Diplomarbeit

Implementierung eines Echtzeit-IPC-Pfades
mit Unterbrechungspunkten
far L4/Fiasco

René Reusner

Juli 2005

Technische Universitat Dresden
Fakultat Informatik
Institut fur Systemarchitektur
Professur Betriebssysteme

Betreuender Hochschullehrer: Prof. Dr. rer. nat. Hermann Hartig
Betreuender Mitarbeiter: Dr.-Ing. Michael Hohmuth

Erklarung

Hiermit erklare ich, dass ich diese Arbeit selbststéandig erstellt und keine anderen als die angegebenen Hilf:
mittel benutzt habe.

Dresden, den 31. Juli 2005

René Reusner

Inhaltsverzeichnis

1 Aufgabenstellung 11
2 Einleitung 13
2.1 Gliederung e e e e 14
2.2 Danksagung 14
3 Hintergrund 15
3.1 FIAaSCO o 15
3.2 AufbauvonFiasco 15
3.3 Synchronisationin Fiasco 18
3.4 IPC-Architektur e 20
4 Analyse der Verzégerungszeiten 25
4.1 Hardware e e 25
4.2 Software e 27
4.3 Zusammenfassung 30.
5 Entwurf 33
5.1 Kernspeicher 33
5.2 Synchronisation e e e 36
5.3 Senderwarteschlange mit Prioritdten 38.
5.4 AufbaulPC-Pfades e 42
5.5 Probleme des bisherigenIPC-Pfades 46 .
6 Implementierung 49
6.1 TIMEOULS 49
6.2 Senderwarteschlange 50.
6.3 Optimierungdes IPC-Pfades e h2.
7 Auswertung 57
7.1 Mikro-Benchmarks 57
7.2 Echtzeiteigenschaftenim Vergleich o o 6l.
7.3 AUSWEITUNG o o e e e e e e e e e e e 63
8 Zusammenfassung und Ausblick 67
Glossar 69
Literaturverzeichnis 71

Abbildungsverzeichnis

3.1 Aufteilungdes Kernspeicher. 16
3.2 Ubersicht uber die bendétigten Klassen und deren Beziehungen. 17. .
5.1 TCBZugriff. e 34
5.2 Indirekter TCB Zugriff. 35
5.3 Listals Senderwarteschlange. 39.
5.4 Senderwarteschlange-Trie. 40.
5.5 Senderqueue-Heap. e 41.
5.6 IPC-Zustandsdiagramm. e e e 43,
5.7 PrioritAtsinversion. L e AT
5.8 Timeout-Fehler. 48
6.1 Timeout-Liste.. e 50
6.2 Implementierte Senderwarteschlange. oL 51.
6.3 Kernstack. 53
7.1 Abhangigkeit der Kosten von der Grol3e der Senderwarteschlange 58. .
7.2 Durchschnittliche Zeit zum Einketten von Sendern unterschiedlicher Prioritat 59 .
7.3 Durchschnittliche Kosten zum Einketten eines Timeouts 60 .
7.4 Geschwindigkeitsvergleich. 62
7.5 Cache-Flooder. 63
7.6 hoherIPC-Durchsatz e 63
7.7 IPC+ Cache-Flooder 64
7.8 Dope +Cache-Flooder e 64
7.9 Abhangigkeit der IPC-Performance von Unterbrechungspunkten 65. .
7.10 Abhangigkeit der Echtzeit-Eigenschaften von Unterbrechungspunkten 65. .

Tabellenverzeichnis

4.1
4.2
4.3

51

7.1

Ausfuhrungszeiten von speziellen Maschineninstruktionen 26 .
Hardware Verzogerungszeiten i i i i e e 28.

Verzogerungszeiten von Kernoperationen 31.
Sende- und Empfangszustéande 42 .
Geschwindigkeitsvergleich bisheriger und neuer IPC-Pfad 61 .

1 Aufgabenstellung

11

2 Einleitung

Mikrokerne sind kleine Betriebssystemkerne, die nur die notwendigen Grundfunktionen bereitstellen. Die ho-
heren Funktionen des Betriebssystems werden durch Server bereit gestellt, welche sich in separate Adresst:
men befinden. Es soll dadurch eine gréRere Modularitét, Flexibilitat und Sicherheit erreicht werden.

Ein Mikrokern der 1. Generation war Mach [ABB6]. Mach entstand, indem man aus einem monolithischen
System immer mehr Funktionen in Nutzerprogramme auslagerte und nur noch diese Funktionen im Kerne
lies, welche nicht sicher auf Nutzerebene implementiert werden kénnen. Mikrokerne der ersten Generatiol
zeigten erhebliche Geschwindigkeitsdefizite, so dass in spateren Versionen wieder Funktionen zurick in de
Kern verlagert wurden.

Mikrokerne der 2. Generation wurden unter Bertcksichtigung von Geschwindigkeit [Lie93] und Minimalis-
mus entworfen. Es wird dem Kern nur das hinzugeflgt, dass nicht sicher im Nutzerbereich implementiert
werden kann. Die Mikrokerne der 2. Generation zeigten, dass man mit ihnen auch effiziente Systeme baue
kann.

Der L4-Kern [Lie96] ist ein Mikrokern der 2. Generation. Er ist ein Nachfolger des L3-Systems [Lie88]. Der
L4 Mikrokern stellt folgende Mechanismen zur Verfugung.

» Adressraume: Adressrdume bilden die Schutzdoméane. Sie enthalten einen oder mehrere Threads
Adressraume werden rekursiv durch Pager konstruiert, mit Sigma0 als initialen Adressraum. Bei einermnr
Seitenfehler in einem Adressraum, generiert der Kern eine Nachricht an seinen Pager. Dieser kann dan
in diesen Adressraum eine Seite einblenden, um den Seitenfehler aufzulésen. Damit ist es mdglich, ein
Hierarchie von Adressraumen rekursiv aufzubauen.

» Threads: Threads sind die Aktivitatstrager. Die Threads werden entsprechend ihrer Prioritaten vom
Scheduler eingeplant und ausgeftihrt. Alle bisherigen L4-Implementationen verwenden Kernthreads
die dem Kern, im Gegensatz zu Threads auf Nutzerebene, bekannt sind. Die Threads werden im Ker!
durch eine Kontrollstruktur, dem Thread-Kontroll-Block (TCB), reprasentiert.

* IPC: Threads kdnnen miteinander mittels Interprozesskommunikation, engl. Inter Process Commu-
nication, kurz IPC, kommunizieren. Die L4-IPC bietet als Operationen das Sexmihehdas Emp-
fangenreceiveund wait, und das kombinierte Senden und Empfangeply_waitund call an. Alle
IPC-Operationen sind synchron, d.h. die Nachrichtentbertragung findet erst statt, wenn Sender un
Empfanger bereit sind. Um nicht erfolgreiche IPC-Operationen nach einer bestimmten Zeit abzubre-
chen, kénnen Timeouts gesetzt werden. Nachrichten kdnnen aus einfachen Registerwerten, Speich
rinhalten und Flexpagé$HWL96] bestehen. Fiir die Behandlung von IPCs ist der IPC-Codepfad des
Kerns zustandig.

Ein L4-Mikrokern-System besteht aus dem L4-Kern, mehreren Servern, welche die Dienste wie Dateisysteme
Netzwerkdienste und grafische Oberflache zur Verfliigung stellen, sowie den Nutzerprogrammen.

!Flexpages sind Speicherseiten, welche im Adressraum des Empféangers eingeblendet werden kénnen.

13

2 Einleitung

Die Nutzerprogramme kommunizieren tber IPC mit diesen Servern, wenn sie einen bestimmten Dienst in
Anspruch nehmen wollen. Daher ist die IPC-Performance entscheidend fir ein effizientes System.

Heute bezeichnet L4 eine Mikrokernfamilie. Es existieren verschiedene L4-Schnittstellen. Es gibt die originale
Schnittstelle2 genannt, und die experimentellen SchnittsteXed [Lie99] undX.2 [Tea05]. Weiterhin gibt

es noch eine hoch experimentelle Schnittstedlesec[Kau05], die besonders Rechte- und Ressourceprobleme
adressiert.

2.1 Gliederung

In dieser Arbeit wird ein neuer IPC-Pfad fiir den L4-kompatiblen und echtzeitfahigen Mikrokern Fiasco imple-
mentiert. Im nachfolgendem Kapitel gebe ich einen Uberblick (iber den Fiasco-Kern. Insbesondere umfasst
dies alle Aspekte des Kerns, welche fur die IPC-Performance und Echtzeit entscheidend sind. Eine kurze
Erlauterung der vorhandenen IPC-Implementation wird auch gegeben. Im 3. Kapitel gehe ich auf die Eigen-
schaften von Hardware und Software, im Hinblick auf Echtzeit, ein. Das 4. Kapitel beschreibt den Entwurf
des neuen IPC-Pfades und geht dabei auf verschiedene Probleme ein. Die Implementierung und einige damit
verbundene Probleme werden im 5. Kapitel kurz erlautert. Die Auswertung im Hinblick auf Performance und
Echtzeitfahigkeiten, im Vergleich zum bisherigen Kern, erfolgt im 6. Kapitel. Im 7. Kapitel erfolgt eine kurze
Zusammenfassung, welche Ziele wurden erreicht und welche Probleme bestehen noch.

2.2 Danksagung

Hier mdchte ich mich bei Prof. Dr. Hermann Hartig fir die Moglichkeit bedanken, in der Betriebssystem-

gruppe zu arbeiten. Mein besonderer Dank gilt auch meinem Betreuer, Dr.-Ing. Michael Hohmuth. Weiterhin
mochte ich mich bei Jean Wolter, Dr.-Ing. Frank Mehnert, Dietrich Clauf3, Bernhard Kauer und Adam Lackor-
zynski bedanken.

14

3 Hintergrund

3.1 Fiasco

Fiasco [Hoh98, Hoh02a] ist ein L4-kompatibler und echtzeitfahiger Mikrokern, entworfen und implementiert
von Michael Hohmuth. Es war der erste L4-Kern, welche in einer Hochsprache geschrieben wurde und be
dessen Entwurf besonders Wert auf sehr gute Echtzeiteigenschaften gelegt wurde. Der Fiasco-Kern imple
mentiert die V2, X0 und X.2-Schnittstelle. Es gibt auch eine stark abgeénderte Version, welche die L4.sec
Schnittstelle implementiert.

Fiasco lauft auf 1A-32, IA-64 [War02] und ARM [War03]. Eine x86-64 und Power-PC Portierung sind in
Arbeit. Desweiteren Fiasco als Nutzerprogramm auf einem Linuxsystem [Ste02] verfligbar. Fiasco istin C++
implementiert. Michael Peter implementierte zusatzlich einen IPC-Shortcut in Assembler [Pet02].

Fiasco ist ein Echtzeitkern und garantiert kurze und begrenzte Verzdgerungszeiten bei der Zustellung vo
Ereignissen. Um dies zu erreichen, ist der Kern sehr oft unterbrechbar, nur kurze kritische Abschnitte werdel
durch das Sperren von Interrupts geschutzt. Fur gréf3ere kritische Abschnitte nutzt Fiasco nichtblockierend
Synchronisation, deren Details in [Hoh02b] erlautert werden.

Einen anderen Ansatz als die L4-Kerne, insbesondere Fiasco geht der Fluke-Mikrokern. Der Fluke-Kern biete
nur atomare Operationen an, langere Systemaufrufe werden in mehrere atomare Teiloperationen aufgespalt
[BF98]. Der Zustand zwischen diesen Operationen wird vollstdndig zum Nutzer exportiert, so dass der Kerr
sich keine Zustande im Kern merken muss.

3.2 Aufbau von Fiasco

Adressraume

Adressraume bilden die Schutzdoméne und enthalten einen oder mehrere Threads, die Aktivitatstrager. D
V2-Schnittstelle unterstiitzt maximal 128 Threads pro Adressraum, die V4-Spezifikation setzt keine solche
Grenze. Fur das Einblenden und Entfernen von Flexpages in anderen Adressraumen, verwaltet der Kern ei
Mapping-Datenbank, wo fur jede physische Speicherseite ein Mapping-Baum angelegt wird. Wird eine Flex-
page entfernt, wird Giber diesen Baum iteriert, und die Seite wird aus betroffenen Unterbaumen entfernt, ode
deren Rechte modifiziert.

Der Adressraum ist auf der IA-32 Architektur in einen, drei Gigabyte grof3en, Nutzeradressraum und in einen
ein Gigabyte grof3en, Kernadressraum aufgeteilt. Der Kernadressraum ist flir den Nutzer nicht zugreifbar un
ist in jedem Adressraum eingeblendet.

Er enthalt den TCB-Bereich und die 10-Bitmap, sowie die Region flr den verfligbaren physischen Kernspei-
cher, siehe Abb. 3.1. In einigen unbenutzten Eintragen des Seitenverzeichnis, werden auch Task-spezifisc!
Variablen eingetragen.

15

3 Hintergrund

64M byte> Physisches Speichermapping
Kernadressraum 192Mbyte SMAS-Adressraume
4Mbyte
1Gbyte Kern (Code, Daten, BSS)
4Mbyte
10-Bitmap
4Mbyte Kernspeicherbereich (TSS)
8Mbyte frei
8Mbyte IPC-Fenster 1 AMbyte
8Mbyte IPC-Fenster 0 Syscall-Seite
20Mbyte SMAS-Variablen 0T
APIC-Seite
8Mbyte frei JDB-Variablen
8Mbyte LDT-Variablen
Nutzeradressraum 4Mbyte Service-Seite
. T
3Gbyte 20Mbyte Task-Variablen
Slabs 2Kbyte
160Mbyte Threadkernstack
512Mbyte TCB-Bereich | [TT 77 i _____
TCB
\ TCB-Variablen
Abbildung 3.1:Aufteilung des Kernspeicher.
Threads

Threads sind die Aktivitatstrager, und kdnnen erzeugt, verandert und geléscht werden. In der V2 und XO-
Spezifikation erfolgt dies Uber dehread_ex_regSystemaufruf. In der X.2-Spezifikation diethtead _ex_-
regsnur zum Modifizieren von Threads, Erzeugen und Loschen erfolgt dithad_controlSystemaufruf.

Jeder Thread wird durch seinen TCB reprasentiert, welcher im TCB-Bereich des Kernadressraumes zu fin-
den ist. Der TCB besteht aus einéthreadObjekt, welches Thread-spezifische Variablen enthalt, und dem
Kernstack dieses Threads.

Fiasco implementiert das “Prozessmodell”, d.h. jeder Thread besitzt einen Kernstack. Darauf wird der aktuelle
Zustand des Threads automatisch gesichert, ein Umschalten der Threads erfolgt durch Umschalten des Kern-
stacks. Dadurch ist unterbrechbarer Kerncode sehr einfach zu implementieren, da der Zustand des Threads
jederzeit auf dem Stack gespeichert ist. Der Gegensatz dazu ist das “Interruptmodell”. Hier gibt es nur einen
Kernstack pro CPU. Der Zustand eines Threads muss beim Kontextwechsel explizit i€eirigruatiort

gesichert werden. Daher kann dieser Thread nur an daftir vorbereiteten Punkten unterbrochen werden.

Die KlasseThreadist von den KlasseRReceiverund Senderabgeleitet, siehe auch Abb. 3.2. Diese beiden
Klassen entsprechen der Empfanger- und Senderrolle einer IPC-Operation. DieRéasseeiist weiterhin
von Contextabgeleitet. Die Klass€ontextist der Ausflihrungskontext. Sie stellt den den Schedgleng-
dulelund Funktionen zum Umschalten des Ausfuhrungskontesegch tq switch_exekzur Verfigung.
Details sind in [Hoh02a] zu finden.

Ein Thread kann sich in verschiedenen Zustanden befinden, diese werden durch eine Kombination von Flags
im Zustandswort de€ContextKlasse beschrieben.

!Continuation: Eine Datenstruktur, welche die benétigte Informationen enthalt, um den Zustand des Threads wiederherzustellen und
die Operation fortzusetzen.

16

3.2 Aufbau von Fiasco

Sched_context

+ set_prio() : void
+ gnantum() : Unsigned64
+ owner() : Context*

Sender

+ ipc_receiver_ready() : void
sender_enqueue() : void
#id() : Global_id

Activation
Context
+ ipc_receiver_ready() : void
+ schedule() : void F+ send() : void
+ switch_to() : void ~ setup_msg() : void
+ ready_enqueue() : void -
T Irq
Receiver
+ ipc_receiver_ready() : void
+ sender_ok() : bool + lookup() : Irq*
+ sender_list() : Sender**
+ rcv_regs() : Sys_ipc_frame*
Thread Preemption Dirg
+ sys_ipc() : void + ipc_receiver_ready() : void + hit : void
—do_send() : Ipc_err (o>t send() : void
—ipc_send_regs() : Mword - setup_msg() : void

Abbildung 3.2:Ubersicht tiber die benotigten Klassen und deren Beziehungen.

