger den Sender mitipc_continueauf, so dass dieser die IPC fortführen kann.

Bei passiven Sendern wird der IPC-Transfer vom Empfänger durchgeführt. Die passiven Sender überschreiben
ipc_receiver_ready, so dass diese Funktion die Nachricht in den Registerpuffers des Empfängers schreibt.
Wenn der passive Sender nicht mehr an einer IPC interessiert ist, liefertipc_receiver_readyfalsch zurück. Der
Empfänger versucht dann das Rendezvous mit dem nächsten Sender.

Abschluss

Der Abschluss der IPC wird durch ein gelöschtesThread_ipc_in_progress-Flag gekennzeichnet. Die IPC kann
durch einen Timeout, Abbruch der IPC mittelsthread_ex_regsund durchThread::kill beendet werden. Die
Empfangsoperation wird am Ende der IPC-Operation auch durch den Sender abgeschlossen.

Wenn einer Sendeoperation keine Empfangsoperation mehr folgt, werden alle IPC-Flags inklusive desThread_-
ipc_in_progressgelöscht. Falls es ein kombiniertes Senden und Empfangen ist, wird nach dem Abschluss des
Sendens in den Empfangszustand übergegangen, dasThread_ipc_in_progress-Flag bleibt dabei gesetzt.

Der Empfängerm kehrt bei einer erfolgreichen IPC sofort zurück. Erst bei einer nicht erfolgreichen IPC erfolgt
die aufwändige Auswertung der Fehlerbedingungen. Wenn dies der Fall ist, wird vor der Rückkehr zum Nutzer
ein Fehlercode gesetzt.

Asynchrone Ereignisse

Bedingt durch Unterbrechungspunkte können während der IPC asynchrone Ereignisse die IPC-Operation be-
einflussen. Aus diesem Grund muss nach einem Unterbrechungspunkt geprüft werden, ob der IPC-Zustand
noch gültig ist. Folgende Ereignisse können eintreten, Timeout, Abbruch der IPC durchthread_ex_regs, Lö-
schen des Threads und Zustandsänderungen durch passive Sender wie Interrupts, Preemptions und Activati-
ons.

Timeouts

Wenn ein Timeout eintritt, löscht dieexpire-Funktion dasThread_ipc_in_progress-Flag, setzt dasThread_-
ready-Bit und kettet ihn in die Ready-Liste ein. Wenn dieser Thread eine größere Priorität als der aktuelle
Thread besitzt, wird im Anschluss der Scheduler aktiv. Der betroffene Thread kann dann an dem gelöschten
Thread_ipc_in_progress-Flag einen abgelaufenden Timeout erkennen. Er kehrt mit einem Fehlercode zum
Nutzer zurück.

IPC-Abbruch

Durch thread_ex_regskann die IPC an jedem beliebigen Unterbrechungspunkt abgebrochen werden. Da
thread_ex_regssich das Thread-Lock greift, kann ein passiver IPC-Partner nicht abgebrochen werden, wenn
er vom IPC-Code gesperrt ist. Zum Abbruch der IPC löschtthread_ex_regsdasThread_ipc_in_progress-Flag,
setzt dasThread_cancel-Bit, sowie dasThread_ready-Bit und kettet den Thread erneut in die Ready-Liste ein.
Es wird nur ein Thread durchthread_ex_regsabgebrochen. Bei einer begonnenen IPC muss dieser Thread
auch seinen IPC-Partner abbrechen. Sender und Empfänger kehren in diesem Fall mit einem Fehlercode zum
Nutzer zurück.

Long-IPC verwendet einen Trick, um nicht immer auf Abbruch der IPC zu prüfen. Bei dem Kontextwechsel
wird das IPC-Fenster gelöscht, und da die IPC nur durch einen anderen Thread abgebrochen werden kann, ist

45



5 Entwurf

dieser Test nur am Anfang der Long-IPC und in der Seitenfehler-Routine notwendig. Sobald zu einem Thread
umgeschaltet wird, welcher die gerade suspendierte Long-IPC-Operation abbricht, wird der IPC-Zustand un-
gültig. Wenn der Sender die IPC-Operation fortsetzt, wird durch die Kopieroperation ein Seitenfehler ausge-
löst. Deshalb reicht es aus, dass der Test auf Abbruch der IPC in in der Seitenfehler-Routine erfolgt.

Thread::Kill

Wenn ein Thread zerstört wird, wird sein kompletter Zustand gelöscht, und er wird aus der Bereitwarteschlan-
ge entfernt. Sobald der zu löschende Thread alle Locks freigeben hat, stoppt er die Ausführung.Thread::kill
muss daher alle anderen Ressourcen freigeben, gesetzte Timeouts löschen und den Thread aus einer Sender-
warteschlange ausketten. Es muss der IPC-Partner einer begonnenen IPC-Operation, erkennbar am gesetzten
Thread_transfer-Flag, abgebrochen werden.

Passive Sender

Passive Sender werden in die Senderwarteschlange des Empfängers eingekettet und der Empfänger wird wie-
der aufgeweckt. Der Empfänger muss dann erneut das Rendezvous mit dem neuen Sender versuchen. Auch
nach Unterbrechungspunkten muss der Empfänger beachten, dass in der Senderwarteschlange neue Sender
enthalten sein können.

5.5 Probleme des bisherigen IPC-Pfades

Prioritätsinversion

Die L4-Spezifikation verlangt bei einer kombiniertem Sende- und Empfangsoperation, dass der Übergang vom
Senden zum Empfangen atomar erfolgen muss. Es ist auch der Fall, dass sich ein Sender in der Warteschlange
befindet, zu beachten.

Wenn dieser eingekettete Sender die höchste Priorität besitzt, muss er anstelle des alten Empfängers aktiv wer-
den, um eine Prioritätsinversion zu vermeiden. In einem nicht unterbrechbaren IPC-Pfad ist dies problemlos
durchsetzbar, der bisherige IPC-Pfad zeigte hier Fehler.

In dem folgenden Szenario, siehe 5.7, hatC die höchste Priorität,B eine mittlere Priorität undA die geringste
Priorität.A bearbeitet einen Auftrag vonB, undB wartet auf eine Antwort vonA. C wird aktiv und möchte
eine IPC zuA durchführen. DaA nicht empfangsbereit ist, blockiertC solange, bis er vonA aufgeweckt wird.
A beendet den Auftrag, schickt diesen mit einerreply_wait-Operation zurück an B und geht gleichzeitig ins
offene Warten über, damit er neue Aufträge entgegen nehmen kann.

Im bisherigen IPC-Pfad, sperrt A bei seiner Antwort den EmpfängerB, kopiert die Nachricht zuB, setzt sich
empfangsbereit undB auf lauffähig, und gibt das Lock vonB frei. Durch die Freigabe des Locks vonB, wird
sofort zuB umgeschaltet, weilB eine höhere Priorität alsA besitzt.

Wenn nunB in eine Endlosschleife eintritt, wirdA nie wieder aktiv.A kann damit auchC nicht aufwecken.
ObwohlC eine höhere Priorität alsB besitzt undC nun die IPC zuA beginnen könnte, wirdC niemals vom
Scheduler ausgewählt.

Bei dem kombinierten Senden und Empfangen müssen auch wartende Sender berücksichtigt werden, um
solche Fehler zu vermeiden. Ein einfaches atomares Setzen des IPC-Zustandes auf Empfangsbereit reicht
nicht aus.
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Abbildung 5.7:Prioritätsinversion.