Interrupts

Interrupts werden in L4 auf IPC abgebildet. Ein Thread kann sich mit einem Interrupt assoziieren. Er bekomm!
eine Nachricht zugestellt, wenn dieser Interrupt ausgelost wurde. Unterbrechungen werden durch Interrup
deskriptoren, die Klasskq, dargestellt Die Klasskq ist von Senderabgeleitet, und besitzt damit auch die
Fahigkeit, IPC-Nachrichten zu verschicken. Die KlaBs#g leitet vonlrg ab, und ihrehit-Methode ist fur die
Zustellung der Nachricht zustandig, welche aufgerufen wird, wenn ein Interrupt auftritt.

Scheduling

Scheduling umfasst den Bereich des Kerns, welcher sich mit der Auswahl und Ausfihrung von Threads
befasst. Der Scheduler wird durch dieheduleFunktion implementiert. Die Scheduling-Informationen wie
Prioritat, Zeitdauer und Besitzer dieser Zeitscheibe, sind im Scheduling-Kontext, reprasentiert durch die Klas
seSched_contexgetrennt vom TCB abgelegt.

Neben dem normalen Scheduling-Kontext, der im TCB des Threads aggregiert ist, kann ein Thread Ube
zuséatzliche Real-Time-Scheduling-Kontexte verfligen. Ein Zeiger im TCB zeigt stets auf den Skiinezh -
contextdieses Threads. Details dazu kénnen in [Ste04] nachgelesen werden. Wenn ein Real-Time-Scheduling
Kontext abgelaufen ist, wird eine Preemption-IPC an den Preempter des Besitzer-Threads generiert.

Es werden 256 Prioritaten zur Verfigung gestellt. Der Scheduler wahlt immer den Thread mit der héchster
Prioritat aus. Threads mit gleicher Prioritéat werden nacheinander, mit einer Round-Robin-Strategie, ausge
fuhrt.

17

3 Hintergrund

Zeitgeber

Die schedule() Funktion wird am Ende einer Zeitscheibe durch den Zeitgeber aufgerufen, um einen neuen
Thread auszuwahlen. Der Zeitgeber kann auf 1A-32 drei verschiedene Quellen nutzen, HehePCMOS
Echtzeituhr (RTC) und die Local-APfQler CPU. Der APIC-Timer kann als periodischer oderGi®-Shot-
Timerkonfiguriert werden. Bei den periodischen Zeitgebern, betréagt die Frequenz 1000Hz (PIT) oder 1023Hz
(RTC), so dass die Zeitgeber-Routine rund jede Millisekunde aufgerufen wird. BeDaeashot-Timewird

immer nur ein Interrupt ausgeldst. Der Zeitgeber wird dann auf das néchste Ereignis neu programmiert. Dies
kann das Ende der neuen Zeitscheibe oder der Ablauf eines Timeouts sein. Der “One-Shot-Timer” bietet eine
Genauigkeit fir Timeouts im Bereich von Mikrosekunden an. Man kann die Timeouts auf eine Mikrosekunde
spezifizieren, jedoch begrenzen die Verzégerungszeiten des Kerns die erreichbare Genauigkeit.

Ready-Liste

Die Bereitwarteschlange (Ready-Liste) enthélt alle ausfihrbaren Threads. Es gibt jedoch eine Ausnahme, der
aktuell aktive Thread muss nicht in der Ready-Liste enthalten sein. Ferner kbnnen in der Ready-Liste auch
nichtbereite Threads enthalten sein. Sobald der Scheduler beim Iterieren tUber die Ready-Liste einen solchen
blockierten Thread entdeckt, wird dieser nachtréglich aus dieser Liste entfernt.

Der Zweck dieser Optimierung (Lazy-Scheduling) ist, dass IPC-Operationen das Ein- und Ausketten von
Threads aus der Ready-Liste einsparen kénnen. Bei einer kombinierten Sende- und Empfangsoperation wird
sofort zum Empféanger umgeschaltet, ohne diesen in die Ready-Liste einzutragen. Der alte Sender wird auch
nicht aus der Ready-Liste entfernt, obwohl er sich im IPC-Wartezustand befindet und nicht mehr lauffahig ist.
Die Aktualisierung der Ready-Liste erfolgt erst nachtraglich im Scheduler. Diese Optimierung beschleunigt
besonders die Client-Server Kommunikation, wo viele kombinierten Sende- und Empfangsoperattnen,
undreply_wait verwendet werden. Wenn zwei Threads miteinander Pingpong spielen, wird so das Aktuali-
sieren der Ready-Liste bei IPC-Operationen komplett eingespart.

Implementiert wird die Ready-Liste durch ein Array, dessen 256 Elemente doppelt verkettete Listen sind, wel-
che alle Threads derselben Prioritét enthalten. Die Synchronisation von Anderungen der Ready-Liste erfolgt
durch das Sperren der Interrupts.

3.3 Synchronisation in Fiasco

Kritische Abschnitte in Fiasco werden nichtblockierend synchronisiert Dies bietet den Vorteil der vollen Un-
terbrechbarkeit und Prioritatsinversion wird vermieden. Nichtblockierende Synchronisation wird in sperrfreie,
engl.lock-freeund wartefreie, englvait-freg Synchronisation unterteilt.

» Wartefreie Synchronisation ist dhnlich Sperren, wobei das Blockieren durch Helfen ersetzt wird.
Wenn ein hoch priorisierter Threadeinen Konflikt mit einem niedrig priorisierten ThreBekentdeckt,
hilft A, dassB seinen kritischen Abschnitt beendet. Dies wird dadurch erreicht,Alasge CPU-Zeit
und seine Prioritat aB weitergibt. Sobald den kritischen Abschnitt verlasst, begimatien kritischen
Abschnitt. Dieser Vorgang lasst sich transitiv fortsetzen.

Um die Prioritatsvererbung sicher zustellen, darf ein Thread in einem kritischen Abschnitt nie blockie-
ren. Dies umfasst z.B. auch Zugriffe auf den Nutzeradressraum, da diese Seitenfehler auslésen kdnnen.
Der Kern setzt generiert eine Seitenfehler-IPC und dieser Thread blockiert.

2PIT: Programmable Interrupt Timer
3Local advanced Interrupt Controller

18

3.3 Synchronisation in Fiasco

» Lockfreie Synchronisation kommt ohne Sperren aus. Threads berechnen die Ergebnisse lokal, und
versuchen sie dann mittels atomarer Speicheroperationen auf die gemeinsamen globalen Daten zu b
tragen. Schlagt dies fehl, wird die Operation wiederholt. Fiasco verwendet als atomare Maschinenin-
struktion diecompare-and-swa@peration (CAS). Diese Operation vergleicht zuerst, ob der Ubergebe-
ne alte Wert noch mit dem Speicherinhalt Gbereinstimmt. Wenn ja, wird der Speicher mit dem neuen
Ergebnis Uberschrieben. Wenn der Vergleich fehlschlagt, wird die Operation inRestigrloopwie-
derholt. Diese teuren Maschineninstruktionen, Rery-loopund die notwendigen Priifungen sind ein
Grund, warum der bisherige IPC-Pfad sehr langsam ist.

Atomare Speicheroperationen

Atomare Speicheroperationen sind das normale CAS, das Doppelwort compare-and-swap (CAS2), welche
CAS auf zwei Worter erweitert, oder die load-locked(LL) und store-conditional(SC) Instruktionen, welche
auf RISC-CPUs zu finden sind. Die x86-Architektur bietet nur CAS und andere einfache atomare Operatio-
nen, wie Inkrement und Dekrement an. Fir Multiprozessorsysteme, kénnen diese Instruktionen mit einen
speziellen Lockprefix versehen werden, welche den Bus sperren und somit die Konsistenz auch bei mehrere
CPUs sicher stellen.

Diese Instruktionen sind nur bei Modifikation von einzelnen Worten verwendbar. Um etwas komplexere Da-
tenstrukturen und mehrere Worte atomar zu veréandern, wie zum Beispiel doppelt verkettete Listen, werde
fur sehr kurze Zeit die Interrupts gesperrt. Das Sperren der Interrupts reicht auf Multiprozessorsystemen, nu
fur lokale Daten aus, fur globale Daten sind zusétzlich Spin-Locks notwendig. Obwohl die Interrupts gespertt
werden, sind die Zeiten dennoch sehr kurz, und die Verzégerungszeiten verschlechtern sich nur unwesentlic

Sperren der Interrupts

Das Sperren der Interrupts erfolgt bei x86-Prozessoren durch Léschen des Flags fir Interrupts mittels der CL
Instruktion. Das Freigeben der Interrupts erfolgt durch die STI-Instruktion. Diese sind erheblich schneller als
das Sperren der Unterbrechungen am Interruptcontroller. Bei Fiasco-UX erfolgt dies auch durch die CLI
oder STI-Operation. Sobald eine dieser Instruktionen auftritt, generiert der darunterliegende Linuxkern ein
Signal, dessen Signalfunktion die Interrupts sperrt. Die Kl&gse lockstellt fiir das Sperren und Freigeben

der Interrupts eine allgemeine Lock-Schnittstelle zur Verfligung. Intern verwendet diese Klasse die CLI- und
STI-Operationen.

Im aktuellen Fiasco-Kern sind nach einem Kerneintritt die Interrupts noch gesperrt. Die Freigabe der Interrupts
erfolgt, nach dem Sichern der Register dem Kernstack, sofort durch den Kern.

Locks

Neben deCpu_lockKlasse gibt es weitere Locks zur wartefreien Synchronisation. Wenn bei dem Betreten des
kritischen Abschnittes ein solches Lock schon gesperrt ist, wird dem Lock-Besitzer durch Leihen der CPU-
Zeit und Prioritat geholfen, seinen kritischen Abschnitt zu beenden. Innerhalb der Lock-Methoden erfolgt die
Synchronisation durch Sperren der Interrupts.

Im Detail, sieht das folgendermaf3en aus: Wenn der Thread versucht, sich das Lock zu holen und feststell
dass es bereits durch einen anderen Thread gesperrt ist, schaltet er zu dem Lock-Besitzeswitdtels

um, ohne jedoch den Scheduling-Kontext umzuschalten. Es wird vorher noch ein Hinweis im TCB des Lock-
Besitzers gesetzt und der alte Thread bleibt weiter rechenbereit. Wenn sein Scheduling-Kontext abgelaufe
ist, und der Scheduler diesen Thread erneut auswahlt, prift er erneut, ob das Lock frei ist, und wenn nicht

19

3 Hintergrund

wird der Vorgang wiederholt. Bei der Freigabe eines Locks wird anhand des Hinweises im eigenen TCB
nachgeschaut, ob dem Thread geholfen wurde, den kritischen Abschnitt zu beenden. Wenn ja, wird zu dem
Helfer umgeschaltet, da in diesem Fall der Helfer eine héhere Prioritat besitzt.

Lock-Klassen

Es gibt neben den®pu_lockweitere Klassen von Locks in Fiasco. D8witch_lockbildet die Grundlage,

auf dem dadHelping_lockund Thread_lockaufbauen. Daslelping_lockentspricht denBwitch_lockjedoch

wird zusatzlich der Fall des nicht initialisierten Scheduling-System betrachtet. Dies ist beim Booten des Kerns
wichtig.

Die KlasseThread_lockdient zum Sperren von anderen Threads. Gesperrte Threads, werden bis auf eine
Ausnahme, nie vom Scheduler ausgewéhlt. Wenn zu einem gesperrten Thread umgeschaltet werden soll, wird
automatisch zu seinem Lock-Besitzer umgeschaltet. Eine Ausnahme bildet das Zerstéren von Threads durch
Thread::Kill. Dort lauft ein gesperrter Thread solange, bis er alle seine gehaltenen Locks freigegeben hat. Ein
Zahler im TCB wird inkrementiert, wenn dieser Thread ein Lock in Besitzt nimmt, und dekrementiert, sobald
dieses Lock freigegeben wird. Dadurch karimead::kill feststellen, ob der zu zerstérende Thread noch Locks
besitzt. Es wird solange zu dem zerstdrendem Thread umgeschaltet, bis dieser alle Locks freigegeben hat.

Die Lock-Klassen, inklusiv€pu_lock werden nie direkt verwendet, sondern tber einen Wéchtet, algq -

guard Der Konstruktor dieser Klasse nimmt ein Zeiger auf ein Lock-Objekt entgegen, und greift dann das
Lock im Konstruktor. Im Destruktor wird dieses Lock dann wieder freigebenlLbek guardoehandelt auch

das verschachtelte Sperren und Freigeben ein- und desselben Locks.

3.4 IPC-Architektur

Als IPC-Operationen werden das Senden einer Nachricht zu einem bestimmten Threasbrkluad das
Warten auf eine Nachricht angeboten. Es kann auf eine Nachricht von einem beliebigen Thread, das offene
Warten ppen-wai}, und eines bestimmten Threads, das geschlossene Weldsed-wai}, gewartet werden.

Ferner gibt es noch das kombinierte Senden und Empfangen, welches aus einer Sendeoperation gefolgt vom
Empfangen einer Antwort vom gleichen Threadl(), oder offenes Wartendply wai) umfasst. Diese kom-
binierten Operationen garantieren ein atomares Umschalten zwischen dem Sende- und Empfangszustand. Da-
durch kann ein Server dem Client mit Timeout Null antworten, ohne dass die IPC mit einem Timeout-Fehler
abgebrochen wird.

Timeouts bilden ein eigenes Untersystem im Fiasco-Kern. Auf Timeouts werden IPC-Timeouts, Timeslice-
Timeouts und Deadline-Timeouts abgebildet. Der IPC-Timeout dient dazu, Zeitbeschrankungen fir IPC-
Operationen durchzusetzen. Der Timeslice-Timeout bildet Zeitscheiben und deren Ablauf auf Timeouts ab.
Deadline-Timeouts dienen zum Durchsetzen von Perioden und Deadlines.

Sende- und Empfangsrolle

Fur die Senderolle ist die Klassenderzustandig, fir die Empfangsrolle, die KlasReceiver Jeder Sen-

der, also Threads, Interrupts, Preemptions und Activations [Cla05], leitet sich v@eddetKlasse ab. Da
Threads auch Nachrichten empfangen kénnen, leitet sich die Kfassadauch vorReceivemb. Die Sender-

Klasse enthélt die Absenderadresse (Absender-1D), und implementiert die Senderwarteschlange. Sie stellt mit
deripc_receiver_readyMethode eine Schnittstelle bereit, welche alle Sender implementieren miussen. Die
KlasseReceiverenthalt den IPC-Zustand, den Kopf der Senderwarteschlange und den IPC-Partner. In Fiasco

20

3.4 IPC-Architektur

ist der Sender das aktive Element in einer IPC-Operation, der Empfénger bleibt bis auf wenige Ausnahmel
inaktiv.

Passive Sender

In Fiasco gibt es neben Threads als aktive Sender, auch passive Sender. Sie sind nicht lauffahig und impleme
tieren nur die Schnittstelle d&enderKlasse, digpc_receiver_readethode. Der Empfanger ist in diesem

Fall das aktive Element der IPC, der sich die Daten direkt von dem Sender holt. Beispiele fir passive Sende
sind Interruptdeskriptoren, Preemptions und Activations.

Passive Sender Uberschreibenigie receiver_readethode deiSenderKlasse. Der Empfanger ruft diese
Methode auf, wenn er einen Sender in seiner Senderwarteschlange findet. Ein aktiver Sender (Thread) schal
in dieser Methode zum Sender-Thread um, welcher den Datentransfer durchfihrt. Bei einem passiven Send
erfolgt der Transfer der Nachricht jedoch direkt in dieser Methode, die auf in dem Kontext des Empfangers
ausgefihrt wird. Die Nachricht wird aus gespeicherten Informationen innerhalb des passiven Senders konstrt
iert, und in die Empfangsregister geschrieben.

Weiterhin hat die Aufteilung in aktive und passive Sender zur Folge, dass der Empfanger keine Threads, sor
dern nur noch Sender kennt. Ein Vorteil dieser Aufteilung ist die hohe Flexibilitdt. Es kann damit problemlos

fast jedes Ereignis auf eine IPC-Nachricht abgebildet werden. Ein Nachteil sind die notwendigen virtuellen
Methoden in der Senderklasse, da jeder Sender Uber andere Attribute verflugt.

Nachrichtenformat

Der Nachrichteninhalt kann aus einfachen Registerinhalten, Speicherseiten (Flexpages), und Speicherinhalt
bestehen. Da die Kommunikation synchron ist, missen die Nachrichten nicht im Kern zwischengespeicher
werden.

Man spricht von eineShort-IPG wenn kein Zugriff auf den Nutzeradressraum notwendig ist. Sie umfasst
den einfachen Transfer von Registerwerten und Flexpages in Registern.LldntgtPC werden die IPC-
Operationen zusammengefasst, bei denen ein Zugriff auf den Nutzeradressraum erfolgt. Hier kbnnen Se
tenfehler auftreten. In diesem Fall wird laufende IPC-Operation suspendiert, und der Kern generiert eine
verschachtelte Seitenfehler-IPC an den Pager des betroffenen Threads, um den Seitenfehler aufzulésen.

+ Die Registerwerte-IPCdient zum Ubertragen von Registerinhalten und ist sehr schnell, da kein Zu-
griff auf den Nutzerspeicher erforderlich ist. Die Werte kénnen gleich in den Registern gelassen werden.
Zwischen zwei Adressraumen werden zusétzliche TLB-Misses vermieden, da kein Zugriff auf Nutzer-
speicher erforderlich ist. Seitenfehler kdnnen hier nicht auftreten, so dass keine MalZnahmen zu ihre
Behandlung notwendig sind.

» Flexpagesdienen dazu, um Speicherseiten von dem Senderadressraum in den Adressraum des Emj
fangers einzublenden. Ein Pager kann auf eine Seitenfehler-IPC mit einer Flexpage antworten, um de
Seitenfehler aufzulésen. Flexpages kénnen in Registern oder in speziellen Nachrichtenstrukturen eine
Long-IPC enthalten sein.

* Long-IPC umfasst direkte und indirekte Zeichenketten (Strings), sowie Flexpages. In der V2-Schnittstell
wird die Nachricht durch eine spezielle Struktur, defessage-Dopbeschrieben. Diese kann Flexpa-
ges, mehrere Speicherwdrter und Zeiger mit GréRenangabe zu den indirekten Zeichenketten enthalte
In der X.2-Schnittstelle wird die Nachricht durch die Nachrichtenwdrter in den UTBEschrieben.

“Die UTCBs sind ein Teil des TCBs, welcher fiir den Nutzer zugreifbar im Adressraum eingeblendet ist.

21

3 Hintergrund

Die darin enthaltenen Woérter und die Inhalte der indirekten Zeichenketten werden durch den Kern in
den Empfangeradressraum kopiert. Um doppeltes Kopieren vom Sender zum Kern und vom Kern zum
Empfanger zu vermeiden, nutzt der L4 Kern das IPC-Fenster. In den Senderadressraum wird ein Teil des
Empfangeradressraumes, das IPC-Fenster, eingeblendet. Der Sender kann nun direkt die Speicherinhal-
te von seinem Adressraum in das IPC-Fenster kopieren. Seitenfehler kbnnen im Senderadressraum und
im IPC-Fenster auftreten und missen entsprechend unterschiedlich behandelt werden.

Aufbau einer IPC-Operation

Die Sende und Empfangsoperationen lassen sich in mehrere Teile, das Setup, Rendezvous, Datentransfer und
Abschluss aufteilen.

» Setup & Rendezvous: Im Setupteil werden aus den tbergebenen IDs die Sender und Empféanger be-
stimmt. Der Zustand wird auf Senden bzw. Empfangen gesetzt. Beim Sender wird sich zusatzlich in
die Senderwarteschlange des Empfangers eingekettet. Bei einer kombinierten Sende- und Empfangen-
operation, wird das Setup der Empfangsphase vor der Sendeoperation ausgefihrt, damit spater atomar
zwischen dem Sende- und Empfangszustand umgeschaltet werden kann. Dadurch kann ein Server sei-
nem Client mit Timeout Null antworten, um DoS-Angriffe zu vermeiden.

Beim Rendezvous versucht der Senderiptt send_regsund der Empfanger mipc_receiver_ready
die IPC zu beginnen. Wenn dies nicht mdéglich ist, blockiert der Thread solange, bis sein IPC-Partner
das Rendezvous erneut versucht, oder der Timeout Uberschritten wird.

» Datentransfer: Der Sender ist wahrend des Datentransfers der aktive Teil, der Empfanger bleibt passiv.
Ausnahmen sind die passiven Sender und die Behandlung von Seitenfehlern im IPC-Fenster bei einer
Long-IPC. In diesem Fall wird der Empfanger vom Sender aufgeweckt, damit dieser eine Seitenfehler-
IPC an seinen Pager senden kann. Wenn diese vom Pager des Empféangers beantwortet wird, weckt der
Empfanger den Sender wieder ript_continueauf. Der Sender Gbernimmt wieder die aktive Rolle,
und fuhrt die Nachrichteniibertragung fort.

» Abschluss: Im der Abschlussphase weckt der Sender den Empfanger auf, indem er die IPC-Zustandsbits
im Zustandswort des Empfangers l6scht und ihn laufféahig setzt. Ferner kann eine IPC auch durch ei-
ne Timeoutiberschreitung, oder durch den Abbruch der IPC-Operation rfittedsl_ex_regbeendet
werden. Wenn eine laufende IPC rifitead_ex_regabgebrochen wird, wird die IPC beendet und der
Sender und Empfanger kehren zum Nutzer mit einem Fehler zurtick.

Assemblershortcut

Der Assemblershortcut [Pet02] ist eine Abklirzung im IPC-Pfad, welcher nur den einfachen Registerwerte-
transfer ohne Flexpages behandelt. Es werden als IPC-Operationen das Senden und das kombinierte Senden
und Empfangen unterstitzt. Als Timeouts sind nur Timeout Null oder unendlich méglich. Es ist die schnellste
IPC-Implementation von Fiasco. In den anderen Fallen erfolgt die Nachrichtentibertragung durch den norma-
len IPC-Pfad. Der Shortcut lauft mit gesperrten Interrupts.

Obwohl nur der einfache Registerwertetransfer unterstitzt wird, profitieren viele Applikationen, z.B. L4Linux
davon, da oftmals nur sehr wenige Worter Gibertragen werden. Oft wird IPC zur Synchronisation innerhalb
eines Adressraums verwendet, so dass hier der Assemblershortcut sehr hilfreich ist.

Da der Kernadressraum verzogert zwischen den Adressrdumen synchronisiert wird, kann der Fall eintreten,
dass der IPC-Shortcut, bei dem Zugriff auf einem nicht eingeblendeten Empfanger-TCB, einen Seitenfehler

22

3.4 IPC-Architektur

auslost. In diesem Fall setzt die Routine zur Behandlung des Seitenfehlers nur ein Flag, und kehrt sofor
zurtck, ohne jedoch die Unterbrechungen freizugegeben. Der Assemblershortcut testet nach diesem erst
Zugriff dieses Flag, und bricht die IPC ab, wenn es gesetzt ist. Er ruft den generischen IPC-Pfad auf, welche
die IPC dann behandelt. Dies ist notwendig um groRere Verzégerungszeiten durch die Seitenfehlerbehandlur
zu vermeiden, damit mit gesperrten Interrupts keine Seiten alloziert werden muissen.

Time-Slice-Donation

Nach Abschluss der IPC wird im Normalfall immer vom Sender zum Empfénger umgeschaltet. Es wird zwar
der Ausfuihrungskontext umgeschaltet, der Scheduling-Kontext jedoch nicht. So wird, ahnlich dem Helfen
bei Locks, dem Empfénger die verbleibende Zeit der aktuellen Zeitscheibe geschenkt. Dies ist besonders b
Client-Server-Szenarios sehr nitzlich, der Client schenkt dem Server seine Zeit, damit dieser die Anfrage
moglichst schnell beantworten kann, und Prioritatsinversion wird so vermieden

Weil das Umschalten zum Empfanger und die Weitergabe der Zeitscheibe nicht immer gewlinscht ist, wurde
derDeceite-Bit-Hackeingefiihrt. Hier wird ein unbenutztes Bit, dasceite-Bit genutzt, als Information fiir

den Kern, dass er nach der IPC-Operation nicht automatisch zum Empfanger umschalten soll. Es erfolgt dam
keine Weitergabe der Zeitscheibe.

®Deceite-Bit: ein Bit in dem Sende-Deskriptor, welches fiir @&an & Chief Sicherheitsmodell von Bedeutung war. Da dieses
Modell zu unflexibel ist, wird es jedoch in fast keinem L4-Kern implementiert

23

4 Analyse der Verzogerungszeiten

Um Aussagen Uber die notwendige Haufigkeit und Verteilung von Unterbrechungspunkten, an denen der IPC
Pfad vom Zeitgeber und Interrupt unterbrochen werden kann, zu erhalten, wird der Zeitbedarf von Operatione
der Hardware und Funktionen des Fiasco-Kerns ausgemessen.

4.1 Hardware

Die Hardwarekosten fur verschieden Operationen unterscheiden sich auf modernen Prozessoren um mehre
GroRenordnungen. Ein einfaches Ausnullen eines Registers ist erheblich schneller als der Zugriff auf einel
I0-Port. Dies muss bei der Platzierung von Unterbrechungspunkten bertcksichtigt werden, damit die Verzoge
rungszeiten nicht zu grof3 werden. Als Testrechner wird 1.6Ghz Pentium IV verwendet, auf dem verschieden
Maschineninstruktionen ausgemessen werden, um einen Uberblick tiber die Kosten zu gewinnen.

Bis auf wenige Ausnahmen sind die meisten Instruktionen sehr schnell. Ausnahmen sind zum Beispiel , de
Kernein- und Kernaustritt, sowie bestimmte Systembefehle, welche nur dem Betriebssystem erlaubt sinc
Tabelle 4.1 und 4.2 gibt einen Uberblick dariiber. Besonders teure Instruktionen sind der Kernein und -austrit
mittels INT+IRET und Zugriffe auf 10-Ports (IN8, OUT8). SYSENTER wird nur bei IPC-Systemaufrufen
genutzt, alle anderen Systemcalls nutzen die INT-Instruktion zum Kerneintritt. Aus Kompatibilitatsgrinden
ist auch der IPC-Systemaufruf mittels INT-Kerneintritt méglich. Dies muss beriicksichtigt werden, da diese
Instruktion signifikant zur Laufzeit des IPC-Pfades beitragt.

Die Routinen von Zeitgeber und zur Interruptbehandlung fihren 10-Zugriffe aus, um die Unterbrechung am
Interruptcontroller zu quittieren. Fiasco-x86 betreibt den Interruptcontroller € Special Fully Nested
Mode”, um auch die Interruptprioritdten des Slave-Interruptcontrollers zu bertcksichtigen. Dies erzwingt ein
besonderes Protokoll zur Bestéatigung von Interrupts, die vom Slave-PIC ausgeltst werden. Eine Bestétigun
eines Interrupts, welcher durch den Slave-PIC ausgel6st wurde, kann bis zu drei 10-Ausgabe- (OUT8) unc
eine IO-Eingabeoperation (IN8) erfordern.

Bei dem Kontextwechsel spielt besonders die INVLPG-Instruktion, zum Invalidieren eines TLB-Eintrags,
und das Neuladen des CR3-Registarime groRe Rolle. Wenn zwischen zu einem Threads innerhalb eines
Adressraumes umgeschaltet wird, welcher eine eine Long-IPC-Operation durchfiihrt, muss das IPC-Fenst
im TLB mit INVLPG ungultig gemacht werden, damit jeder Thread stets das richtige IPC-Fenster vom
Adressraums des Empfangers besitzt.

Wenn zwischen Adressraumen umgeschaltet wird, muss der komplette TLB durch Neuladen des CR3-Registt
invalidiert werden. Das Invalidieren des IPC-Fensters erfolgt dabei implizit. Da der Fiasco-Kern zum gréf3tem
Teil global markierte Seiten im Kernadressraum verwendet, welche bei einem Loschen des TLBs nicht ent
fernt werden, halten sich die zuséatzlichen Kosten der nachfolgenden Zugriffe im Kernadressraum in Grenzer

!Programmable Interrupt Controller
’Dieses Maschinenregister zeigt auf das aktuelle Seitenverzeichnis, welches den Adressraum beschreibt

25

4 Analyse der Verzogerungszeiten

Weiterhin muss der Fliesskommaprozessor (FPU) mit CLTS gesperrt werden, wenn von einem Thread, fir den
die FPU freigeschalten ist, weggeschaltet wird. Dadurch erfolgt das verzdgerte Sichern und Wiederherstellen
des FPU-Kontextes.

Ein Unterbrechungspunkt besteht aus Sperren (CLI) und Freigeben (STI) der Interrupts, sowie einer Null-
operationen dazwischen. Bei mehreren Unterbrechungspunkten summieren sich diese Kosten, so dass sie
durchaus mehr als zehn Prozent der bendétigten Kosten fir eine IPC ausmachen. Die CAS-Instruktion kann
eingespart werden, da bei deaktivierten Interrupts, die normalen Instruktionen ausreichen.

Maschineninstruktion Taktzyklen Zeit
Neuladen CR3 252 | 158ns

invipg 516 | 323ns

in8 1491 | 0.93us

out8 1392 | 0.87us

int + iret 1364 | 0.85us

sysenter + sysexit 167 | 104ns

cli (34 Takte) + sti (44 Takte 78 49ns
clts 268 | 168ns

cmpxchg(CAS) 26 17ns
cmpxchg(CAS) + lock-Prefix 147 92ns

Tabelle 4.1Ausflhrungszeiten von speziellen Maschineninstruktionen

Cache

Die Lucke zwischen CPU-Geschwindigkeit und Geschwindigkeit beim Speicherzugriff wird immer grol3er.
Die heutigen Speicher verfugen zwar tber eine Bandbreite von mehreren Gigabyte in der Sekunde, aber die
Zugriffszeit auf zufallige Speicherwdrter hat sich nur unwesentlich verbessert. Es dauert immer noch sehr lan-
ge, vom Beginn des Zugriffs, bis das erste Datenwort gliltig ist. Caches dienen dazu, den schnellen Prozessor
vom langsamen Speicher zu entkoppeln. Sie machen aber die genaue Voraussage uber Ausflihrungszeiten im
schlechtesten Fall sehr schwer.

Bei einem Burstzugriff werden gleich mehrere Datenwdrter Ubertragen, zum Beispiel zum Fllen oder Schrei-
ben einer Cachezeile. Bei SD-RAM ist ein Ublicher Burstmode 5-1-1-1, dies heifdt, das erste Datenwort steht
nach funf Bustakten zur Verfugung, die nachfolgenden Datenworte nach einem Takt. DDR-RAM verbessert
zwar den Durchsatz bei einem Burstzugriff erheblich, die Zugriffszeit verbessert sich aber nur unwesentlich.

Wahrend ein Cache-Miss im L1-Cache rund 20 Takte (Tabelle 4.2) betragt, ist ein Miss im L2-Cache signifi-
kant teurer. Wenn bei einer Schreiboperation im L2-Cache ein Cache-Miss auftritt, ladt die verwendete CPU
die Cachezeile in den Cache, aimite-Allocationgenannt. Dadurch profitieren nachfolgende Leseoperatio-
nen, wenn sie von der gleichen Cachezeile lesen. Ferner verfugt die CPU Gber mehrere Schreibpuffer, welche
begrenzt die zusatzlichen Kosten fur einen Schreib-Cache-Miss abfangen kénnen.

Ein weiterer Cache ist der TLB, welcher die Umsetzung von virtuellen in physische Speicheradressen be-
schleunigt. Der verwendete Pentium IV Prozessor besitzt einen getrennten TLB fur Daten und fir Code, beide
mit 64 Eintragen. Wenn fir eine virtuelle Adresse kein passender Eintrag im TLB gefunden wird (TLB-Miss),
muss der Prozessor die Seitentabelle traversieren und den neuen Eintrag in den TLB eintragen. Wenn sich die
bendétigten Eintrage der Seitentabellen im Cache befinden, kostet ein TLB-Miss 40 Takte. Bei kalten Caches,
konnen bei dem Lesen der Eintrage im Seitenverzeichnis und Seitentabelle zwei Cache-Misses auftreten, was
in der Summe dann rund 400 Takte bendtigt.

26

4.2 Software

Die Kosten fiir einen Cache-Miss zeigen deutlich, dass der Cache nicht ignoriert werden kann. Die Ausflh-
rungszeiten kénnen im schlechtesten Fall ein oder zwei GréRenordnungen tber dem durchschnittlichen Fa
liegen.

Seitenfehler- und Interruptlatenz
Seitenfehler

Weitere Kosten entstehen durch Seitenfehler, welche im Kern durch die verzdgerte Synchronisation der TCB
oder bei Long-IPC-Operationen auftreten konnen. Mit einem kalten Cache kann es mehr als 2000Takte dauer
bis nach einem Seitenfehler die Routine zur seiner Behandlung angesprungen wird.

Die Bestimmung der Kosten durch einen Seitenfehler erfolgte durch Auslesen des Time-Stamp-Counter
(TSC®), Auslésen eines Seitenfehlers, und erneutes Auslesen des TSCs und Bildung der Differenz. Als Er
gebnis wurden Uber 2200 Takte fur einen Lesezugriff und 2000 Takte fur einen Schreibzugriff ermittelt.

Der Assemblercode am Einsprungspunkt der Funktion zur Seitenfehlerbehandlung sichert die bendétigten Re
gister, darunter auch das CR2 Register, welches die Adresse des Seitenfehlers enthélt. Dieser Code l&auft r
gesperrten Interrupts, um ein Uberschreiben des CR2-Registers durch einen mdglichen Kontextwechsel z
verhindern, denn bei einem Kontextwechsel wird dieses Register nicht gesichert.

Es muss also stets berlicksichtigt werden, dass ein Zugriff auf einen TCB in wenigen Fallen einen Seitenfehle
zur Synchronisation der TCBs, auslosen kann.