Die neue Implementation umgeht dies, indem nach Abschluss der Sendeoperation nicht sofort zuB umschaltet
wird. Es wird vorher die Priorität vonB mit dem eingeketteten SenderC verglichen. Wenn der einkettete
Sender eine höhere Priorität besitzt, wird zu ihm umgeschaltet, der alte EmpfängerB wird nur in die Ready-
Liste eingekettet.

Empfangstimeouts

Die L4-Spezifikation sagt nichts darüber aus, ob der Empfangstimeout sofort gültig sein muss, oder erst
wenn der Empfänger blockiert. Der bisherige IPC-Pfad nutzt dies aus, und setzt den Empfangstimeout bei
dem kombinierten Senden und Empfangen verzögert. Dadurch trifft im günstigen Fall die Antwort der IPC
vor dem Ablauf der aktuellen Zeitscheibe und vor dem Setzen des Timeouts ein, welches dadurch komplett
eingespart werden kann. Der neue IPC-Pfad nutzt die gleiche Optimierung, um so dass Setzen von IPC-
Empfangstimeouts gegebenenfalls einzusparen. Es ist jedoch zu beachten, dass dies Probleme mit sehr langen
Zeitscheiben verursachen kann, hier kann das Timeoutende noch innerhalb der aktuellen Zeitscheibe liegen.
Wenn solche Szenarios wichtig sind, muss der Timeout vorher gesetzt werden.

Weiter können im bisherigen IPC-Code Timeout-Fehler bei Empfangstimeouts eintreten, obwohl es wartende
Sender gibt. Das folgende Szenario, Abb. 5.8, verdeutlicht dies. ThreadA hat hier eine höhere Priorität als
ThreadB. ThreadB wartet darauf, eine IPC anA zu schicken, und ist dafür in der Senderwarteschlange von
A eingekettet. ThreadA ist wieder aktiv und führt nach einer bestimmten Zeit eine Empfangsoperation mit
Timeout Null durch.

A tritt in den Kern ein und setzt seinen IPC-Zustand auf Empfang.A findetB in seiner Sendewarteschlange und
schaltet zuB mittelsipc_receiver_readyum, um das Rendezvous zu beginnen.A bleibt jedoch noch lauffähig.
Es wird nur der Ausführungskontext umgeschaltet, der Scheduling-Kontext nicht.B wird aktiv, und will das
Rendezvous beginnen. BevorB jedochA durch ein Thread-Locks inipc_send_regssperren kann, läuft die
aktuelle Zeitscheibe vonA ab.

Der Scheduler wird wieder aktiv und wähltA aufgrund seiner höheren Priorität erneut aus. Dies ist möglich,
daA zu diesem Zeitpunkt noch lauffähig ist.A untersucht erst jetzt den Empfangstimeout, und stellt fest, der
Timeout ist Null. Er kehrt dann zum Nutzer mit einem Timeout-Fehler zurück, obwohlB ihm eine Nachricht
senden kann.
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Abbildung 5.8:Timeout-Fehler.

Um diese Fehler zu vermeiden, wird das Rendezvous schon durch den Empfänger inipc_receiver_ready
begonnen. Ein neues Flag im Zustandsword zeigt an, ob das Rendezvous schon vollzogen wurde. Ein Setzen
des Timeouts ist nicht mehr notwendig, weil die IPC erfolgreich begonnen wurde.

Durch dieses Flag können auch Fehler wieCancelund Abort genauer unterschieden werden. Weiterhin er-
kennt der IPC-Partner durch dieses Flag eine begonnene IPC, und kann dann auch den anderen IPC-Partner
abbrechen, wenn seine IPC in der Zwischenzeit mitthread_ex_regsabgebrochen wurde.
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In diesem Kapitel wird kurz auf verschiedene Aspekte der Implementierung eingegangen. Weiterhin werden
einige Optimierungen erläutert, um die Geschwindigkeit des IPC-Pfades zu maximieren.

6.1 Timeouts

Fiasco bildet jedes zeitliches Ereignis auf einen Timeout ab, die KlasseIPC_timeoutsimplementiert Zeit-
grenzen in IPC-Operationen,Timeslice_timeoutsstößt nach Ablauf der Zeitscheibe den Scheduler an, und
Deadline_timeoutsimplementiert Perioden und Deadlines für Echtzeit-Threads. Jedesmal, wenn durch den
Zeitgeber die entsprechende Routine zur Behandlung von Timeouts angestoßen wird, durchläuft diese eine
Liste der Timeout-Objekte, und ruft für alle Objekte, deren Zeitindex kleiner als der aktuelle ist, ihre virtuelle
expireMethode auf.

• IPC_timeout: Die KlasseIPC_timeoutdient dazu, erfolglose IPC-Operationen, nach einer vom Nut-
zer bestimmbaren Zeit abzubrechen. Bisher wurden IPC-Timeout-Objekte auf dem Kernstack des je-
weiligen Threads angelegt. Dadurch wird auch jedesmal ihr Konstruktor und Destruktor aufgerufen.
Obwohl der Compiler sehr gut optimiert, konnte eine Zeiteinsparung dadurch erreicht werden, dass
IPC-Timeouts direkt im TCB aggregiert werden. Die virtuelleexpireMethode des IPC-Timeouts setzt
den Thread lauffähig, löscht die IPC-Flags und kettet ihn in die Ready-Liste ein.

• Timeslice_timeout: DerTimeslice_timeoutdient dazu die verschiedensten Scheduling-Kontexte eines
Threads umzuschalten. Beim Ablauf eines Echtzeit-Scheduling-Kontextes, wird dem Preempter dieses
Threads eine Preemption-IPC zugestellt, und es erfolgt die Umschaltung des Scheduling-Kontextes.
Ferner dient dieser Timeout dazu, periodisch den Aufruf derscheduleFunktion zu triggern, die einen
neuen Thread aus der Menge der rechenbereiten Threads auswählt. Es befindet sich dadurch immer ein
Timeslice_timeout-Objekt in der Timeout-Liste.

• Deadline_timeouts: Mit dem Deadline_timeoutkönnen sich Echtzeithreads mit ihrer Periode syn-
chronisieren. Sie blockieren solange durch eine spezielle IPC, bis sie am Anfang ihrer Periode durch
denDeadline_timeoutwieder aufgeweckt werden. Mit dem gleichen Mechanismus werden auch Über-
schreitungen der Deadline erkannt. Dies ist der Fall, wenn der betroffene Thread nach dem Ablauf eines
Deadline-Timeouts nicht auf seine nächste Periode wartet. In diesem Fall wird sein Preempter mit einer
Deadline-Miss-IPC informiert.

Timeout-Liste

Im bisherigen Kern wird die Timeout-Liste durch eine sortierte, doppelt verkettete Liste implementiert. Je-
desmal wenn ein neuer Timeout gesetzt wird, wird die entsprechende Stelle in dieser Liste gesucht und der
Timeout dort eingekettet. Dieses Suchen und Einketten passiert mit geschlossenen Interrupts und kann daher
auch hohe Verzögerungszeiten verursachen.
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Die Funktion,do_timeouts, welche die Timeouts behandelt, durchläuft diese Liste und überprüft, ob der Zei-
tindex des Timeout-Objektes kleiner als der aktuelle Zeitindex ist und behandelt diese. Sobald ein Objekt
gefunden wird, dessen Zeitindex größer als der aktuelle Zeitindex ist, wird das Durchlaufen der Liste abge-
brochen.