Interrupts

Weiterhin wurden die Verzdgerungszeiten zwischen dem Ausldsen eines Interrupts und dem Aufruf der
Interrupt-Routine bestimmt. Zum Ermitteln der benétigten Zeit liest ein Nutzerthread in einer Schleife standig
den TSC aus. Nach dem Auftreten des Interrupts werden in der Interrupt-Routine die bendtigten Registe
gesichert, der TSC erneut ausgelesen und die Differenz gebildet.

Als Interruptquelle diente der Interrupt der seriellen Schnittstelle. Die gemessenen Zeiten beinhalten also da
Erkennen des Interrupts durch den Controller der seriellen Schnittstelle, das Ausldsen des Interrupts am Pl
und die Zustellung zur CPU, die dann die passende Routine aufruft.

Die Ergebnisse zeigen, wenn die CPU, nach einem STI, Interrupts erneut entgegen nimmt, dauert es mitunt
Uber 2000 Takte, bis die Interrupt-Routine angesprungen wird.

4.2 Software

Es werden verschiedenste Operationen und Funktionen von Fiasco analysiert, um eine Aussage Uber die zu
wartenden Kosten und erreichbaren Verzégerungszeiten zu erhalten. In Fiasco laufen bestimmte Operation
mit gesperrten Interrupts ab, um kurze kritische Abschnitte zu synchronisieren. Darunter fallen der Kontext-
wechsel, zum Teil discheduleFunktion, die Timer-Interrupt-Routine und der Code zur Interruptzustellung.

3Time-Stamp-Counter: Dieser Zahler wird bei jedem Taktzyklus inkrementiert. Der TSC bietet die beste und genaueste Mdglichkeit
die Kosten fur verschiedenste Operationen auszumessen

27

4 Analyse der Verzogerungszeiten

Ereignis| Taktzyklen| Zeit
Cache Miss(L1) 23| 14ns

Cache Miss(L2) Lesen 197 | 124ns
Cache Miss(L2) Schreiben 275 | 172ns
TLB Miss Daten (4k) 44 | 28ns
TLB Miss Code (4k) 40| 25ns

Seitenfehler Lesen 2204 | 1.3us
Seitenfehler Schreiben 1972 | 1.2us
Latenzzeiten von Interrupts 2424 | 1.5us

Tabelle 4.2Hardware Verzdgerungszeiten

Kontextwechsel

Bis auf Ausnahmen ist der Kontextwechsel sehr schnell. Ausnahmen sind zum Beispiel das Léschen des
IPC-Fenster oder die Umschaltung des Adressraumes. Beim Ldschen des IPC-Fensters wird zweimal die
INVLPG-Instruktion aufgerufen. Beim Neuladen des CR3-Registers fur das Umschalten des Adressraumes
spielen erstens die Kosten fur das Neuladen eine Rolle. Die weitaus teureren Kosten entstehen jedoch durch
die nachfolgenden TLB-Misses. Obwohl die meisten TLB-Seiten als global markiert sind, und bei einem Neu-
laden des CR3-Registers nicht aus dem TLB entfernt werden, kénnen sie doch von anderen TLB-Eintragen
verdrangt worden sein. So kdnnen zu den Kosten fir das Neuladen noch zusatzliche Kosten entstehen, wenn
nach dem Umschalten des Adressraumes auf Seiten zugegriffen wird, dessen Adressen nicht mehr im TLB
enthalten sind.

Eine Besonderheit ist beim Kontextwechsel zu beachten. Die Thread-Lock Semantik erfordert, dass keine ge-
sperrten Threads eingeplant werden, Ausnahmihigad: :kill. Um dies zu erreichen, wird beim Umschalten

Zu einem gesperrten Thread, stattdessen zu seinem Lock-Besitzer umgeschaltet. Dieser Vorgang ist transitiv,
wenn der neue Thread auch wieder gesperrtist, wird zu seinem Lock-Besitzer umgeschaltet. Dieses Traversie-
ren der Lock-Besitzerkette mit gesperrten Interrupts kann potentiell sehr lange dauern. Wenn die TCB durch
Seitenfehler nachtréglich eingeblendet werden, verzdgert sich das Durchlaufen dieser Kette noch weiter. Ver-
meiden kann man dies nur, wenn die Synchronisation im Fiasco-Kern komplett Gberarbeitet wird, welches
aber nicht im Blickpunkt dieser Arbeit liegt.

Scheduler

Die scheduleFunktion ist der Scheduler und dieser wahlt unter Beachtung der Prioritdten einen neuen aktiven
Thread aus. Es muss berlcksichtigt werden, dass in der Ready-Liste Threads enthalten sind, welche nicht re-
chenbereit sind. Diese werden dann nachtraglich ausgekattetdulateriert absteigend von der maximalen
Prioritat im System, Uber die Listen von Threads gleicher Prioritat. Das lterieren tUber die Elemente einer die-
ser Listen erfolgt mit Unterbrechungspunkten und endet sobald ein lauffahiger Thread gefunden wird. Nicht
bereite Threads werden aus der Liste ausgekettet und nach einem Unterbrechungspunkt wird zum néchsten
Element Gbergegangen.

Wenn der aktuelle Thread bei dem Aufruf vechedulenoch lauffahig ist, muss er nachtraglich in die Ready-
Liste eingekettet werden. Wenn er nicht mehr lauffahig ist, sein Ready-Flag ist geléscht, wird er dagegen aus
der Ready-Liste entfernt. Dies ist der Fall, wenn ein Thread blockiert, indem er sein Ready-Flag in seinem
Threadzustand l6scht ursgheduleaufruft. Selbst wenn sofort ein neuer Thread gefunden wird, und kein Un-
terbrechungspunkt notwendig ist, ist der Aufwand signifikant. Es wird der aktuelle Thread in die Ready-Liste

28

4.2 Software

eingekettet und zu dem nachsten Thread umgeschaltet. Dieser Kontextwechsel umfasst auch ein Umschalt
des Scheduling-Kontextes.

Timer-Interrupt

Die Zeitgeberroutine gehort neben der normalen Interruptbehandlung zu den Programmteilen, welche fi
einen Grol3teil der Verzdgerungszeiten verantwortlich sind [Hoh02b]. Die Timer-Interrupt-Routine lauft die

meiste Zeit mit gesperrten Interrupts. In der Timer-Interrupt-Routine erfolgt die Bestatigung der Unterbre-
chung am PIC und gegebenenfalls am Zeitgeber. Ferner werden die Timeouts behandelt. Zum Schluss erfol
bei Bedarf ein Aufruf vorschedule

Die bendtigte Zeit zum Bestatigen des Interrupts hangt stark vom verwendeten Zeitgeber ab. Die APIC unc
der PIT sind nicht zeitaufwendig. Bei Verwendung der RTC als Zeitgeber, ist die Bestétigung des Interrupts
sehr teuer. Es muss der RTC-Interrupt am Slave-PIC und Master-PIC bestatigt werden, welches bis zu dre
OUT8 und eine IN8 Instruktion erfordern kann. Zweitens ist auch das Bestétigen des Interrupts an der RTC
sehr teuer. Dies erfolgt zweimal, um Inkompatibilitaten mit verschiedener Hardware zu vermeiden.

Nach dem Bestatigen des Interrupts erfolgt die Behandlung der Timeouts. Dort wird Uber die sortierte Liste
der Timeouts iteriert, die betroffenen Timeouts werden behandelt und ausgekettet. Das Behandeln der T
meouts umfasst zum Beispiel Anderung eines Threadszustandes und Einketten in die Ready-Liste bei eine
IPC-Timeout. Zum Schluss wird b@ine-Shot-Timerder Zeitgeber neu programmiert, damit er den nachsten
Interrupt ausloést. Das Behandeln der Timeouts kann, éahnlich wie das Traversieren der Lock-Besitzer-Kett
bei dem Kontextwechsel, zu erheblichen Verzdgerungszeiten fihren. Die Funktion zum Behandeln der Ti-
meoults liefert zuriick, ob ein Aufruf vastheduleotwendig wird. Beispiele sind der Ablauf eines Timeslice-
Timeouts, oder der Ablauf eines IPC-Timeouts eines Threads mit hdherer Prioritat als der aktuelle Thread.

Interupt-Routine

Die Interrupt-Routine dient dazu, fir aufgetretene Interrupts eine IPC-Nachricht zu generieren und dem Nut:
zer zustellen. Dies ist neben der Timer-Interrupt-Routine einer der langsten Abschnitte im Programmcode
welcher mit geschlossenen Interrupts ausgeftihrt wird. Durch eine Konfigurationsoption kann beim Kompilie-
ren des Fiasco-Kerns weiter festgelegt werden, ob der Kern oder der Nutzer den Interrupt am PIC bestétige
muss.

Es muss eine IPC-Nachricht flir diesen Interrupt generiert werden. Der Interruptdeskriptor wird dazu in die
Senderwarteschlange des assoziierten Empfangers einkettet. Der Zustand des Empfangers wird auf lauffat
gesetzt, und wenn der Empféanger eine hohere Prioritat als der aktuelle Thread besitzt, erfolgt ein Kontext
wechsel, welcher auch das Umschalten des Scheduling-Kontext umfasst. Dies erfolgt alles mit gesperrte
Interrupts. Es gibt auch einen Interrupt-Shortcut, welcher den Kernstack des Empfangers modifiziert und di:
rekt zu ihm umschaltet. Durch das Maodifizieren des Kernstacks wird erreicht, dass der Empfanger sofort zun
Nutzer zuriick kehrt, ohne dass er vorher alle Stackrafhmeihdem Kernstack aufgeraumt werden miissen.

Weitere Operationen

Lock-Operationen: Die Synchronisation innerhalb der Lock-Methoden erfolgt durch Sperren und Freigeben
der Interrupts. Wenn das Lock nicht frei ist, wird ein Kontextwechsel zu dem Lock-Besitzer ausgefiihrt. Bei

“Der Stackrahmen beinhaltet die Riicksprungadresse und lokale Variablen der aktuellen Funktion und wird auf dem Stack angeleg
Bei verschachtelten Funktionsaufrufen stapeln sich dann ihre Stackrahmen auf dem Stack

29

4 Analyse der Verzogerungszeiten

dem Freigeben von Locks kann auch ein Kontextwechsel notwendig werden, wenn dem bisherigen Lock-
Besitzer durch einen hoher priorisierten Thread geholfen wurde. Bei Thread-Locks ist besonders bei dem
Freigeben des Locks noch ein weiterer Kontextwechsel, oder ein Aktualisieren der Ready-Liste notwendig,
wenn der gesperrte Thread lauffahig ist. Tabelle 4.3 gibt dazu einen Uberblick (iber die Kosten.

Da der IPC-Code zum gréRten Teil mit geschlossenen Interrupts lauft, ist bei den Lock-Operationen die Uber-
prifung, ob die Interrupts gesperrt sind, nicht notwendig. Deshalb werden dafiir optimierte Funktionen bereit-
gestellt. Im Durchschnitt sinkt dadurch die Zeit um ein Thread-Lock zu holen und freizugeben von 274 auf
167 Takte.

Listenoperationen: Fir die Ready-Liste, die Present-Listend die Senderwarteschlange werden doppelt
verkettete Listen verwendet. Die Synchronisation erfolgt durch Sperren der Interrupts. Die Listenelemente
sind TCBs, welche diprev undnextZeiger enthalten.

Da diese Zeiger nebeneinander und damit oftmals innerhalb einer Cachezeile liegen, tritt nur ein Cache-
Miss beim Zugriff auf derprev und nextZeiger eines Elementes auf. Zwar wird der einzukettende TCB

im Cache enthalten sein, die angrenzenden Elemente dieser Liste jedoch nicht, so dass im ungunstigen Fall
zwei Cache-Misses und zwei TLB-Misses auftreten koennen. Die Kosten fir das Einketten kann dadurch
rund 480 Takte (2x200 Takte flr den Cache-Miss und 2x40 Takte fir den TLB-Miss) betragen. Wenn sich
die bendtigten Eintrage der Seitentabelle und des Seitenverzeichnis nicht mehr im Cache befinden, fallen die
Kosten noch héher aus. Schon eine einfache Beispielrechnung zeigt, dass der Cache erheblichen Einfluss auf
die Verzdgerungszeiten besitzt.

Es zeigt sich auch hier der Nachteil der verzdgerten Synchronisation des Kernadressraumes. Im schlechtesten
Fall kbnnen die angrenzenden TCBs noch nicht im aktuellen Kernadressraum eingeblendet sein. In diesem Fall
kommen noch die Kosten fir einen Seitenfehler und dessen Behandlung dazu. Obwohl dessen Behandlung
sehr kurz ist, es werden nur zwei Eintrage im Seitenverzeichnis kopiert, kbnnen dadurch die Kosten noch
erheblich ansteigen.

IPC-Shortcut: Den IPC-Shortcut gibt es in der Assembler- und in der C++-Version. Der Shortcut [auft mit
gesperrten Interrupts. Er behandelt den einfachen Registerwertetransfer und wird mittels SYSENTER und INT
betreten. Die Kosten mit heil3en und kalten Caches fiir den Shortcut sind in Tabelle 4.3 zu finden. Ferner kann
noch ein Seitenfehler beim Zugriff auf den Empfanger-TCB auftreten, falls dieser TCB nicht eingeblendet
ist. Deshalb soll nach einem Abbruch des Shortcuts ein Unterbrechungspunkt folgen, bevor der generische
IPC-Pfad aufgerufen wird.

4.3 Zusammenfassung

Der Zeitbedarf fir bestimmte Maschineninstruktionen und Fiasco-Kernoperationen hat einen sehr grof3en Ein-
fluss auf die Verzégerungszeiten. Bestimmte Verzdgerungszeiten konnen sich dazu noch addieren. Zum Bei-
spiel, wenn der IPC-Shortcut aktiv ist, muss ein anderer Interrupt am PIC solange warten, bis die CPU die

Interrupts wieder zulasst. Dazu kommen die Kosten fir die Zustellung und die Behandlung des neu ausge-
I6sten Interrupts. Selbst auf aktuellen CPUs entspricht dies Verzogerungszeiten im Bereich von mehreren
Mikrosekunden.

Schon das einfaches Laden und Schreiben eines Registers in den Speicher kann im unginstigen Fall sehr
lange dauern. Selbst wenn man nur TLB- und Cache-Misses durch den Datenzugriff betrachtet, kbnnen bei
dem Lesezugriff auf eine richtig angeordnete Adresse, ein TLB- und drei Cache-Misses auftreten, wodurch
die Kosten auf 640 Takte steigen. Der Fall, dass die Adresse des Speicherworts falsch angeordnet ist, und der
Zugriff damit noch l&anger dauern kann, tritt im Fiasco-Kern nicht auf.

SDie Present-Liste enthalt alle Threads im System

30

4.3 Zusammenfassung

Operation Taktzyklen Zeit
Holen und Freigeben eines Thread-Logks
Kalter Cache| 1242 (577+665) 0.7us
HeilRer Cache 274 | 172ns
Kontextwechsel
innerhalb eines Adressraums 214 | 134ns
zwischen Adressraumen 557 | 349ns
Kontextwechsel + Umschalten der Zeitschejbe
innerhalb eines Adressraums 426 | 267ns
zwischen Adressraumen 720| 450ns
Assembler-Shortcut (heil3er Cache)
innerhalb eines Adressraums 320| 200ns
zwischen Adressraumen 720| 450ns
Assembler-Shortcut (kalter Cachg)
innerhalb eines Adressraums ~1800| ~1.1us
zwischen Adressraumen ~3100 | ~1.9us

Tabelle 4.3Merzégerungszeiten von Kernoperationen

Um die Verzoégerungszeiten zu minimieren, sollten oft Unterbrechungspunkte gesetzt werden, besonders v
langeren Kernoperationen. Diese erhéhen jedoch die Laufzeit des IPC-Pfades signifikant. Wenn man zu weni
Unterbrechungspunkte setzt, besteht aber das Problem hdherer Verzégerungszeiten im ungunstigen Fall. E
moglicher Ausweg ist das verzdgerte Sperren von Interrupts, welches spater kurz beschrieben wird.

Anzumerken ist, bei einem IPC-Pfad, welcher mit gesperrten Interrupts ausgefihrt wird, treten Cache- unc
TLB-Misses nur bei den ersten Zugriffen auf, danach liegen die bendétigten Werte im Cache. Deshalb reich
schon eine mittlere Anzahl von Unterbrechungspunkten aus, um kleine Verzdgerungszeiten zu erhalten. De
inoffizielle Ziel jedoch, eine Latenz zu erreichen, deren Kosten in der gleichen GrélRenordnung wie fur die
langste verwendete Maschinenoperation liegen, ist, wenn man den Cache bertcksichtigt, nicht erreichbar,

31

5 Entwurf

Der urspriingliche IPC-Pfad gliedert sich in mehrere Teile. Die Hauptteile sind der Kerneintritt, das grund-
legende Setup, eine mdgliche Sende- und Empfangsoperation, sowie der Abschluss. Den grof3ten Teil di
IPC-Operationen stellecall undreply waitOperationen, welche immer den Sende- und Empfangsteil um-
fassen und atomar zwischen diesen beiden Teilen umschalten. Diese IPC-Operation gilt es daher besonders
optimieren.

Die Sende- und Empfangsoperationen untergliedern sich weiter in eine Setup-, Rendezvous-, Datentransfe
und Abschlussphase. Der Datentransfer kann nochmals in Registerwertetransfer und Long-IPC-Transfer au
geteilt werden.

Bisher wird nur der Kerneintritt und gegebenenfalls der IPC-Shortcut mit geschlossenen Interrupts ausgefihri
die anderen Teile sind voll unterbrechbar. Die Idee ist es, bis auf den Long-IPC-Transfer, alle Teile nicht
unterbrechbar zu machen, um so die Kosten fir die Synchronisation einzusparen und die Geschwindigkeit z
maximieren. Um geringe Latenzzeiten zu garantieren, missen an bestimmten Stellen Unterbrechungspunk
eingefiigt werden, damit dort der aktive Thread verdrangt werden kann.

Der Long-IPC-Transfer umfasst das Kopieren von Speicherinhalten und das Einblenden von Flexpages i
den Adressraum des Empfangers. Das Kopieren von Speicherinhalten ist sehr zeitaufwendig, besonders &
dirty Cachezeilen, weil vorher der alte Inhalt der Cachezeile in den Speicher zuriickgeschrieben werden mus:
Durch das Sperren der Interrupts wird nur die Zeit fir Setup der Long-IPC-Operation geringfligig besser.
Deshalb wird der Nachrichtentransfer bei Long-IPC-Operationen mit freigegebenen Interrupts ausgefihrt
Ferner ist die Behandlung von Flexpages durch die Anderung der Mappingdatenbank teuer. Wenn also b
einem Registerwertetransfer die Register Flexpages enthalten, werden Interrupts zugelassen.

Folgende Phasen werden mit geschlossenen Interrupts ausgefihrt, Kerneintritt, Setup, Rendezvous, Regist
transfer, sofern er keine Flexpages umfasst, und die Abschlussphase. Innerhalb und zwischen diesen Pha:
werden Unterbrechungspunkte eingefligt, um geringe Verzégerungszeiten zu erreichen.

5.1 Kernspeicher

Im aktuellen Fiasco wird aus der Thread-ID die Adresse des zugehérigen TCBs mittels einfacher Bitoperatio:
nen errechnet, Grafik 5.1 zeigt dies fur die V2-Schnittstelle. Ein Hauptproblem mit dem bisherigen Verfahren,
ist die verzogerte Aktualisierung des TCB-Bereichs im Kernadressraum. Wie schon erwahnt, miissen die An
derungen im TCB-Bereich durch neu angelegte Threads, allen Adressraumen bekannt gemacht werden. Di
erfolgt nachtraglich bei der Behandlung von Seitenfehlern im TCB-Bereich.

Jedesmal wenn ein Zugriff auf einen nicht eingeblendeten TCB erfolgt, wird durch die CPU ein Seitenfehler
ausgelost. Die Seitenfehler-Routine kopiert dann aus dem Kernhauptverzeichnis den passenden Eintrag in d
aktuelle Seitenverzeichnis, und kehrt anschlieend zum urspriinglichen Kontext zurtick. Die Interrupts bleibel
dabei gesperrt. Erst wenn neue Seiten alloziert werden missen, oder eine Seitenfehler-IPC aufgesetzt wir
werden die Interrupts in der Seitenfehler-Routine freigegeben.

33

5 Entwurf

Thread-ID

nest(4)| chief(11) site(17)
verl(4)| task(1l1) | Ithread(7)| ver0(10)

TCB 4

TCB 3 TCB-Adresse v v

TCB 2 - | 110 | task(1a) Ithread(7)| O0(11) |
TCB 1

TCBO

Abbildung 5.1:TCB Zugriff.

Dieses Verfahren verschwendet keinen unnétiger Speicher, aber aufgrund der Kosten zur Seitenfehlerbehand-
lung, erhéhen sich die Verzdgerungszeiten. Die Messungen ergaben tber 2000 Takte bis zum Aufruf der
Seitenfehler-Routine. Dazu kommen noch die Kosten der Seitenfehlerbehandlung. Im ungiinstigen Fall kdn-
nen diese Seitenfehler eine grof3e Rolle spielen.

In vielen Listen sind die Elemente TCBs, zum Beispiel die Ready-Liste, die SenderwarteschlaRgeselnt

Liste und die Timeout-Liste. So kann beim Einketten eines Threads in die Ready-Liste ein Seitenfehler, beim
Aktualisieren deprevundnextZeiger, auftreten, wenn die angrenzenden TCBs in der Liste nicht eingeblendet
sind. Das Traversieren der Lock-Besitzer-Kette beim Kontextwechssliich_toist auch davon betroffen.

Die meisten Systemaufrufe, die andere Threads modifizieren, Gberprifen zuerst den Zustand des Ziel-Threads.
Der erste Zugriff auf den TCB liefert einen ungultigen Threadzustand, wenn der TCB mit der Nullseite hinter-
legt ist. Die Operation wird dann mit einem Fehler abgebrochen. Ein Seitenfehler tritt bei einem Lesezugriff
nur dann auf, wenn der TCB mit keiner Seite hinterlegt ist.

Da die Nullseite schreibgeschiitzt ist, treten beim Schreiben auf den TCB Seitenfehler auf. Dies spielt jedoch
nur beim Erzeugen eines Threads eine Rolle. Andere Systemaufrufe lesen vorher den Zustand des Threads,
und ermitteln einen ungultigen Zustand. Sie brechen dann mit einem Fehler ab.

Keine spezielle TCB Region

Dieser Ansatz verzichtet komplett auf einen speziellen TCB-Bereich im Kernadressraum. TCBs werden nur

in der 1:1 Abbildung des physischen Kernspeichers angelegt. Diese Abbildung wird beim Booten des Kerns
angelegt, so dass neue Adressraume schon Uber diese Eintrage im Seitenverzeichnis verfiigen. Dadurch werden
Seitenfehler beim Zugriff auf TCBs vermieden.

Auf die TCBs wird indirekt Uber eine Tabelle, siehe Abb. 5.2, zugegriffen. Diese Tabelle enthalt dann die
Adressen der TCB, welche direkt in der 1:1 Abbildung des physischen Kernspeichers liegen.

Dies erfordert zusatzliche Kosten bei der Bestimmung der TCB-Adresse aus einer gegebenen Thread-ID, da
jetzt die TCBs nicht mehr an festen Adressen liegen. Diese zusatzlichen Kosten bestehen im grof3ten Teil durch
eine zusatzliche Indirektion. Es kann aber der bisherige dedizierte TCB-Bereich im Kernadressraum einge-
spart werden. Dort kénnen dann weitere kleine Adressraume (SMAS) oder ein vergréRerter Nutzeradressraum
liegen.

34

5.1 Kernspeicher

Thread-I1D

R e N e nest(4)| chief(11) site(17)

verl(4)| task(11) | Ithread(7)| ver0(10)

Y
—
@)
w
[EEN

- TCB 4

- TCB3 Index

Y Y
TCB Indextabelle 4—{ 0 | task(11)| Ithread(7)|

Abbildung 5.2:Indirekter TCB Zugriff.

Ein weiterer Nachteil ist die Grof3e der Tabelle. Losungen hierfir sind eine mehrstufige Tabelle oder Hashes
Bei mehreren Stufen kann die erste Stufe in die Seitentabelle integriert werden, so dass dieemist

grolRen Teil der Arbeit abnimmt. Hier wird eine virtuelle Speicherregion von der GroRe der bendtigten Tabelle
reserviert. Bei 2048 Adressraumen mit je 128 Threads, wobei pro Eintrag vier Bytes notwendig sind, besitzt
die Tabelle eine GroRR3e von einem Megabyte. Die hierflir notwendige gemeinsame Seitentabelle kann beir
Booten gleich reserviert werden. Leere Bereiche werden mit der schreibgeschitzen Nullseite hinterlegt. An
derungen in dieser Tabelle sind durch die gemeinsame Seitentabelle sofort in allen Adressraumen sichtbar. |
treten Seitenfehler nur beim Anlegen eines Threads auf, wenn die Tabelle modifiziert werden muss, und de
TCB-Zeiger in einen Bereich eingetragen wird, der mit der schreibgeschitzten Nullseite hinterlegt ist.

Allozieren der bendétigten Seitentabellen beim Booten

Hier werden beim Booten alle notwendigen Seitentabellen alloziert, um den 512MByte groRen TCB-Bereich
im Kernspeicher abzudecken. Dies erfordert 512KByte Kernspeicher fir die bendtigten Seitentabellen. De
diese Seitentabellen gemeinsam genutzt werden, kénnen “leeren Stellen” im TCB-Bereich, schon mit de
schreibgeschitzten Nullseite hinterlegt werden. Es treten Seitenfehler nur beim Erzeugen von Threads al
da andere Systemaufrufe beim ersten Lesen einen ungultigen Thread ermitteln und mit einem Fehlercode d¢
Systemaufruf abbrechen.

Diese Ldsung hat den Nachteil, dass kostbarer Kernspeicher verschwendet wird, da oft nie die maximal
Anzahl von Threads genutzt wird. Aufgrund der Verschwendung von Kernspeicher, wird von dieser Losung
Abstand genommen.

Aktualisierung des aktuellen Seitenverzeichnisse vor dem Zugriff

Eine andere Losung ist, vor dem ersten Zugriff auf TCB-Adressen, welche Seitenfehler auslosen kénner
den passenden Eintrag des aktuellen Seitenverzeichnis mit den Werten aus dem Master-Seitenverzeichnis
Kerns zu aktualisieren. Dies erfordert eine zusatzliche Kopieroperation vor dem ersten Zugriff.

Diese Losung ist jedoch nur bei bereits bestehenden Threads erfolgreich, da die dafur benotigten Seitent,
bellen im Master-Verzeichnis eingetragen sind. Bei nicht existierenden Threads existiert im Hauptverzeichnis

MMU: Hardwareeinheit zum Umsetzen von virtuellen Adressen in physische Adressen

35

5 Entwurf

auch kein entsprechender Eintrag, es kommt weiterhin zu einem Seitenfehler. Die Routine zur Seitenfehlerbe-
handlung hinterlegt bei einem Lesezugriff diesen TCB mit der Nullseite. Bei einem Schreibzugriff wird eine
neue Seite alloziert und an dieser Stelle eingeblendet.

Diese Ldsung besitzt den Nachteil der recht teuren Aktualisierung des aktuellen Seitenverzeichnisses. Ferner
treten weiterhin Seitenfehler bei dem Zugriff auf den TCBs von nicht existenten Threads auf, zum Beispiel
wenn der Nutzer eine ungultige Thread-ID bei der IPC-Sendeoperation angibt. Die Lésung kann bei verschie-
denen Listenoperationen Seitenfehler vermeiden, da diese Listen nur bestehende Threads enthalten.

Zusatzliche Unterbrechungspunkte

Um die mdgliche erhebliche Verzégerungszeit von Seitenfehlern abzufangen, wird vor jedem Zugriff auf einen
TCB, der einen Seitenfehler auslésen kann, ein zusatzlicher Unterbrechungspunkt eingefiigt. Diese Ldsung
bendtigt keinen zusatzlichen Kernspeicher, geht jedoch auf Kosten der Laufzeit.

Das Freigeben der Interrupts kann auch verzdgert in der Seitenfehler-Routine erfolgen. Dieses Verfahren hat
jedoch etwas schlechtere Verzdgerungszeiten zur Folge, da sich die Kosten fir das Auslésen des Seitenfehlers
zu den Verzdgerungszeiten addieren. Die Seitenfehler-Routine gibt dann die Interrupts sofort wieder frei und
behandelt den Seitenfehler. Deshalb ist der erste Zugriff auf den TCB wie ein Unterbrechungspunkt anzuse-
hen. Der IPC-Code muss danach prifen, ob der IPC-Zustand des aktuellen Threads noch gultig ist.

Eine Ausnahme bilden Zugriffe auf existierende TCBs, die noch nicht im aktuellen Adressraum eingeblen-
det sind. In diesem Fall wird nur das aktuelle Seitenverzeichnis mit dem Werten aus dem Hauptverzeichnis
aktualisiert. Die Interrupts bleiben weiterhin gesperrt. Dies ist notwendig, da viele Listenoperationen zum
Modifizieren der Ready-List&resentListe und Senderliste die Interrupts zur Synchronisation explizit sper-
ren.

Ich habe mich aus folgenden Griinden fiir diese Losung entschieden:

» Esist keine Aktualisierung des Seitenverzeichnisses vor dem Zugriff notwendig

* Es sind nur wenig zusatzliche Unterbrechungspunkte im IPC-Pfad notwendig

Die Ermittlung der TCB-Adresse aus der Thread-ID ist weiterhin schnell mdglich
» Es wird kein zuséatzlicher Kernspeicher bendétigt

» Die ausgereifte Implementierung der Kernspeicherverwaltung kann beibehalten werden

Etwas langere Verzdgerungszeiten werden in Kauf genommen, da ihre Kosten akzeptabel sind. Dieses Pro-
blem besteht zum Teil auch im bisherigen IPC-Pfad, so dass die Verzégerungszeiten nur unwesentlich schlech-
ter ausfallen durften.

5.2 Synchronisation

Im bisherigen IPC-Pfad werden zur Synchronisation verschiedene Primitive genutzt.

Der passive IPC-Partner wird, bis auf seinen Threadzustand, durch ein Thread-Lock geschiitzt. Der TCB des
aktiven Threads wird jedoch sperrfrei mittels CAS-Operationen synchronisiert. Dies erfordert auch die schon
erwahnten zusatzlicheRetry-loopsum die Konsistenz sicherzustellen, da in der Zwischenzeit, durch einen
anderen Thread, Anderungen erfolgen kénnen.

36

5.2 Synchronisation

Synchronisation des Threadzustandes

Der Threadzustand wurde bisher durch atomare Maschineninstruktionecompare-and-swagkonsistent
gehalten. Mit deaktivierten Interrupts ist dies auf Uni-Prozessorsystemen nicht mehr notwendig, hier kanr
der Threadzustand direkt verandert werden. Es entfallen die bisher notwemBggroopsim IPC-Pfad.

Es kann sogar bis zum nachsten Unterbrechungspunkt, das Setzen eines gultigen Threadzustandes verz6
werden.

Nur nach einem Unterbrechungspunkt muss gepruft werden, ob der aktuelle IPC-Zustand noch gultig ist. Ne
ben den expliziten Unterbrechungspunkten, gibt es weitere Operationen, welche unterbrochen werden kor
nen. Dazu gehdrt auch der erste Zugriff auf den Empfanger-TCB, und die Freigabe eines Locks, wenn andel
Threads auf dieses Lock warten.

Thread-Locks

Da der neue IPC-Pfad die Interrupts sperrt, stellt sich die Frage, ob Thread-Locks zur Synchronisation de
Zugriffe auf TCBs weiterhin verwendet werden sollen.

Die Interrupts kbnnen nur kurz gesperrt werden, d.h. bei langeren Operationen missen Unterbrechungspunk
eingefugt werden. Vor jedem Unterbrechungspunkt muss der Zustand des passiven IPC-Partners in einen ko
sistenten Zustand gebracht werden, und nach dem Unterbrechungspunkt muss geprift werden, ob der Zuste
des IPC-Partners noch giiltig ist. Die Verwendung von Versionsnummern, welche bei jeder Modifizierung in-
krementiert werden, kann in diesem Fall sehr hilfreich sein, da ein Vergleich ausreicht, der Gberpriift, ob del
Zustand des IPC-Partners noch gliltig ist.

Bei SMP ware es mdglich die Threads als CPU-lokale Datenstrukturen aufzufassen, wobei Anderungen nu
durch diese CPU erfolgen dirfen. Threads sind also an eine CPU gebunden. IPC zwischen Threads auf ve
schiedenen CPUs werden mittelsARihd Proxy-Threads erfolgen. Dadurch wiirde garantiert, dass Threads
nur von der lokalen CPU modifiziert werden.

Die Abschaffung von Thread-Locks und die nachfolgende Anpassung der Synchronisationstrategie wirde
sich durch den ganzen Kern ziehen, jeder Systemaufruf, welcher bisher Thread-Locks verwendet, muss al
gepasst werden. Die Codekomplexitat steigt, da nach jedem Unterbrechungspunkt geprift werden muss, ¢
der Zustand des Partners noch giiltig ist. L&ngere kritische Abschnitte missen in kleinere Abschnitte aufge
brochen werden. Es ist nicht erkennbar, ob damit die Echtzeitfahigkeit und Effizienz weiterhin gewahrleistet
werden kann. Aus diesen Grinden werden die Thread-Locks weiter verwendet. Es werden jedoch einige Oy
timierungen verwendet, um die Geschwindigkeit zu erhdhen.