Um diesen Vorgang zu beschleunigen, wird die bisherige Liste auf mehrere sortierte Timeout-Listen aufgeteilt,
siehe Abb. 6.1. Die Auswahl der entsprechenden Liste erfolgt, indem der Zeitindex durch den Zeitabstand
der einzelnen Listen geteilt wird, und der Rest dieser Division die entsprechende Liste spezifiziert. Wenn
der Abstand der Timeout-Listen eine Größe von2n besitzt, ist dies durch einfache Bitoperationen möglich.
Dadurch werden die Timeouts im Durchschnitt auf mehrere Listen verteilt, und bei dem Einketten werden
damit kürzere Listen durchlaufen.

Die Anzahl der Listen und der zeitliche Abstand zwischen zwei Listen ist einstellbar und ist aktuell auf acht
Listen und 4ms Abstand eingestellt. Da die durchschnittliche Zeitscheibe 10ms beträgt, und somit aller 10ms
dieTimeslice-Timeouts behandelt werden, müssen im Schnitt nur drei Listen betrachtet werden.

0ms

4ms

8ms

12ms

24ms

20ms

16ms

28ms
IPC−Timeout

Time−Slice−Timeout

Deadline−Timeout

Abbildung 6.1:Timeout-Liste.

Obwohl im Durchschnitt die einzelne Timeout-Liste kürzer wird, wird die Sortierung der Listen beibehalten,
damit beiOne-Shot-Timerndas Finden des nächsten Timeouts mit wenig Aufwand möglich ist.

Bei kurzem Listenabstand und beiOne-Shot-Timernist es möglich, dass der Zeitraum zwischen zwei Ker-
neintritten mehrere Listen umfasst. Dadurch müssen stets alle Listen, die innerhalb dieses Zeitraumes liegen,
durchlaufen werden. Wenn ein Überlauf entdeckt wird, z.B. wenn bei One-Shot-Timern die CPU erst nach
sehr langer Zeit wieder in den Kern eintritt, werden alle Listen behandelt.

6.2 Senderwarteschlange

Die Senderwarteschlange wird mit einem binären Trie implementiert. Dadurch hat bei 256 Prioritäten der
Trie eine maximale Tiefe von acht Ebenen. Der Zeitaufwand für das Ein- und Ausketten ist dadurch auch im
schlechtesten Fall sehr begrenzt. Möglich sind auch Tries mit vier oder acht Kindern. Dadurch wird zwar die
Tiefe weniger, es sind jedoch zusätzliche Zeigeroperationen notwendig, so dass effektiv keine Zeit eingespart
wird.

Die Elemente des Tries sind doppelt verkettete Listen von Sendern gleicher Priorität. Der Kopf einer Liste
bildet gleichzeitig ein Strukturelement des Tries, Abb. 6.2. Die TCB enthalten dafür zwei Zeiger für die
doppelt verkettete Liste von Sendern gleicher Priorität, zwei Zeiger für den rechten und linken Knoten und
einen Zeiger für das Elternelement.
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Abbildung 6.2:Implementierte Senderwarteschlange.

Beim Ein- und Ausketten wird sichergestellt, dass der Sender mit der größten Priorität die Wurzel des Baumes
bildet. Dadurch ist das Auffinden des Senders, welcher als nächstes aufgeweckt werden muss, sehr schnell
möglich.

Einketten: Beim Einketten eines Senders, wird der Baum entsprechend des Schlüssels solange durchlaufen,
bis die Liste mit der gewünschten Priorität oder das Ende dieses Zweiges erreicht wird. Bei einem gesetzten
Bit wird der linke Zweig genommen, bei einem gelöschten Bit der rechte Zweig. Begonnen wird mit dem
MSB des Schlüssels. Dadurch wird erreicht, dass der Sender mit der größten Priorität stets am linken Rand
des Tries zu finden sind.

Wenn eine passende Liste erreicht wird, wird der Sender am Ende dieser Liste eingekettet. Dadurch wird auch
eine FIFO-Strategie bei Sendern mit gleicher Priorität implementiert, um die Fairness zu gewährleisten. Wenn
keine Liste mit dieser Priorität existiert, wird der Sender als neuer Blattknoten am Ende des Zweiges angefügt.

Der Fall, wenn der aktuell einzufügende Sender eine höhere Priorität als die Wurzel besitzt, wird gesondert
behandelt. In diesem Fall wird die alte Wurzel mit dem neuen Sender getauscht, und die alte Wurzel wird
erneut in den Trie eingekettet. Dadurch ist stets sichergestellt, dass die Sender mit der höchsten Priorität, die
Wurzel bilden.

Ausketten: Bei dem Ausketten von Sendern wird unterschieden, ob sie ein Element des Tries sind, oder nur
in einer doppelt verketteten Liste von Sendern gleicher Priorität enthalten sind.

Wenn Sender ausgekettet werden, welche in der Struktur des Tries enthalten sind, muss der Sender durch
seinen Nachfolger gleicher Priorität im Trie ersetzt werden. Wenn es keinen solchen Nachfolger gibt, wird der
komplette Knoten entfernt. An die freiwerdende Position wird ein Blattknoten gesetzt.

Das Entfernen der Wurzel muss gesondert behandelt werden, hier ist eine neue Wurzel zu bestimmen, welche
die nächst höhere Priorität besitzt. Der Trie wird von der Wurzel entlang des linken Randes bis zu dem Blatt-
knoten durchlaufen. Das Einketten stellt sicher, dass der Sender mit der nächst höheren Priorität in diesem
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Zweig zu finden ist. Die neue Wurzel wird anstelle der alten Wurzel in den Baum eingefügt. Der Blattkno-
ten vom Ende dieses Zweiges wird an die alte Stelle der neuen Wurzel gesetzt. Dadurch stellt das Ausketten
sicher, dass der Sender mit der höchsten Priorität die Wurzel bildet.

Synchronisation der Senderwarteschlange

Um die Warteschlange konsistent zu halten, müssen Zugriffe synchronisiert werden. Eine Lösung sind Locks.
Dies kann entweder das Thread-Lock des zugehörigen Empfängers oder ein eigenes Lock für die Warteschlan-
ge sein.

Es ist an einigen Stellen nicht möglich, ein Lock zu greifen, da nicht blockiert werden darf, falls das Lock
von einem anderen Thread gehalten wird. Ein Beispiel ist der Code in der Interrupt-Routine zum Zustellen
einer Interrupt-IPC. Genauso kann beim Einketten von Preemption-IPCs bei einem Deadline-Miss keine Lock
gegriffen werden, weil die Zeitscheibe schon zu Ende sein könnte. Ähnlich sieht es bei den Activation-IPCs
aus.

Interrupts können auf Kernthreads abgebildet werden. Diese Threads laufen auf ihrem eigenen Kernstack und
können deshalb Locks greifen, so dass diese Kernthreads auch blockieren können. Die eigentliche Interrupt-
Routine weckt nur noch diesen Thread auf, welcher dann die eigentliche IPC-Nachricht verschickt. Bei ARM
führt dies jedoch zu Problemen, da es dort bis zu 256 Interrupts geben kann. 256 Kernelthreads würden
jedoch zu viel Kernspeicher verbrauchen. Ferner können Preemption-IPCs und Activation-IPCs nicht auf
extra Kernthreads abgebildet werden.

Deshalb wird die Senderliste weiterhin mit gesperrten Interrupts synchronisiert. Da aber das Ein- und Ausket-
ten auch im schlechtesten Fall nie mehr als acht Iterationen umfasst, sind die Verzögerungszeiten begrenzt.

6.3 Optimierung des IPC-Pfades

Synchronisation

Der bisherige IPC-Pfad sperrt den IPC-Partner mittels eines Thread-Locks. Das Greifen eines Thread-Locks
ist teuer, so dass viel Zeit durch Optimierung eingespart werden kann. Da der IPC-Pfad zum größten Teil mit
gesperrten Interrupts läuft, kann er auf einem Uniprozessorsystem nicht unterbrochen werden. Deshalb ist das
Sperren des IPC-Partners überflüssig, wenn dieser noch nicht von einem anderen Thread gesperrt ist. Sobald
jedoch wieder Unterbrechungen zugelassen werden, muss der aktuelle Thread das Lock nachträglich greifen.

Im Falle, dass der IPC-Partner gesperrt ist, versucht der IPC-Pfad sich das Thread-Lock auf den Partner zu
greifen, um die Konsistenz der Daten zu gewährleisten. Es wird zusätzlich ein Unterbrechungspunkt eingefügt,
da das Greifen von Locks im ungünstigen Fall sehr kostenintensiv ist. Die Funktion zur Freigabe des Locks
wird modifiziert, um diese Optimierung zu erkennen und extra zu behandeln.

Ferner wird eine spezielle Funktion zur Lockfreigabe hinzugefügt,clear_dirty_dont_switch, welche nicht au-
tomatisch zum gesperrten Thread umschaltet, auch wenn dieser eine höhere Priorität als der aktuelle Thread
besitzt. Dies ist notwendig um den Fehler in Abb. 5.7 beim kombinierten Senden und Empfangen zu vermei-
den. Erst wenn die Priorität vom wartenden Sender ausgewertet ist, wird zu dem Thread mit der höchsten
Priorität umgeschaltet.

Wenn dasDeceite-Bitgesetzt ist, wird der alte Empfänger bei einer Sendeoperation nur in die Ready-Liste
eingekettet. Es wird nur zu ihm umgeschalten, wenn er eine höhere Priorität als der aktuelle Thread besitzt.
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Schnelle Rückkehr zum Nutzer

Nachdem die IPC-Operation abgeschlossen wird, wird der IPC-Empfänger lauffähig gesetzt und zu ihm um-
geschaltet. Dann läuft noch ein Stück Kerncode auf Empfängerseite. Dieser Code ist dafür zuständig, dass die
einzelnen Stackrahmen nacheinander abgebaut werden, und bei einer nicht erfolgreichen IPC-Operation ein
Fehlercode für den Nutzer gesetzt wird. Zum Schluss erfolgt das Laden der Register mit dem Werten aus dem
Stack und die Rückkehr zum Nutzer.

Als Optimierung kann nach dem Ende einer erfolgreichen IPC der Kernstack des Empfängers überschrieben
werden. Es sind auf dem Kernstack nur die IPC-Register und die Rückkehradresse zu einem kleinen Stück
Assemblercode abgelegt. Sobald der Empfänger aktiv wird, wird dieser Code angesprungen. Dieser lädt dann
die Register mit dem Inhalten aus dem Kernstack und kehrt zum Nutzer zurück, siehe Abb. 6.3.

sys_ipc_wrapper()

frame pointer (epb)

local variables

sys_ipc_wrapper

Stackframe

fast_return_to_user Stackzeiger

frame pointer(ebp)

switch_exec_locked()

local variables

switch_exec_locked

Stackframe

saved frame pointer

saved return eip

parameter (this Zeiger)

Stackzeiger

Frame−Pointer

SS

esp

eflags

eip

CS

eax

epb

ebx

edi

esi

edx

ecx

Sys_ipc_frame

Return_frame
SS

esp

eflags

eip

CS

eax

epb

ebx

edi

esi

edx

ecx

Abbildung 6.3:Kernstack.

Obwohl auf den ersten Blick dieser Ansatz vielversprechend aussieht, waren die Ergebnisse enttäuschend und
langsamer als im normalen Fall. Zum ersten liegt es daran, dass fast alle Funktionen inline1 sind. Daher liegen
auf dem Empfängerstack nur sehr wenige Stackrahmen.

1inline-Funktionen werden nicht aufgerufen, sondern ihr Code wird an die Stelle des Aufrufs gesetzt
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Die IPC-Operation ist oft eincall oder einreply_wait. Nach dem Kerneintritt wird vom Assemblercode zuerst
die Funktionsys_ipc_wrapperaufgerufen. Diese ruft die inlinedo_ipcFunktion auf. Diese nutzt weitgehend
inline Funktionen, nur die Kontextwechsel-Funktion ist nicht inline. Es befinden sich in diesem Fall nur zwei
Stackrahmen auf dem Kernstack, so dass hier kaum Verbesserungen zu erreichen sind. Weiterhin besitzt auch
der eigentliche IPC-Code genug Abkürzungen, um eine schnelle Rückkehr zum Nutzer zu ermöglichen.

Verzögertes Setzen von Empfangs-Timeouts

Diese Optimierung ist nur beicall undreply_waitIPC-Operationen mit einem Empfangs-Timeout sinnvoll.

Bei dieser Optimierung wird zuerst die Sendeoperation durchgeführt. Im Anschluss erfolgt das Setzen des
Zustandes auf Empfangsbereit, ohne das Ready-Flag zu löschen. Dann erfolgt die Umschaltung zu dem Emp-
fänger der IPC-Sendeoperation. Wenn dieser Empfänger sofort eine IPC-Antwort zurück schickt, bevor die
aktuelle Zeitscheibe abläuft, erkennt der Thread, dass die IPC schon abgeschlossen ist, und kehrt zum Nutzer
zurück. Das Setzen und Löschen eines Timeouts wird eingespart.

Wenn bis zum Ablauf der Zeitscheibe keine IPC erfolgt und der Thread wieder vom Scheduler aktiviert wird,
programmiert er seinen Timeout und blockiert endgültig, bis er wieder durch eine IPC oder durch den Timeout
aufgeweckt wird.

Ein Nachteil dieser Optimierung ist, es passieren unnötige Kontextwechsel zu Threads, welche dann sofort
blockieren und die CPU mittelsscheduleabgeben. Da aber oftmals bei Client-Server die Zeit zum Bearbeiten
der Aufträge recht klein ist, lohnt sich diese Optimierung.

Verzögertes Sperren der Interrupts

Die Kosten für einen Unterbrechungspunkt sind erheblich. Sie umfassen den Aufwand für ein Freigeben der
Interrupts, eine Nulloperationen und wieder das Sperren der Interrupts. Auf der ausgemessenen CPU waren
pro Unterbrechungspunkt 74 Takte notwendig. Wenn man im IPC-Pfad zwei oder mehr Unterbrechungs-
punkte im gechwindigkeitskritischen Bereich setzt, zum Beispiel sofort nach dem Kerneintritt oder vor dem
Kernaustritt, erhöht sich die benötigte Zeit für eine IPC signifikant.