Bei Locks ist zu beachten, dass zur Vermeidung von Deadlocks bei dem Holen von mehreren Locks eine
bestimmte Reihenfolge eingehalten werden muss. Die Adressrdume werdgs lask _newynchronisiert,

indem der erste Thread des Adressraumes gesperrt wird. In der V2-Spezifikation miissen beim Ldschen ein
Chiefs alle seine Untertasks geldscht werden. Der Systemaysufask newvelche die Tasks l6scht, sperrt

also rekursiv alle ersten Threads der betroffenen Adressraume, wenn er einen Chief 16scht. Dadurch wirt
es sehr schwer im restlichen Kerncode gleichzeig mehr als ein Thread-Lock zu holen, da die Gefahr eine
Deadlocks besteht. Problematisch ist dies im IPC-Pfad beim kombinierten Senden und Empfangen, wen
neben dem alten Empfanger auch der wartende Sender bertcksichtigt werden muss. Um dies zu vermeide
besitzt der IPC-Pfad zu jeder Zeit hochstens ein Thread-Lock. In der X.2-Schnittstelle ist das Léschen vor
Tasks ein nichtrekursiver Prozess, so dass dies dort kein Problem ist.

2IPI: Interprozessor-Interrupt, damit kann eine CPU einen Interrupt auf einer anderen CPU ausldsen, um ihr eine Nachricht zuzu
stellen

37

5 Entwurf

Optimierungen

Zur Optimierung wird das Thread-Lock nur gegriffen, wenn der entsprechende TCB schon gesperrt ist, oder
der aktuelle Codeabschnitt unterbrechbar ist. Es wird also das Holen von Locks solange verzdgert, bis Inter-
rupts wieder zugelassen werden.

Diese Optimierung erlaubt es, eine Short-IPC durchzufiihren, ohne ein Thread-Lock zu greifen, falls der
betroffene IPC-Partner nicht gesperrt ist. Erst bei komplexeren Nachrichten, welche Unterbrechungspunkte
erfordern, wird der IPC-Partner gesperrt.

Desweiteren wird der der Umstand ausgenutzt, dass der TCB nur durch das Thread-Lock geschitzt wird, der
Threadzustand und die verschiedenen Listen werden getrennt synchronisiert. Deshalb kann man den Thread-
zustand und die Warteschlangen auch ohne Halten des Thread-Locks modifizieren. Es muss nur sichergestellt
werden, dass der Zustand des Threads noch gultig ist.

5.3 Senderwarteschlange mit Prioritaten

Die bisherige Senderwarteschlange garantiert keine Prioritaten, dies ist ein Problem, wenn Threads mit unter-
schiedlichen Prioritaten, Anfragen an den selben Server stellen.

Die Implementierung ist eine unsortierte, doppelt verkettete Liste. Neue Sender ketten sich stets am Ende
dieser Liste ein, und Empfanger betrachtet immer nur den Kopf dieser Liste. Dadurch wird eine einfache
FIFO?-Strategie implementiert. Da die Prioritaten nicht beriicksichtigt werden, besteht das Problem der Prio-
ritatsinversion. Um dies zu vermeiden, werden im folgenden verschiedene Anséatze vorgestellt, Prioritdten bei
der Senderwarteschlange durchzusetzen.

Die Elemente der Senderwarteschlange sind Threads, Interrupts, Preemptions und Activations, welche die
Senderschnittstelle implementieren. Das Ein- und Ausketten ist sehr schnell und in konstanter Zeit moglich.

Das Ausketten von Sendern ist in jeder Position schnell durchfiihrbar. Dies ist wichtig, wenn eine Sendeope-
ration durch einen Timeout abgebrochen wird.

Sortieren der Liste nach Prioritaten

Die Liste wird einfach nach Prioritaten sortiert. Sie wird solange beim Einketten durchlaufen, bis die richtige
Position gefunden ist. Das Einketten erfolgt mit linearen Aufwand, das Ausketten ist weiterhin mit konstanten
Aufwand mdglich.

Als Optimierung kann man Sender von gleichen Prioritéaten zu Blécken zusammenfassen, so dass beim Durch-
laufen der Liste nur einzelne Blocke betrachtet werden missen. Wenn der passende Block gefunden ist, wird
der Sender am Ende dieses Blocks eingekettet. Dadurch reduziert sich der Aufwand fir das Einketten im

schlechtesten Fall auf die maximale Anzahl von Prioritdten im System. Der Sender mit der hdchsten Prioritét

befindet sich dann am Kopf dieser Liste.

Da das Einketten Durchlaufen sehr zeitaufwendig ist, kann es nicht mit deaktivierten Unterbrechungen er-
folgen. Dadurch wird jedoch eine Synchronisation notwendig, welche tber ein Lock erfolgt, da die 1A-32-
Architektur iber kein MWCAS verfiigt.

3First-In, First-Out
4“MWCAS: Multi Word Compare nd Swap, Eine Maschineninstruktion, welche atomar mehrere Worte vergleichen und vertauschen
kann

38

5.3 Senderwarteschlange mit Prioritéten

Eine bessere Losung sind so genarBke Lists/Pug89]. Dies sind mehrfach verkettete und sortierte Listen
siehe Abb. 5.3, welche im Durchschnitt einen logarithmischen Aufwand zum Einketten eines Elements anbie:
ten. Sie sind oftmals schneller als ausgeglichene sortierte Baume, da keine Rotationen durchgefiihrt werde
mussen. Im schlechtesten Fall ist jedoch weiterhin ein linearer Aufwand notwendig.

Wurzel

v v

' %SH '
© Ez@ (@)

(o))
[
§
Yy
il

NCESRE

[
\‘
|
(eI
[{e]
Qv Yy
—~—|
[

Abbildung 5.3:List als Senderwarteschlange.

Sortierter Binarbaum

Die Implementation der Senderwarteschlange erfolgt mit einem sortierten Bindrbaum. Ein unausgeglichene
Bindrbaum istim schlechtesten Fall nicht besser als eine sortierte Liste. Er bringt nur Vorteile im Durchschnitt,
wo das Einketten mit logarithmischem Aufwand erfolgt. Im schlechtesten Fall degeneriert der Baum zu einer
Liste und, das Einketten erfordert einen linearen Aufwand.

Bei einem ausgeglichenen Baum wird der Baum bei jedem Ein- und Ausketten ausbalanciert. Sie garantiere
auch im schlechtesten Fall logarithmischen Aufwand zum Ein- und Ausketten. Das Ein- und Ausketten, kann
trotzdem sehr aufwendig werden, wenn teure Rotationen zum Ausgleich notwendig sind. Das Bestimmen de
maximalen Elements ist weiterhin in konstanter Zeit moglich.

Es ist mdglich, Sender mit gleicher Prioritat als ein Baumelement zu betrachten. Es entsteht ein Baum, desse
Elemente wieder doppelt verkettete Listen von Sendern gleicher Prioritat sind. Dadurch verkirzt sich die Zeil
zum Einketten vorO (In(N)) auf maximalO(in(256)).

Beim Einketten von mehreren Sendern gleicher Prioritat, wird zuerst die entsprechende Liste gesucht und de
neue Sender am Ende dieser Liste eingekettet. Dadurch wird auch die Fairness beziiglich Sendern gleich
Prioritat garantiert.

Tries

Tries sind sortierten Binarbdumen &hnlich. Sie basieren jedoch nicht auf dem Vergleich des Schliissels. Stat
dessen machen sie sich die digitale Natur des Schllssels, hier die Prioritat, zu Nutze. Sie betrachten de
Schlussel als Beschreibung, wie der Baum zu durchlaufen ist, um die passende entsprechende Stelle zu fi
den. Ein Beispiel fur Tries sind mehrstufige Seitentabellen.

Tries garantieren Einfigen und Ausketten mit logarithmischem Aufwand Auch hier kann die Optimierung,
die Zusammenfassung von Sendern gleicher Prioritaten, eingesetzt werden, siehe Abb. 5.4. Es wird dar

39

5 Entwurf

die Fairness von Sendern gleicher Prioritdt garantiert. Die maximale Tiefe von Tries hangt stark von der
verwendeten Struktur ab. Die Tiefe eines binaren Tries ist identisch zur Anzahl der Bits in dem verwendeten
Schlussel. Bei 256 Prioritaten sind dies maximal acht Ebelag256)).

Im Gegensatz zu ausgeglichenen Baumen sind keine aufwendigen Operationen beim Ein- und Ausketten
notwendig, jedoch sind die Tries im Durchschnitt weniger gut ausgeglichen.

‘ Wurzel
0:0

<\Q*©

Abbildung 5.4:Senderwarteschlange-Trie.

Heaps

Der Heap ist als die Prioritatswarteschlange bekannt und entspricht topologisch auch einem Baum.

Sie besitzen die Eigenschaft, dass der Schliissel des Elternelements stets grof3er ist, als der Schlissel der
Kinder. Dies gilt rekursiv fur alle Unterbaume. Das Ein- Ausketten von Elementen in Heaps ist viel effizienter
als bei ausbalancierten Bd&umen, da keine teuren Ausgleichoperationen notwendig sind.

Es ist nicht moéglich, anstelle von einzelnen Sendern, Blécke von Sendern mit der gleichen Prioritat zu be-
trachten. Es muss stets jeder Sender einzeln eingekettet und ausgekettet werden, da der Heap kein effizientes
Suchen von Elementen anbietet. Es ist somit unmdglich, die passende Liste der bendtigten Prioritat schnell
zu finden. Ferner muss die Fairness von Sendern gleicher Prioritt durch einen anderen Ansatz sichergestellt
werden.

Die meisten Implementierungen nutzen Felder fir die einzelnen Elemente. Dadurch ist der Heap immer aus-
geglichen und es kann die logarithmische Komplexitat garantiert werden. Eine Implementierung durch ein
Feld ist aber im diesem Fall nicht mdglich.

Eine Mdglichkeit zur Implementierung ist es, die Knoten des Baums mit Z&éhlern zu versehen, um ein ausge-
glichenes Ein- und Ausketten zu erreichen. Die Fairness kann dadurch garantiert werden, dass beim Einketten
eine aufsteigende Nummer vergeben wird. Der Vergleich bezieht dann die Prioritat und diese Nummer mit
ein.

Da Heaps nu©(In(N)) und nichtO(In(Prio)) anbieten, kdnnen die Zeiten im schlechtesten Fall signifikant
steigen, so dass der ausgeglichene Baum oder der Trie vorzuziehen ist.

40

5.3 Senderwarteschlange mit Prioritéten

Abbildung 5.5:Senderqueue-Heap.

Zusammenfassung

Eine ideale Senderwarteschlange sollte nach Prioritéaten sortiert sein und es erlauben die Elemente mit g
ringem und konstantem Aufwand einzufugen und zu entfernen. Die einfache Liste gax@qtieAufwand
beim Ein- und Ausketten, aber sie setzt keine Prioritaten durch.

Wenn Prioritédten gewtiinscht sind, kommen nur der ausgeglichene Baum und der Trie in Frage. Um den Auf
wand auch im ungtinstigen Fall méglichst gering zu halten, werden alle Sender gleicher Prioritat zusammen
gefasst. Im schlechtesten Fall, bei 256 Prioritéaten, garantiert der binare Trie acht und ein Rot-Schwarz Baur
16 Iterationen, um ein Element einzufligen.

Ferner ist die Synchronisation ein limitierender Faktor. Bisher wurden die Interrupts gesperrt, um die Zugriffe
auf die Warteschlange zu synchronisieren. Es ist fUr einige Codeteile unmaoglich Locks zu holen. Dies betrifft
besonders den Interruptcode zur Zustellung von Interrupt-IPCs.

Im Rahmen dieser Diplomarbeit wurde neben der bereits vorhandenen Lésung, auch eine Warteschlange ir
plementiert, welche die Prioritdten garantiert. Die verwendete Datenstruktur ist ein binarer Trie, dessen Ele
mente doppelt verkettete Listen sind. Diese Listen enthalten alle Sender gleicher Prioritat.

Konsistenz der Senderwarteschlange

Eine inkonsistente Senderwarteschlange enthélt auch Sender, welche keine IPC mehr durchfiihren. Bei ¢
ner konsistenten Warteschlange ist garantiert, dass sie nur Sender enthélt, welche die IPC noch durchfihri
kénnen.

Bei Threads als Sendern konnen Inkonsistenzen entstehen, wenn der IPC-Timeout des Threads Uberschrit
wird, oder die IPC durch eithread_ex_regabgebrochen wird. Die Konsistenz der Warteschlange kann bei
Thread::kill und beim Abbrechen der IPC durtiiread_ex_regsichergestellt werden, indem der betroffene
Sender aus der Warteschlange ausgekettet wird.

Bei einem Timeout ist dies auch moglich, hier ist aber folgendes zu beachten. Die Behandlung von Timeouts
erfolgt mit deaktivierten Interrupts in der Zeitgeber-Routine. Sie durchlauft die Liste von Timeouts und kettet
die betroffenen Timeout-Objekte aus. Um die Verzégerungszeiten gering zu halten, ist das Ausketten vor
Sendern aus der Wartschlange nur mdglich, wenn diese Operation sehr schnell ist. Dies wird nur durch di
doppelt verkettete Liste erreicht.

41

5 Entwurf

Bei Activations kdnnen bestimmte Ereignisse neutralisieren, so dass auch hier keine IPC mehr durchgefiihrt
werden soll. Ein dhnliches Problem sind Unterbrechungspunkte zwischen dem Ausketten des Senders und
dem Start des Rendezvous. Dies konnen implizite Unterbrechungspunkte, wie das Holen eines Thread-Locks,
oder explizit gesetzte, z.B. vor einem Kontextwechsel sein, um die Verzégerungszeiten klein zu halten. Dies ist

besonders bei Preemption-IPC ein Problem, da mehrere Locks inphreeceiver_readethode gegriffen

werden.

Eine Moglichkeit ist es, die Empfangsoperation mit einem Fehler abzubrechen, wenn der ausgekettete Sender
die IPC nicht mehr durchfihren kann. Eine andere L&sung ist, solange durch die Warteschlange zu iterieren,
bis ein gultiger Sender gefunden wird, oder es keinen Sender mehr gibt. Bei einer Iteration tiber die Warte-

schlange missen dann Unterbrechungspunkte gesetzt werden, damit die Verzégerungszeiten gering bleiben.

5.4 Aufbau IPC-Pfades

IPC Zustande

Sender und Empféanger durchlaufen wahrend der IPC verschiedene Zustande, welche sich in vier grundlegende
Teile, Setup, Rendezvous, Datentransfer und Abschluss, umfassen. Die einzelnen Zustande werden durch
verschiedene Bitmuster, siehe Tabelle 5.1, im Zustandsword dargestellt. Der Sender Gbernimmt wahrend der
IPC die aktive Rolle, der Empfanger wird nur aktiv, wenn bei einer Long-IPC-Operation Seitenfehler im
IPC-Fenster auftreten. Ein Zustandsdiagramm fir die einzelnen IPC-Zustande ist in Abb. 5.6 zu sehen.

Zustand| ready ipc recv transfer send poll busy poll rcv cancel
long long long
Senderzustande
send prepared + + - - + - - - - ?
sleep prepared + 4+ - - + + - - - 2
sleep -+ - - + + - - - ?
data transfer + o+ - + + - - - - ?
page fault
in IPC window + o+ - + + - - + -)
page-in wait - + - + + - - + - 2
ipc finished + - - - - - - - -)
Empfangerzustande
receiving + o+ + - - - - - - 2
try handshake + o+ + - - - - - - 2
waiting -+ + - - - - - - 2
receiving data -+ + + - - - - - ?
inlong IPC -+ - + - - - - + ?
page in + + - + - - + - + 2
receiving end + - - - - - - - .)
Fehlerzustéande
timeout + - ? ? ? ? ? ? ? ?
cancel + - ? ? ? ? ? ? ? +
kill - - - - - - - - - -

+ = Flag gesetzt, - = Flag geloscht, ? = Flag kann gesetzt oder geldscht sein

Tabelle 5.1Sende- und Empfangszustande

42

5.4 Aufbau IPC-Pfades

ipc_continue

long IPC
in progress

A

page fault| |resolved
Y

page fault
in IPC window

’page inacessible

page—in wait

ready

-

try_handshake
failed

»
L

prepare sleep

|

transfer_msg

\
prepare send
|

Y
sleeping

ipc_receiver_ready/

|

data transfer no receive
finished g\

going to receive

-

ready for rendezvous

failed

ipc_receiver_ready

~

-

Dirg::hit
Preemtion::send

no waiting
sender

get next sender waiting

’ sender found

try rendezvous

ipc_receiver_ready
successful
(passive sender)

transfer_msg

irq shortcut

ipc_short_cut

ipc_finish

recv end

Abbildung 5.6:IPC-Zustandsdiagramm.

43

5 Entwurf

Setup

Bei einem Kerneintritt im V2-Kern wird zuerst geprift, ob es sich um eine normale IPC, oder um eine
Interrupt-Operation handelt. Bei einer normalen IPC erfolgt die Umrechnung der Thread-ID zu TCB-Adressen,
welche dann der generischen IPC-Funktido, ipg Ubergeben werden.

Weiterhin umfasst das Setup das Setzen des Sende- und Empfangszustandes. Bei einer kombinierten Sende-
und Empfangsoperation, erfolgt das Setzen des Empfangszustandes vor dem Abschluss der Sendeoperation,
um das atomare Umschalten vom Senden zum Empfangen zu garantieren. Im bisherigen IPC-Pfad wird dies
schon vor dem Beginn der Sendeoperation dprelpare_receivgemacht, im neuen erfolgt dies erst am Ende

der Sendeoperation, um mdogliche Fehler wie Prioritatsinversion zu vermeiden. Daflr wurden die friiheren
do_sendunddo_receivd-unktionen zu einer einzigen Funktialg_ipczusammen gefasst.