Um diese Kosten zu vermeiden, läuft der IPC-Pfad mit freigegebenen Interrupts, die Freigabe erfolgt sofort
nach dem Kerneintritt. Wenn eine Unterbrechung eintritt, sperrt die zugehörige Funktion nachträglich die
Interrupts. Dies wird auf IA-32 erreicht, indem die gesicherten Prozessorflags auf dem Kernstack modifiziert
werden, und dort das Interrupt-Flag gelöscht wird.

Die Interrupt-Routine merkt sich die aufgetretene Unterbrechung in einer globalen Variable, ohne diese zu
behandeln. Sie kehrt dann zum IPC-Pfad zurück.

Der IPC-Pfad läuft nun weiter mit geschlossenen Interrupts bis zum nächsten Unterbrechungspunkt. Ein Un-
terbrechungspunkt besteht dann aus einem Lesezugriff und einen bedingten Sprung. Es wird einfach anhand
der globalen Variable überprüft, ob ein Interrupt aufgetreten war. Wenn dieses nicht gesetzt ist, wird der IPC-
Code weiter ausgeführt.

Ist diese Variable gesetzt, wird der gespeicherte Interrupt nachträglich behandelt. Außerdem werden die Inter-
rupts erneut freigegeben, weil diese von der Interrupt-Routine gesperrt wurden. Dadurch werden auch weitere
anhängige Unterbrechungen behandelt.

So können weiterhin die einzelnen Operationen zum Sperren und Freigeben der Interrupts beschleunigt wer-
den. Diese Setzen und Löschen einfach ein weiteres globales Flag, welches durch die Interrupt-Routine aus-
gewertet wird. Wenn dieses Flag gesetzt ist, werden die Interrupts nachträglich gesperrt, der aufgetretene
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Interrupt gespeichert und die Interrupt-Routine kehrt sofort zurück. Ist dieses Flag gelöscht, wird der Interrupt
normal behandelt. So werden die teuren Maschinenoperationen zum Sperren und Freigeben der Interrupts
eingespart. Der größte Nachteil ist der Aufwand, um Race-Conditions zu vermeiden. Die Anpassung des
Fiasco-Kerns ist auf dieser tiefen Ebene komplex, so dass die Implementierung nur einen experimentellen
Zustand besitzt.
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7 Auswertung

Als Testrechner stand ein x86-PC mit einem 1.6Ghz Pentium IV (Willamette) und 256MB DDR-Ram zur
Verfügung. Die CPU besitzt getrennte L1-Caches für Code und Daten. Es handelt sich um einen 8KByte
großen L1-Cache für Daten und einen L1-Cache für Code, welcher bis zu 12000 so genannte Mikroops spei-
chern kann. Im Gegensatz zu anderen CPUs, wo der L1-Cache für den Code komplette x86-Maschinenbefehle
enthält, werden in diesem L1-Cache schon dekodierte Maschinenbefehle abgelegt.

Der L1-Datencache ist physisch markiert und virtuell indiziert. Weiterhin werden neben den physischen Tags
noch “virtuelle Hinweise”, dieVhints, in der Cachezeile abgelegt. welche als Hinweis dienen, welcher Weg
(Cachezeile) aus der Menge der möglichen Cachezeilen genommen werden soll. Der L1-Datencache ist vier-
fach assoziativ, und die Cachezeile ist 64Byte groß. Es werden fünf Bits der Adresse zur Adressierung der
Cachezeile und sechs Bits zur Adressierung des Bytes innerhalb der Cachezeile verwendet. Diese Adressin-
formation kann komplett aus dem 12 Bit großen Offset der Adresse gewonnen werden, so dass hier die Un-
terscheidung zwischen virtuell und physisch indiziertem Cache irrelevant ist. Wenn zur Adressierung die Bis
mit dem niedrigsten Stellenwert genutzt werden, werden Adressen, die sich um 2KByte unterscheiden, auf
die selbe Menge von Cachezeilen abgebildet. In diesem Fall hilft dann nur noch die vierfache Assoziativität,
um Konflikte zu vermeiden. Die TCB-Größe beträgt 2KByte, so dass hier Konflikte bei dem Zugriff auf den
L1-Cache auftreten können.

Der L2-Cache ist ein gemeinsamer Code- und Datencache. Die Größe des L2-Caches beträgt 256KByte und
die Organisation ist achtfach assoziativ. Adressen, deren Abstand ein Vielfaches von 32KByte betragen, wer-
den somit auf die gleiche Menge von Cachezeilen abgebildet.

Ein Datum kann sowohl im L1 wie auch im L2-Cache enthalten sein. Eine Garantie gibt es hierfür nicht. Es
kann der Fall eintreten, dass eine L1-Cachezeile und ihre entsprechenden L2-Cachezeilen unterschiedliche
Daten enthalten und beidedirty sind, so dass beide zurückgeschrieben werden müssen, bevor ein neuer Inhalt
gelesen werden kann.

Es wurden in verschiedenen Experimenten Aspekte des modifizierten Kerns ausgemessen und mit dem ori-
ginalen Kern verglichen. Zuerst werden die einzelnen IPC-Operationen in Mikro-Benchmarks ausgemessen.
Dann werden die Echtzeiteigenschaften unter verschiedensten Lasten untersucht. Zum Schluss erfolgt eine
kurze Bewertung und Analyse.

7.1 Mikro-Benchmarks

Senderwarteschlange

Die Performance der neu implementierten Senderwarteschlange im Vergleich mit der alten Senderwarte-
schlange wird untersucht. Während die bisherige Implementierung, mit einer Liste nur eine FIFO-Strategie
ohne Berücksichtigung der Prioritäten bietet, beachtet die neue Lösung die Prioritäten. Die Warteschlange
wurde mit Hilfe einesTriesimplementiert, und selbst im ungünstigen Fall ist die Zeit zum Ein- und Ausketten
eines Elements auf acht Iterationen begrenzt.

57



7 Auswertung

 0

 100

 200

 300

 400

 500

 600

100 101 102 103 104 105 106

C
pu

 T
ak

tz
yk

le
n

Anzahl enthaltender Sender

Kosten Ein- und Ausketten aus Senderwarteschlange

Sender mit Prio. 0
Sender mit Prio. 127
Sender mit Prio. 255

Abbildung 7.1:Abhängigkeit der Kosten von der Größe der Senderwarteschlange

Es wurde die Zeit zum Ein- und Ausketten eines Elements in eine Senderwarteschlange verschiedenster Größe
ausgemessen, Abb. 7.1. Die Warteschlangen enthielten Sender zufälliger Priorität im Bereich von 1-254. Es
wurde einmal ein Sender mit der Priorität Null, ein Sender mit der Priorität 127 und ein Sender mit der Priorität
255 ein- und ausgekettet. Bei dem Ausketten des Senders mit der Priorität 255 ist jedesmal eine Bestimmung
des neuen Maximums notwendig. Selbst bei106 Sendern beträgt die Summe der Zeit zum Ein- und Ausketten
bei heißem Cache nicht mehr als 440 Takte. Diagramm 7.2 zeigt die durchschnittliche Zeit für das Ein- und
Ausketten von Sendern verschiedener Priorität in Warteschlangen, welche einmal 1, 100 und 1000 Elemente
enthalten.

Die gemessenen Werte erfolgten alle mit heißen Caches. Bei kalten Caches sind die Zeiten höher. Die einfache
Liste ist in diesem Fall besser. Bei demTrie sind diese Zeiten schlechter, da das Ein- und Ausketten zum
großen Teil aus vielen Speicheroperationen besteht. Um die Verzögerungszeiten nicht zu groß werden zu
lassen, wird jedoch vor dem Ein- und nach dem Ausketten ein Unterbrechungspunkt gesetzt.

Der alte IPC-Pfad kettete den Sender in die Warteschlange ein, bevor er das Rendezvous mit dem Empfänger
versuchte. Durch ein späteres Ein- und Ausketten, kann im Durchschnitt viel Zeit eingespart werden.

Synchronisation

Ein weiterer Grund, warum der bisherige IPC-Pfad langsam ist, ist die Synchronisation. Der neuen IPC-Pfad
wird im besten Fall durchlaufen, ohne dass sich ein Lock geholt werden muss. Der bisherige IPC-Code sperrte
dagegen jedesmal vor dem Rendezvous den Empfänger und gab ihn nachher wieder frei. Rund 200 Takte
werden dadurch eingespart.

Weiterhin wurden die vielenRetry-loopszur Synchronisation entfernt, da nur noch nach einem Unterbre-
chungspunkt auf einem gültigen IPC-Zustand des aktiven Threads geprüft werden muss.
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Timeouts

Das sortierte Aufspalten der Timeout-Liste in mehrere Listen beschleunigt den durchschnittlichen Fall zum
Einketten eines Timeout-Objektes, siehe Abb. 7.3. Selbst wenn wenig Timeouts eingekettet sind, wird bei acht
Listen in eine kurze Liste eingekettet, so dass nicht lange nach der passenden Position gesucht werden muss.
Bei dem Pingpong-Benchmark ist kein Gewinn festzustellen, da die Empfangs-Timeouts verzögert gesetzt
werden und die IPC schon abgeschlossen ist, bevor die IPC-Timeouts eingekettet werden müssen.

Im schlechtesten Fall befinden sich alle Timeouts in einer Liste, und es muss die ganze Liste durchlaufen
werden, um die richtige Position zum Einketten zu finden. Dieser Fall lässt sich durch diese Lösung nicht
beschleunigen. Um auch dort eine Verbesserung der Latenzzeit zu erreichen, müsste das Ein- und Ausketten
mit Unterbrechungspunkten erfolgen. Dann wird jedoch die Suche nach der passenden Position sehr schwer,
da sich die Liste beim Durchlauf ändern kann. Ferner ist zu beachten, dass die Zeitgeber-Routine auf dem
Stack eines Threads mit geringer Priorität ausgeführt werden kann, die Timeoutliste jedoch Threads mit hoher
Priorität enthalten kann. Eine unsortierte Timeout-Liste würde hier helfen, die zusätzlichen Kosten fallen dann
in der Zeitgeber-Routine an.

Die Synchronisation mittels Locks ist im vorhandenen Kern bisher nicht möglich. Die Zeitgeber-Routine
durchläuft und modifiziert die Timeoutliste, jedoch ist das Greifen von Locks in Interrupt-Routinen im bishe-
rigen Kern unmöglich.

Eine andere Möglichkeit, ist die Behandlung der Timeout-Liste durch einen extra Kernthread, welcher unter-
brochen werden kann. Dann stellt sich jedoch die Frage, auf welcher Priorität soll dieser Kernthread laufen.

Es gab Überlegungen, endliche Timeouts abzuschaffen und nur unendliche Timeouts und keine Timeouts
zuzulassen. In den meisten vorhandenen Systemen werden, bis auf Timeout Null und unendlichen Timeout,
selten endliche Timeouts genutzt. Endliche Timeouts dienen oftmals nur dafür, um eine bestimmte Zeit zu
blockieren. Ein Beispiel ist die Implementierung des Zeitgeberinterrupts in L4Linux.
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Abbildung 7.3:Durchschnittliche Kosten zum Einketten eines Timeouts

IPC-Performance

Tabelle 7.1 und das Diagramm 7.4 geben einen Überblick über die Kosten verschiedener IPC-Operationen
im Vergleich mit dem bisherigen IPC-Pfad. Die Werte umfassen die Kosten für einen kompletten Zyklus,
also zwei IPC-Operationen. Beide Kerne wurden mit größtmöglicher Optimierung compiliert. Der Aufruf des
Assembler-Shortcuts wurde jedoch unterbunden, so dass direkt der generische IPC-Pfad angesprungen wird.

Ein großer Teil des Geschwindigkeitsgewinns resultiert daraus, dass der neue IPC-Pfad Fall auf viele teure
Operationen verzichtet bzw. diese soweit wie möglich zurückstellt. Dazu gehören das Holen von Locks, CAS-
Operationen und das frühe Ein- und Ausketten aus der Senderwarteschlange.

Weiterhin tragen das Ausfaktorisieren und die Verschiebung von unkritischem Code, die Verwendung von
inline-Funktionen und verzögertes Setzen des Threadzustandes zum Geschwindigkeitsgewinn bei. Ein Teil der
Optimierungen wäre auch mit vollständiger Unterbrechbarkeit möglich gewesen, jedoch nicht das Vermeiden
von Locks und der CAS-Operationen.

Im Short-IPC Fall, innerhalb eines Adressraumes, wird die doppelte Geschwindigkeit erreicht. Auch kurze
Long-IPC Operationen werden schneller, obwohl bei Long-IPC-Operationen nur das Setup und Rendezvous
von dem neuen IPC-Pfad profitiert.

Der bisherige Long-IPC Code enthielt einen Bug, welcher sich bei dem Benchmark in Seitenfehlern bei jeder
Long-IPC-Operation im IPC-Fenster zeigte. Mit diesem Fehler kostet eine Long-IPC in beiden Kernen rund
2000 Takte mehr.

Bei den Messungen der IPC-Geschwindigkeit, stellte sich eine Eigenart der Pentium IV Caches heraus. So-
bald sich die virtuellen Adressen der TCBs von beiden Pingpong-Threads um ein Vielfaches von 64KByte
unterschieden, verschlechterte sich die IPC-Performance signifikant. Eine einfache Short-IPC innerhalb eines
Adressraumes kostet dann doppelt soviel Zeit. Die physischen Adressen der TCBs spielten in diesem Fall
keine Rolle. Ein Grund für diese Effekte können dieVhintsder Caches sein.
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7.2 Echtzeiteigenschaften im Vergleich

Neuer IPC-Pfad Bisheriger IPC-Pfad
Operation CPU-Taktzyklen CPU-Taktzyklen Gewinn

Short-IPC, innerhalb eines Adressraumes
Heißer Cache 1028 2275 121%
Kalter Cache 13612 18734 37%

Short-IPC, zwischen Adressräumen
Heißer Cache 2426 3815 57%
Kalter Cache 15341 20298 32%

Long-IPC (4 Wörter)
Heißer Cache 3641 5525 51%
Kalter Cache 26643 29227 9%

Long-IPC (256 Wörter)
Heißer Cache 6131 8215 33%
Kalter Cache 28776 33021 14%

Short-Flexpage-Map (4Kbyte) 3798 5210 37%
Seitenfehler zwischen Adressräumen 6751 8046 19%

Tabelle 7.1:Geschwindigkeitsvergleich bisheriger und neuer IPC-Pfad

7.2 Echtzeiteigenschaften im Vergleich

Um die Echtzeiteigenschaften des IPC-Pfades zu bestimmen, wird die Interrupt-Latenzzeit unter ungünstigen
Bedingungen ausgemessen. Die Ergebnisse werden dann mit den Werten des bisherigen IPC-Pfad verglichen.