Nachdem das Setup erfolgt ist, kann das Rendezvous durch den neuen Sender erfolgen.

Nach dem Kerneintritt und vor dem Aufruf der IPC-Operation, wird ein Unterbrechungspunkt gesetzt. Da-
durch wird bei einem Kerneintritt mittels INT-Instruktion die Verzogerungszeit nicht zu grof3.

Rendezvous

Wenn der Empfanger schon von einen anderen Thread gespertrt ist, versucht der IPC-Pfad sich das Lock
zu holen, sonst ist Sperren des Empfangers-TCBs nicht notwendig. Der Sender prift nach, ob der Empfan-
ger empfangsbereit ist. Ist dies nicht der Fall, bricht er das Rendezvous ab und kettet sich erst jetzt in die
Senderwarteschlange des Empfangers ein. Er setzt, wenn nétig, einen Timeout, aktualisiert seinen Zustand
und blockiert, bis er vom Empfanger durgdt_receiver_readgeweckt wird. Im Gegensatz zum bisherigen
IPC-Pfad beginnipc_receiver_readylas Rendezvous, so dass der aufgeweckte Sender sofort die Nachricht
Ubertragen kann. Desweiteren kann er auch durch den Timeouhreatl_ex_regsvieder aktiviert werden,

welche die IPC-Operation abbrechen kénnen. Der Sender muss diese Bedingungen prifen, wenn er nach dem
Blockieren wieder aktiv wird.

Der Empfanger versucht nach dem Setup einen wartende Sendpc néceiver_readpufzuwecken. Wenn
dieser Sender die IPC nicht mehr durchfihren kann, wird er ausgekettet, und der Empfanger versucht das
Rendezvous nach einem Unterbrechungspunkt mit dem néchsten Sender.

Wenn kein Sender wartet, setzt der Empfanger einen optionalen Timeout, l6scht sein Ready-Flag und blockiert
solange, bis ein neuer Sender das Rendezvous versucht. Der Empfanger kann auch durch den Ablauf eines
IPC-Timeouts oder durctihread_ex_regwieder aktiviert werden.

Datentransfer

Der Datentransfer gliedert sich in zwei Teile: Registerwertetransfer und Long-IPC. Der Registerwertetransfer
kann neben dem Kopieren der Registerinhalte auch das Einblenden von Flexpages in den Adressraum des
Empfangers umfassen. Das Kopieren der Registerinhalte passiert mit gesperrten Interrupts, wahrend die Be-
handlung von Flexpages mit aktivierten Interrupts erfolgt, wobei der Sender vor dem Freigeben der Interrupts
mit einem Thread-Lock gesperrt wird.

Long-IPC umfasst das Kopieren von Speicherinhalten und das Einblenden von Flexpages. Da das Kopieren
von Speicherinhalten aus dem Nutzeradressraum blockieren kann, muss dies ohne Lock-Schutz erfolgen. Nur
bei der Behandlung von Flexpages und Abschluss der Long-IPC wird der Empfénger gesperrt.

Der Empfanger ist wahrend dieser Zeit inaktiv. Wenn jedoch Seitenfehler im IPC-Fenster vom Adressraum
des Senders auftreten, weckt die Seitenfehler-Routine den Empféanger auf und setzt den Sengeagie-ohen

44

5.4 Aufbau IPC-Pfades

wait-Zustand. Der nun aktive Empfénger setzt eine IPC zur Seitenfehlerbehandlung auf. Nach der Antwort
weckt der Empfanger den Sender tipic_continueauf, so dass dieser die IPC fortfiihren kann.

Bei passiven Sendern wird der IPC-Transfer vom Empfanger durchgefiihrt. Die passiven Sender Uberschreibe
ipc_receiver_readyso dass diese Funktion die Nachricht in den Registerpuffers des Empfangers schreibt.
Wenn der passive Sender nicht mehr an einer IPC interessiert ist, ijfereéceiver_readfalsch zurtick. Der
Empfanger versucht dann das Rendezvous mit dem néchsten Sender.

Abschluss

Der Abschluss der IPC wird durch ein geloschibsead_ipc_in_progresBlag gekennzeichnet. Die IPC kann
durch einen Timeout, Abbruch der IPC mittétsead_ex_regsind durchThread::kill beendet werden. Die
Empfangsoperation wird am Ende der IPC-Operation auch durch den Sender abgeschlossen.

Wenn einer Sendeoperation keine Empfangsoperation mehr folgt, werden alle IPC-Flags inkluEive dds-
ipc_in_progresgeloscht. Falls es ein kombiniertes Senden und Empfangen ist, wird nach dem Abschluss des
Sendens in den Empfangszustand tibergegangeiihgead_ipc_in_progresElag bleibt dabei gesetzt.

Der Empfangerm kehrt bei einer erfolgreichen IPC sofort zurtick. Erst bei einer nicht erfolgreichen IPC erfolgt
die aufwandige Auswertung der Fehlerbedingungen. Wenn dies der Fall ist, wird vor der Riickkehr zum Nutzel
ein Fehlercode gesetzt.

Asynchrone Ereignisse

Bedingt durch Unterbrechungspunkte konnen wahrend der IPC asynchrone Ereignisse die IPC-Operation b
einflussen. Aus diesem Grund muss nach einem Unterbrechungspunkt geprift werden, ob der IPC-Zustar
noch gultig ist. Folgende Ereignisse kénnen eintreten, Timeout, Abbruch der IPCttterad _ex_regd 6-

schen des Threads und Zustandsénderungen durch passive Sender wie Interrupts, Preemptions und Activ
ons.

Timeouts

Wenn ein Timeout eintritt, I6scht diexpireFunktion dasThread_ipc_in_progresBlag, setzt da3hread_-
readyBit und kettet ihn in die Ready-Liste ein. Wenn dieser Thread eine gré3ere Prioritat als der aktuelle
Thread besitzt, wird im Anschluss der Scheduler aktiv. Der betroffene Thread kann dann an dem geldschte
Thread_ipc_in_progresBlag einen abgelaufenden Timeout erkennen. Er kehrt mit einem Fehlercode zum
Nutzer zuriick.

IPC-Abbruch

Durch thread_ex_regkann die IPC an jedem beliebigen Unterbrechungspunkt abgebrochen werden. Da
thread_ex_regsich das Thread-Lock greift, kann ein passiver IPC-Partner nicht abgebrochen werden, wenn
er vom IPC-Code gesperrtist. Zum Abbruch der IPC I6ttigad_ex_regdasThread_ipc_in_progresBlag,

setzt dag hread_canceBit, sowie dasThread_readyBit und kettet den Thread erneut in die Ready-Liste ein.

Es wird nur ein Thread durcthread_ex_regsabgebrochen. Bei einer begonnenen IPC muss dieser Thread
auch seinen IPC-Partner abbrechen. Sender und Empfanger kehren in diesem Fall mit einem Fehlercode zL
Nutzer zurtick.

Long-IPC verwendet einen Trick, um nicht immer auf Abbruch der IPC zu prufen. Bei dem Kontextwechsel
wird das IPC-Fenster geldscht, und da die IPC nur durch einen anderen Thread abgebrochen werden kann,

45

5 Entwurf

dieser Test nur am Anfang der Long-IPC und in der Seitenfehler-Routine notwendig. Sobald zu einem Thread
umgeschaltet wird, welcher die gerade suspendierte Long-IPC-Operation abbricht, wird der IPC-Zustand un-
gultig. Wenn der Sender die IPC-Operation fortsetzt, wird durch die Kopieroperation ein Seitenfehler ausge-
I6st. Deshalb reicht es aus, dass der Test auf Abbruch der IPC in in der Seitenfehler-Routine erfolgt.

Thread::Kill

Wenn ein Thread zerstoért wird, wird sein kompletter Zustand geldscht, und er wird aus der Bereitwarteschlan-

ge entfernt. Sobald der zu I6schende Thread alle Locks freigeben hat, stoppt er die Ausfiihread::kill

muss daher alle anderen Ressourcen freigeben, gesetzte Timeouts I6schen und den Thread aus einer Sender-
warteschlange ausketten. Es muss der IPC-Partner einer begonnenen IPC-Operation, erkennbar am gesetzten
Thread_transfefFlag, abgebrochen werden.

Passive Sender

Passive Sender werden in die Senderwarteschlange des Empfangers eingekettet und der Empfanger wird wie-
der aufgeweckt. Der Empfanger muss dann erneut das Rendezvous mit dem neuen Sender versuchen. Auch
nach Unterbrechungspunkten muss der Empfanger beachten, dass in der Senderwarteschlange neue Sender
enthalten sein kénnen.

5.5 Probleme des bisherigen IPC-Pfades

Prioritatsinversion

Die L4-Spezifikation verlangt bei einer kombiniertem Sende- und Empfangsoperation, dass der Ubergang vom
Senden zum Empfangen atomar erfolgen muss. Es ist auch der Fall, dass sich ein Sender in der Warteschlange
befindet, zu beachten.

Wenn dieser eingekettete Sender die hdchste Prioritat besitzt, muss er anstelle des alten Empféngers aktiv wer-
den, um eine Prioritatsinversion zu vermeiden. In einem nicht unterbrechbaren IPC-Pfad ist dies problemlos
durchsetzbar, der bisherige IPC-Pfad zeigte hier Fehler.

In dem folgenden Szenario, siehe 5.7, Gatie hochste PrioritdB eine mittlere Prioritat und die geringste
Prioritat. A bearbeitet einen Auftrag voB, und B wartet auf eine Antwort vor\. C wird aktiv und méchte
eine IPC zWA durchfuhren. DaA nicht empfangsbereit ist, blockieCtsolange, bis er voA aufgeweckt wird.

A beendet den Auftrag, schickt diesen mit eireply _waitOperation zurlick an B und geht gleichzeitig ins
offene Warten Uber, damit er neue Auftrage entgegen nehmen kann.

Im bisherigen IPC-Pfad, sperrt A bei seiner Antwort den EmpfaBg&ppiert die Nachricht zB, setzt sich
empfangsbereit unB auf lauffahig, und gibt das Lock vadB frei. Durch die Freigabe des Locks v@wird
sofort zuB umgeschaltet, weB eine héhere Prioritéat als besitzt.

Wenn nunB in eine Endlosschleife eintritt, wird nie wieder aktivA kann damit auclC nicht aufwecken.
Obwohl C eine hdhere Prioritat aB besitzt undC nun die IPC zUA beginnen kénnte, wir€ niemals vom
Scheduler ausgewabhlt.

Bei dem kombinierten Senden und Empfangen mussen auch wartende Sender beriicksichtigt werden, um
solche Fehler zu vermeiden. Ein einfaches atomares Setzen des IPC-Zustandes auf Empfangsbereit reicht
nicht aus.

46

5.5 Probleme des bisherigen IPC-Pfades

send to A

Prioritaten
—————————————————————— @— -- 130

wait for A — ready —= while(1);
——————————————7"— ———————— 128

reply_wait

ready — openwait

Abbildung 5.7:Prioritatsinversion.

Die neue Implementation umgeht dies, indem nach Abschluss der Sendeoperation nicht #xtonisohaltet
wird. Es wird vorher die Prioritat voB mit dem eingeketteten Send€rverglichen. Wenn der einkettete
Sender eine hohere Prioritét besitzt, wird zu ihm umgeschaltet, der alte EmpEinger nur in die Ready-
Liste eingekettet.

Empfangstimeouts

Die L4-Spezifikation sagt nichts dariiber aus, ob der Empfangstimeout sofort glltig sein muss, oder ers
wenn der Empfanger blockiert. Der bisherige IPC-Pfad nutzt dies aus, und setzt den Empfangstimeout be
dem kombinierten Senden und Empfangen verzdgert. Dadurch trifft im gunstigen Fall die Antwort der IPC
vor dem Ablauf der aktuellen Zeitscheibe und vor dem Setzen des Timeouts ein, welches dadurch komple
eingespart werden kann. Der neue IPC-Pfad nutzt die gleiche Optimierung, um so dass Setzen von IPC
Empfangstimeouts gegebenenfalls einzusparen. Es ist jedoch zu beachten, dass dies Probleme mit sehr lan
Zeitscheiben verursachen kann, hier kann das Timeoutende noch innerhalb der aktuellen Zeitscheibe liege
Wenn solche Szenarios wichtig sind, muss der Timeout vorher gesetzt werden.

Weiter kénnen im bisherigen IPC-Code Timeout-Fehler bei Empfangstimeouts eintreten, obwohl es wartend
Sender gibt. Das folgende Szenario, Abb. 5.8, verdeutlicht dies. Thyéded hier eine hohere Prioritat als
ThreadB. ThreadB wartet darauf, eine IPC af zu schicken, und ist dafiir in der Senderwarteschlange von

A eingekettet. Thread ist wieder aktiv und fihrt nach einer bestimmten Zeit eine Empfangsoperation mit
Timeout Null durch.

Atritt in den Kern ein und setzt seinen IPC-Zustand auf EmpfArfigndetB in seiner Sendewarteschlange und
schaltet zuB mittelsipc_receiver_readym, um das Rendezvous zu beginn&ibleibt jedoch noch lauffahig.
Es wird nur der Ausfuhrungskontext umgeschaltet, der Scheduling-Kontext Biahtd aktiv, und will das
Rendezvous beginnen. BevBriedochA durch ein Thread-Locks iipc_send_regsperren kann, lauft die
aktuelle Zeitscheibe voA ab.

Der Scheduler wird wieder aktiv und waltaufgrund seiner hoheren Prioritat erneut aus. Dies ist moglich,
daA zu diesem Zeitpunkt noch lauffahig ig.untersucht erst jetzt den Empfangstimeout, und stellt fest, der
Timeout ist Null. Er kehrt dann zum Nutzer mit einem Timeout-Fehler zuriick, ob®dinin eine Nachricht
senden kann.

a7

5 Entwurf

A B
Prioritat: 128 Prioritat: 100

prepare_receive

I
I

I

I

I

I

- - !
receiving :
I

I

I

I

I

I

I

do_send()
find next sender
ipc_receiver_ready()r
schedule() Y Timer—Interrupt

ipc_send_regs()
lock A
sender_ok() — receiver not ready

Receive-Timeout Null
return with timeout error

%

Abbildung 5.8:Timeout-Fehler.

Um diese Fehler zu vermeiden, wird das Rendezvous schon durch den Empfaimerréceiver_ready
begonnen. Ein neues Flag im Zustandsword zeigt an, ob das Rendezvous schon vollzogen wurde. Ein Setzen
des Timeouts ist nicht mehr notwendig, weil die IPC erfolgreich begonnen wurde.

Durch dieses Flag kénnen auch Fehler @i@ncelund Abort genauer unterschieden werden. Weiterhin er-
kennt der IPC-Partner durch dieses Flag eine begonnene IPC, und kann dann auch den anderen IPC-Partner
abbrechen, wenn seine IPC in der Zwischenzeitthméad_ex_regabgebrochen wurde.

48

6 Implementierung

In diesem Kapitel wird kurz auf verschiedene Aspekte der Implementierung eingegangen. Weiterhin werder
einige Optimierungen erlautert, um die Geschwindigkeit des IPC-Pfades zu maximieren.

6.1 Timeouts

Fiasco bildet jedes zeitliches Ereignis auf einen Timeout ab, die KI&Setimeoutsmplementiert Zeit-
grenzen in IPC-Operationeiijmeslice_timeoutstt3t nach Ablauf der Zeitscheibe den Scheduler an, und
Deadline_timeoutémplementiert Perioden und Deadlines fir Echtzeit-Threads. Jedesmal, wenn durch den
Zeitgeber die entsprechende Routine zur Behandlung von Timeouts angestof3en wird, durchlauft diese eir
Liste der Timeout-Objekte, und ruft fir alle Objekte, deren Zeitindex kleiner als der aktuelle ist, ihre virtuelle
expireMethode auf.

» |[PC_timeout: Die KlasselPC_timeoutdient dazu, erfolglose IPC-Operationen, nach einer vom Nut-
zer bestimmbaren Zeit abzubrechen. Bisher wurden IPC-Timeout-Objekte auf dem Kernstack des je
weiligen Threads angelegt. Dadurch wird auch jedesmal ihr Konstruktor und Destruktor aufgerufen.
Obwohl der Compiler sehr gut optimiert, konnte eine Zeiteinsparung dadurch erreicht werden, dass
IPC-Timeouts direkt im TCB aggregiert werden. Die virtuedlgire Methode des IPC-Timeouts setzt
den Thread laufféhig, I6scht die IPC-Flags und kettet ihn in die Ready-Liste ein.

» Timeslice_timeout: Der Timeslice_timeoutient dazu die verschiedensten Scheduling-Kontexte eines
Threads umzuschalten. Beim Ablauf eines Echtzeit-Scheduling-Kontextes, wird dem Preempter diese
Threads eine Preemption-IPC zugestellt, und es erfolgt die Umschaltung des Scheduling-Kontextes
Ferner dient dieser Timeout dazu, periodisch den Aufrufsgledule=unktion zu triggern, die einen
neuen Thread aus der Menge der rechenbereiten Threads auswahlt. Es befindet sich dadurch immer ¢
Timeslice_timeouObjekt in der Timeout-Liste.