Als periodische Interruptquelle dient der Local-APIC der CPU. Diese Interrupts werden vom Fiasco-Kern
durch IPC an ein Nutzerprogramm zugestellt. Es liest den Zeitzähler des Local-APIC aus, und bestimmt so
die Zeit zwischen dem Auslösen des Interrupts bis zur Aktivierung des Interrupt-Threads. Der Nutzerthread,
welcher mit dem Local-APIC-Interrupt assoziiert ist, besitzt die höchste Priorität im System, und lief in einem
eigenen Adressraum.

Der Fiasco-Kern verwendet als Zeitgeber den PIT. Der PIT wird in einem periodischen Modus betrieben, da-
durch muss der Interrupt nur am Interruptcontroller bestätigt werden. Eine teure Bestätigung wie bei der RTC
ist nicht notwendig. Der Zeitgeber-Interrupt besitzt im Normalfall die höchste Priorität im System. Es wur-
den zur Bestimmung der “Worst-case”-Zeiten, alle IPC- und Interrupt-Shortcuts deaktiviert. Der Assembler-
Shortcut läuft zwar auch mit gesperrten Unterbrechungen, aber bei kaltem Cache ist seine Laufzeit geringer als
die des neuen IPC-Pfades, welcher auch mit geschlossenen Interrupts läuft. Daher wird auf dem Assembler-
Shortcut verzichtet.

Mit aktivierten Interrupt-Shortcut liegen gemessenen Verzögerungszeiten erheblich geringer, selbst bei hoher
Last sind sie unter 10µs.

Es werden verschiedene Lasten verwendet um die Echtzeit-Eigenschaften der Kerne auszumessen und zu
vergleichen:

• Cache-Flooder: Neben dem Thread zur Ermittlung der Verzögerungzeit lief in der restlichen Zeit ein
Cache-Flooder, um die Caches der CPU zu invalidieren. Die Ergebnisse zeigt Diagramm 7.5. Die Zeit
für den schlechtesten Fall beträgt für den bisherigen IPC-Pfad 13µs und für den neuen 15µs. Im Schnitt
unterscheiden sich die durchschnittlichen Zeiten um 1µs.

• IPC-Flooder: Als Last dienten hier mehrere Threads in verschiedenen Adressräumen, welche sich ge-
genseitig IPCs zustellen. Solange nicht der Interrupt-Thread aktiv ist, werden ständig IPC-Operationen
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Abbildung 7.4:Geschwindigkeitsvergleich.

ausgeführt. Die Ergebnisse zeigt Abb. 7.6. Die “Worst-Case”-Zeit beträgt für den neuen IPC-Pfad 8µs,
für den bisherigen IPC-Pfad 7µs bei hoher IPC-Last mit warmen Cache. Wieder sind ein wenig schlech-
tere Verzögerungszeiten für den neuen IPC-Pfad erkennbar.

• IPC-Last und Cache-Flooder: Hier wird vor jeder IPC der Cache invalidiert. Dadurch ist die IPC-
Last geringer als im vorherigen Experiment und es wird sichergestellt, dass der IPC-Pfad einen kalten
Cache vorfindet. Die Ergebnisse in Abb. 7.7 unterscheiden nur unwesentlich gegenüber dem ersten
Experiment, wo nur der Cache-Flooder aktiv war.

• DOpE + Cache-Flooder: Neben dem Cache-Flooder, wird die DOpE-Umgebung [FH03] als Last ver-
wendet. Es laufen der DOpE-Server, weitere benötigte Server und mehrere aktive DOpE-Applikationen,
welche für eine hohe IPC-Last sorgen. Die Eingabe- (libinput) und die Semaphorebibliothek (libsema-
phore) sind modifiziert, so dass deren Threads nicht mehr die höchste Priorität verwenden. Damit wird
sichergestellt, dass der Thread für den Local-APIC-Interrupt die höchste Priorität im System besitzt.
Grafik 7.8 stellt die Ergebnisse dar. Hier ist die maximale Zeit für den neuen IPC-Pfad erstmals mit
18µs größer gegenüber dem bisherigen IPC-Pfad, dessen Zeit beträgt 14µs. Ferner ist an der Verteilung
ein besseres durchschnittliches Verhalten für den bisherigen IPC-Pfad zu erkennen.

Besonders im letzten Experiment ist die Zeit im ungünstigen Fall für den neuen IPC-Pfad, gegenüber dem
bisherigen Pfad, um 4µs höher. Die Experimente zeigen auch, dass der Cache den größten Einfluss auf die
Verzögerungszeiten besitzt. Als Ziel muss daher gelten, bei nicht unterbrechbarem Kerncode die Belastung
des Caches möglichst gering zu halten. Andere Hardware-Kosten spielen dagegen kaum eine Rolle. Es besteht
die Möglichkeit den Cache zu partitionieren [LHH97], damit ein Teil des Caches für den Kern reserviert bleibt.
Messungen mit aktivierten Assembler- und IRQ-Shortcut ergaben in beiden Fällen erheblich kleinere Zeiten.
Da diese Optimierungen in ungünstigen Fällen nicht genommen werden, wurde in den Experimenten darauf
verzichtet.

Es können, auf Kosten der Geschwindigkeit, weitere Unterbrechungspunkte gesetzt werden, um den Ab-
stand zwischen dem neuen und bisherigen IPC-Pfad zu verkleinern. Die Diagramme 7.9 und 7.10 zeigen die
Abhängigkeit der IPC-Performance und Verzögerungszeiten unter Last bezüglich der Anzahl der Unterbre-
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Abbildung 7.5:Cache-Flooder
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Abbildung 7.6:hoher IPC-Durchsatz

chungspunkte im geschwindigkeitskritischen Programmteil. Wenn die Optimierung, das verzögerte Sperren
von Interrupts, verwendet wird, unterscheiden sich die Performancewerte nicht.

7.3 Auswertung

Implementierung und Optimierung

Die Anzahl der Unterbrechungspunkte ist zu minimieren, um die Geschwindigkeit zu optimieren. Dem Ge-
genüber steht der Assemblershortcut, welcher einen großen Teil der Short-IPC-Operation behandelt und der
generische IPC-Pfad selten genommen wird. Dieser behandelt dann nur Long-IPCs, das Einblenden von Flex-
pages, Timeouts.

In L4Linux 2.6 [Lac04] wird eine Ausnahme-IPC, mittels des implementierten IPC-Pfads, an den Linuxser-
ver zugestellt. Die Antwort durch den Linuxserver erfolgt mit IPC-Shortcut. Hier ist ein geringer Gewinn
feststellbar.
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Abbildung 7.7:IPC + Cache-Flooder
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Abbildung 7.8:Dope + Cache-Flooder

Daher ist es besser, mehr Unterbrechungspunkte zu setzten, da die wirklich schnellen IPCs vom Shortcut
behandelt werden und nur die langsameren IPC-Nachrichten mit dem normalen IPC-Pfad übertragen werden,
wo der Gewinn prozentual geringer ausfällt.

Es werden im neuen IPC viele Inline-Funktionen verwendet, die einige Takte einsparen. Wenn diese Funktion
jedoch mehrfach benötigt wird, vergrößert sich der Kerncode. Besonders die IPC-Funktion wird an mehreren
Stellen im Kern verwendet. Beispiele sind der IPC-Systemaufruf, Seitenfehlerbehandlung und Exception-
IPCs. Für große Funktionen, wie diedo_ipcFunktion, lohnt sich das Inlining in der Praxis daher kaum.

Weiterhin stellt sich die Frage von Optimierungen, welche man mehr als “Hack” bezeichnen kann. Zum Bei-
spiel das verzögerte Sperren der Interrupts, oder das Überschreiben des Kernstacks, damit der Empfänger
möglichst schnell zum Nutzer zurückkehrt. Diese Optimierungen sind schlecht wartbar, und da der Short-
cut viele IPC-Operationen schon schnell behandelt, spielen diese nur bei komplexen IPCs eine Rolle, wo ihr
Gewinn prozentual sehr niedrig ist. Ferner sind diese Optimierungen oft sehr plattform-spezifisch und un-
portabel. Es wurden zwar einige dieser Optimierungen umgesetzt, da der absolute Gewinn im späteren Kern
jedoch minimal war, wurden einige dieser Optimierungen aufgrund der Wartbarkeit wieder fallen gelassen.
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Abbildung 7.10:Abhängigkeit der Echtzeit-Eigenschaften von Unterbrechungspunkten

Ergebnis

In den Messergebnissen sind deutliche Unterschiede zwischen dem bisherigen, unterbrechbaren IPC-Pfad
und dem neuen, größtenteils nicht unterbrechbaren IPC-Pfad, festzustellen. Der letztere ist zwar schneller,
die Latenzzeiten sind jedoch auch größer. Es werden nur das Rendezvous und der Transfer von Short-IPC
mit gesperrten Interrupts ausgeführt. Kopieroperationen für Speicherinhalte, welche im Normalfall erheblich
länger dauern, mit gesperrten Interrupts durchzuführen, lohnt sich dagegen nicht. Des Weiteren ist hier auch
der Cache zu beachten, beidirty Cachezeilen, können solche Kopieroperationen sehr lange dauern.

Im Fiasco-Kern werden noch andere kritische Abschnitte mit geschlossenen Interrupts, z.B. die Behandlung
des Zeitgebers und der Interrupts, ausgeführt, so dass im Vergleich dazu die Latenzzeiten des neuen IPC-
Pfades gegenüber dem bisherigen akzeptabel sind. Wenn geringere Verzögerungszeiten benötigt werden, kön-
nen weitere Unterbrechungspunkte hinzugefügt werden. Ein nicht voll unterbrechbarer IPC-Pfad ist somit für
einen Echtzeit-Mikrokern geeignet, wenn genügend Unterbrechungspunkte vorhanden sind.

Die Kosten für die Synchronisation sind im bisherigen IPC-Pfad sehr groß. Eine Umstellung der Synchro-
nisation für kleinere und mittlere kritische Abschnitte, auf das Sperren von Interrupts, z.B. der Zugriff auf
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7 Auswertung

TCBs würde diese Kosten minimieren. Größere kritische Abschnitte können in mehrere kleinere Abschnitte
aufgebrochen werden.
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8 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein neuer IPC-Pfad entworfen und implementiert, der signifikant schneller als der
bisherige IPC-Pfad ist. Obwohl er zum größten Teil mit gesperrten Interrupts ausgeführt wird, ist die Echtzeit-
fähigkeit durch Unterbrechungspunkte sichergestellt. Die Verzögerungszeiten sind im ungünstigen Fall etwas
höher als bei dem bisherigen IPC-Pfad.

Zum Beginn der Arbeit wurden die Kosten für verschiedene Hardware Ereignisse und Instruktionen und be-
sonders kritische Kernoperationen wie Kontextwechsel und Interruptcode analysiert. Hier zeigte sich die nega-
tive Wirkung des Caches auf die Verzögerungszeiten. Das anfänglich gesetzte Ziel, Latenzzeiten zu erreichen,
welche nicht wesentlich größer als der Zeitaufwand für den längsten Maschinenbefehl sind, zeigte sich schon
dort unerreichbar, sobald der Cache mit einbezogen wird. Selbst ein einfaches Laden eines Registers kann
im schlechtesten Fall mehrere hundert Nanosekunden betragen. Ferner gibt es auch durch die PC-Architektur
Beschränkungen. Das Bestätigen eines Interrupts imSpecial fully Nested Modekann auf der Testplattform
mehr als 5000 Takte kosten.

Nicht unterschätzt werden darf, dass sich die Verzögerungszeiten von bestimmten Ereignissen und Opera-
tionen addieren. Wenn die CPU einen kritischen Abschnitt mit gesperrten Interrupts bearbeitet, muss ein
ausgelöster Interrupt am Interruptcontroller warten. Erst wenn die CPU die Interrupts freigibt, erfolgt die Zu-
stellung des Interrupts vom Interruptcontroller zum Prozessor. Dieser führt dann die Interrupt-Routine aus.
Bis der Interrupt dem Nutzer zugestellt ist, ist im ungünstigen Fall eine Zeit vergangen, welche der Summe
der benötigten Zeiten für diese drei Operationen entspricht.

Ein Hauptproblem in dieser Arbeit, war das atomare Umschalten vom Sende- in den Empfangszustand. Der
bisherige IPC-Code besitzt hier Fehler, zum Beispiel Timeoutfehler oder Prioritätsinversion. Der neue IPC-
Pfad behebt diese Probleme.

Bei der Implementierung wurde nur ein Teil des bisherigen IPC-Pfades übernommen, ein großer Teil wurde
neu implementiert. Die meiste Zeit wurde für das Ausmessen und Verfeinern des IPC-Pfades benötigt, um die
Geschwindigkeit zu maximieren. Heutige CPUs reagieren durch die verschiedensten Caches und Puffer sehr
unterschiedlich auf kleine Codeänderungen. Des weiteren wurden in dieser Arbeit noch kleinere Fehler im
bisherigen IPC-Code entdeckt und behoben.

Es bleiben einige Probleme offen, der neue und der bisherige IPC-Pfad führen den Nachrichtentransfer mit
der Priorität des Senders durch. Korrekterweise müsste man die Priorität des Empfängers berücksichtigen und
den Transfer mit dem Maximum der beiden Prioritäten durchführen. Weiterhin besteht das Problem, dass es
zu Prioritätsinversion kommt, wenn Threads mit hoher und geringer Priorität, um einen Server mit geringer
Priorität konkurrieren. In [US04] wird auf dieses Problem eingegangen und eine Lösung vorgestellt.
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Glossar

CLI Clear Interrupt Flag

DOpE Desktop Operating Environment

DoS Denial of Service

DROPS Dresden Realtime Operating System

FIFO First-In, First-Out

IA-32 Intel x86 32-Bit Architektur

ID Bezeichner, engl. Identifier

IPC Inter Process Communication

IRQ Interrupt

KIP Kernel Information Page

Local-APIC Local Advanced Interruptcontroller

PIC Programmable Interrupt Controller

PIT Programmable Interval Timer

RTC Real Time Clock

STI Set Interrupt Flag

TLB Translation Lookaside Buffer

TSS Taskstatesegment
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