» Deadline_timeouts: Mit dem Deadline_timeoukénnen sich Echtzeithreads mit ihrer Periode syn-
chronisieren. Sie blockieren solange durch eine spezielle IPC, bis sie am Anfang ihrer Periode durct
denDeadline_timeoutwieder aufgeweckt werden. Mit dem gleichen Mechanismus werden auch Uber-
schreitungen der Deadline erkannt. Dies ist der Fall, wenn der betroffene Thread nach dem Ablauf eine:
Deadline-Timeouts nicht auf seine nachste Periode wartet. In diesem Fall wird sein Preempter mit eine
Deadline-Miss-IPC informiert.

Timeout-Liste

Im bisherigen Kern wird die Timeout-Liste durch eine sortierte, doppelt verkettete Liste implementiert. Je-
desmal wenn ein neuer Timeout gesetzt wird, wird die entsprechende Stelle in dieser Liste gesucht und de
Timeout dort eingekettet. Dieses Suchen und Einketten passiert mit geschlossenen Interrupts und kann dart
auch hohe Verzdgerungszeiten verursachen.

49

6 Implementierung

Die Funktion,do_timeoutswelche die Timeouts behandelt, durchlauft diese Liste und Gberprift, ob der Zei-
tindex des Timeout-Objektes kleiner als der aktuelle Zeitindex ist und behandelt diese. Sobald ein Objekt
gefunden wird, dessen Zeitindex grof3er als der aktuelle Zeitindex ist, wird das Durchlaufen der Liste abge-
brochen.

Um diesen Vorgang zu beschleunigen, wird die bisherige Liste auf mehrere sortierte Timeout-Listen aufgeteilt,
siehe Abb. 6.1. Die Auswahl der entsprechenden Liste erfolgt, indem der Zeitindex durch den Zeitabstand
der einzelnen Listen geteilt wird, und der Rest dieser Division die entsprechende Liste spezifiziert. Wenn
der Abstand der Timeout-Listen eine Grof3e @nbesitzt, ist dies durch einfache Bitoperationen moglich.
Dadurch werden die Timeouts im Durchschnitt auf mehrere Listen verteilt, und bei dem Einketten werden
damit kiirzere Listen durchlaufen.

Die Anzahl der Listen und der zeitliche Abstand zwischen zwei Listen ist einstellbar und ist aktuell auf acht
Listen und 4ms Abstand eingestellt. Da die durchschnittliche Zeitscheibe 10ms betragt, und somit aller 10ms
die TimesliceTimeouts behandelt werden, missen im Schnitt nur drei Listen betrachtet werden.

28ms
24ms
20ms
16ms
12ms

8ms

4ms

Oms

Abbildung 6.1.Timeout-Liste.

Obwohl im Durchschnitt die einzelne Timeout-Liste kiirzer wird, wird die Sortierung der Listen beibehalten,
damit beiOne-Shot-Timerdas Finden des nachsten Timeouts mit wenig Aufwand méglich ist.

Bei kurzem Listenabstand und b®nhe-Shot-Timerist es mdglich, dass der Zeitraum zwischen zwei Ker-
neintritten mehrere Listen umfasst. Dadurch missen stets alle Listen, die innerhalb dieses Zeitraumes liegen,
durchlaufen werden. Wenn ein Uberlauf entdeckt wird, z.B. wenn bei One-Shot-Timern die CPU erst nach
sehr langer Zeit wieder in den Kern eintritt, werden alle Listen behandelt.

6.2 Senderwarteschlange

Die Senderwarteschlange wird mit einem binaren Trie implementiert. Dadurch hat bei 256 Prioritaten der
Trie eine maximale Tiefe von acht Ebenen. Der Zeitaufwand fiir das Ein- und Ausketten ist dadurch auch im
schlechtesten Fall sehr begrenzt. Mdglich sind auch Tries mit vier oder acht Kindern. Dadurch wird zwar die
Tiefe weniger, es sind jedoch zusatzliche Zeigeroperationen notwendig, so dass effektiv keine Zeit eingespart
wird.

Die Elemente des Tries sind doppelt verkettete Listen von Sendern gleicher Prioritat. Der Kopf einer Liste
bildet gleichzeitig ein Strukturelement des Tries, Abb. 6.2. Die TCB enthalten daflir zwei Zeiger fir die
doppelt verkettete Liste von Sendern gleicher Prioritat, zwei Zeiger fur den rechten und linken Knoten und
einen Zeiger fur das Elternelement.

50

6.2 Senderwarteschlange

Receiver
Prio: 224 (11100000)
sender_head
Wurzel [
Prio: 240 (11110000) Prio: 240 (11110000) Prio: 240 (11110000)
< parent parent parent >
] L
next prev next prev. | next prev
T eft right left right left gt |
v NS
Prio: 160 (10100000) Prio: 80 (01010000)
parent parent
next prev next prev
|eft right | eft right
1 / 1 / ‘\\\a
Prio: 192 (11000000) Prio: 96 (01100000) Prio: 32 (00100000)
parent parent parent
next prev next prev next prev
|eft right left right |eft right

Abbildung 6.2:Implementierte Senderwarteschlange.

Beim Ein- und Ausketten wird sichergestellt, dass der Sender mit der grof3ten Prioritéat die Wurzel des Baume
bildet. Dadurch ist das Auffinden des Senders, welcher als nachstes aufgeweckt werden muss, sehr schn
moglich.

Einketten: Beim Einketten eines Senders, wird der Baum entsprechend des Schliissels solange durchlaufe
bis die Liste mit der gewiinschten Prioritat oder das Ende dieses Zweiges erreicht wird. Bei einem gesetzte
Bit wird der linke Zweig genommen, bei einem geldschten Bit der rechte Zweig. Begonnen wird mit dem
MSB des Schlissels. Dadurch wird erreicht, dass der Sender mit der gréf3ten Prioritat stets am linken Ran
des Tries zu finden sind.

Wenn eine passende Liste erreicht wird, wird der Sender am Ende dieser Liste eingekettet. Dadurch wird auc
eine FIFO-Strategie bei Sendern mit gleicher Prioritat implementiert, um die Fairness zu gewabhrleisten. Went
keine Liste mit dieser Prioritat existiert, wird der Sender als neuer Blattknoten am Ende des Zweiges angefugt

Der Fall, wenn der aktuell einzufiigende Sender eine hohere Prioritat als die Wurzel besitzt, wird gesonder
behandelt. In diesem Fall wird die alte Wurzel mit dem neuen Sender getauscht, und die alte Wurzel wird
erneut in den Trie eingekettet. Dadurch ist stets sichergestellt, dass die Sender mit der héchsten Prioritat, d
Wurzel bilden.

Ausketten: Bei dem Ausketten von Sendern wird unterschieden, ob sie ein Element des Tries sind, oder nut
in einer doppelt verketteten Liste von Sendern gleicher Prioritat enthalten sind.

Wenn Sender ausgekettet werden, welche in der Struktur des Tries enthalten sind, muss der Sender dur
seinen Nachfolger gleicher Prioritat im Trie ersetzt werden. Wenn es keinen solchen Nachfolger gibt, wird der
komplette Knoten entfernt. An die freiwerdende Position wird ein Blattknoten gesetzt.

Das Entfernen der Wurzel muss gesondert behandelt werden, hier ist eine neue Wurzel zu bestimmen, welcl
die nachst hohere Prioritat besitzt. Der Trie wird von der Wurzel entlang des linken Randes bis zu dem Blatt-
knoten durchlaufen. Das Einketten stellt sicher, dass der Sender mit der nachst hoheren Prioritat in diesel

51

6 Implementierung

Zweig zu finden ist. Die neue Wurzel wird anstelle der alten Wurzel in den Baum eingefiigt. Der Blattkno-
ten vom Ende dieses Zweiges wird an die alte Stelle der neuen Wurzel gesetzt. Dadurch stellt das Ausketten
sicher, dass der Sender mit der héchsten Prioritéat die Wurzel bildet.

Synchronisation der Senderwarteschlange

Um die Warteschlange konsistent zu halten, missen Zugriffe synchronisiert werden. Eine L6sung sind Locks.
Dies kann entweder das Thread-Lock des zugehoérigen Empfangers oder ein eigenes Lock fir die Warteschlan-
ge sein.

Es ist an einigen Stellen nicht méglich, ein Lock zu greifen, da nicht blockiert werden darf, falls das Lock
von einem anderen Thread gehalten wird. Ein Beispiel ist der Code in der Interrupt-Routine zum Zustellen
einer Interrupt-1IPC. Genauso kann beim Einketten von Preemption-IPCs bei einem Deadline-Miss keine Lock
gegriffen werden, weil die Zeitscheibe schon zu Ende sein kénnte. Ahnlich sieht es bei den Activation-IPCs
aus.

Interrupts kdnnen auf Kernthreads abgebildet werden. Diese Threads laufen auf inrem eigenen Kernstack und
kénnen deshalb Locks greifen, so dass diese Kernthreads auch blockieren kdnnen. Die eigentliche Interrupt-
Routine weckt nur noch diesen Thread auf, welcher dann die eigentliche IPC-Nachricht verschickt. Bei ARM
fuhrt dies jedoch zu Problemen, da es dort bis zu 256 Interrupts geben kann. 256 Kernelthreads wirden
jedoch zu viel Kernspeicher verbrauchen. Ferner kénnen Preemption-IPCs und Activation-IPCs nicht auf
extra Kernthreads abgebildet werden.

Deshalb wird die Senderliste weiterhin mit gesperrten Interrupts synchronisiert. Da aber das Ein- und Ausket-
ten auch im schlechtesten Fall nie mehr als acht Iterationen umfasst, sind die Verzégerungszeiten begrenzt.

6.3 Optimierung des IPC-Pfades

Synchronisation

Der bisherige IPC-Pfad sperrt den IPC-Partner mittels eines Thread-Locks. Das Greifen eines Thread-Locks
ist teuer, so dass viel Zeit durch Optimierung eingespart werden kann. Da der IPC-Pfad zum gré3ten Teil mit
gesperrten Interrupts lauft, kann er auf einem Uniprozessorsystem nicht unterbrochen werden. Deshalb ist das
Sperren des IPC-Partners Uberfliissig, wenn dieser noch nicht von einem anderen Thread gesperrt ist. Sobald
jedoch wieder Unterbrechungen zugelassen werden, muss der aktuelle Thread das Lock nachtréglich greifen.

Im Falle, dass der IPC-Partner gesperrt ist, versucht der IPC-Pfad sich das Thread-Lock auf den Partner zu
greifen, um die Konsistenz der Daten zu gewahrleisten. Es wird zusatzlich ein Unterbrechungspunkt eingefugt,
da das Greifen von Locks im ungunstigen Fall sehr kostenintensiv ist. Die Funktion zur Freigabe des Locks

wird modifiziert, um diese Optimierung zu erkennen und extra zu behandeln.

Ferner wird eine spezielle Funktion zur Lockfreigabe hinzugefilgar_dirty dont_switchwelche nicht au-
tomatisch zum gesperrten Thread umschaltet, auch wenn dieser eine hdhere Prioritat als der aktuelle Thread
besitzt. Dies ist notwendig um den Fehler in Abb. 5.7 beim kombinierten Senden und Empfangen zu vermei-
den. Erst wenn die Prioritat vom wartenden Sender ausgewertet ist, wird zu dem Thread mit der hochsten
Prioritdt umgeschaltet.

Wenn daDeceite-Bitgesetzt ist, wird der alte Empfanger bei einer Sendeoperation nur in die Ready-Liste
eingekettet. Es wird nur zu ihm umgeschalten, wenn er eine héhere Prioritat als der aktuelle Thread besitzt.

52

6.3 Optimierung des IPC-Pfades

Schnelle Riuckkehr zum Nutzer

Nachdem die IPC-Operation abgeschlossen wird, wird der IPC-Empfanger laufféahig gesetzt und zu ihm um:
geschaltet. Dann lauft noch ein Stiick Kerncode auf Empfangerseite. Dieser Code ist daftir zustandig, dass d
einzelnen Stackrahmen nacheinander abgebaut werden, und bei einer nicht erfolgreichen IPC-Operation e
Fehlercode fiir den Nutzer gesetzt wird. Zum Schluss erfolgt das Laden der Register mit dem Werten aus del
Stack und die Rickkehr zum Nutzer.

Als Optimierung kann nach dem Ende einer erfolgreichen IPC der Kernstack des Empfangers tberschriebe
werden. Es sind auf dem Kernstack nur die IPC-Register und die Riickkehradresse zu einem kleinen Stiic
Assemblercode abgelegt. Sobald der Empfanger aktiv wird, wird dieser Code angesprungen. Dieser |adt dar
die Register mit dem Inhalten aus dem Kernstack und kehrt zum Nutzer zuriick, siehe Abb. 6.3.

Return_frame S8 SS
esp esp
eflags eflags
Cs cs
eip eip

Sys_ipc_frame gax eax
epb epb
ebx ebx
edi f
G :(> esi
edx e
ecx -

sys_ipc_wrapper | YS-IPC_Wrapper(fast_return_to_user | Stackzeiger

Stackframe frame pointer (epb) -

local variables

parameter (this Zeiger)

switch_exec_locked S R L)

Stackframe frame pointer(ebp) |

local variables

Frame—Pointer .
———— | saved frame pointer

Stackzeiger saved return eip

Abbildung 6.3:Kernstack.

Obwohl auf den ersten Blick dieser Ansatz vielversprechend aussieht, waren die Ergebnisse enttduschend u
langsamer als im normalen Fall. Zum ersten liegt es daran, dass fast alle Funktionérsintin®aher liegen
auf dem Empfangerstack nur sehr wenige Stackrahmen.

Yinline-Funktionen werden nicht aufgerufen, sondern ihr Code wird an die Stelle des Aufrufs gesetzt

53

6 Implementierung

Die IPC-Operation ist oft einall oder einreply_wait Nach dem Kerneintritt wird vom Assemblercode zuerst

die Funktionsys_ipc_wrappeaufgerufen. Diese ruft die inlindo_ipcFunktion auf. Diese nutzt weitgehend

inline Funktionen, nur die Kontextwechsel-Funktion ist nicht inline. Es befinden sich in diesem Fall nur zwei
Stackrahmen auf dem Kernstack, so dass hier kaum Verbesserungen zu erreichen sind. Weiterhin besitzt auch
der eigentliche IPC-Code genug Abkiirzungen, um eine schnelle Riickkehr zum Nutzer zu ermdglichen.

Verzogertes Setzen von Empfangs-Timeouts

Diese Optimierung ist nur beill undreply_waitIPC-Operationen mit einem Empfangs-Timeout sinnvoll.

Bei dieser Optimierung wird zuerst die Sendeoperation durchgefuhrt. Im Anschluss erfolgt das Setzen des
Zustandes auf Empfangsbereit, ohne das Ready-Flag zu I6schen. Dann erfolgt die Umschaltung zu dem Emp-
fanger der IPC-Sendeoperation. Wenn dieser Empféanger sofort eine IPC-Antwort zurlick schickt, bevor die
aktuelle Zeitscheibe ablauft, erkennt der Thread, dass die IPC schon abgeschlossen ist, und kehrt zum Nutzer
zurtck. Das Setzen und Ldschen eines Timeouts wird eingespart.

Wenn bis zum Ablauf der Zeitscheibe keine IPC erfolgt und der Thread wieder vom Scheduler aktiviert wird,
programmiert er seinen Timeout und blockiert endgliltig, bis er wieder durch eine IPC oder durch den Timeout
aufgeweckt wird.

Ein Nachteil dieser Optimierung ist, es passieren unnétige Kontextwechsel zu Threads, welche dann sofort
blockieren und die CPU mittelcheduleabgeben. Da aber oftmals bei Client-Server die Zeit zum Bearbeiten
der Auftrage recht klein ist, lohnt sich diese Optimierung.

Verzogertes Sperren der Interrupts

Die Kosten fiir einen Unterbrechungspunkt sind erheblich. Sie umfassen den Aufwand fiir ein Freigeben der
Interrupts, eine Nulloperationen und wieder das Sperren der Interrupts. Auf der ausgemessenen CPU waren
pro Unterbrechungspunkt 74 Takte notwendig. Wenn man im IPC-Pfad zwei oder mehr Unterbrechungs-
punkte im gechwindigkeitskritischen Bereich setzt, zum Beispiel sofort nach dem Kerneintritt oder vor dem
Kernaustritt, erhoht sich die bendtigte Zeit fur eine IPC signifikant.

Um diese Kosten zu vermeiden, lauft der IPC-Pfad mit freigegebenen Interrupts, die Freigabe erfolgt sofort
nach dem Kerneintritt. Wenn eine Unterbrechung eintritt, sperrt die zugehérige Funktion nachtraglich die
Interrupts. Dies wird auf IA-32 erreicht, indem die gesicherten Prozessorflags auf dem Kernstack modifiziert
werden, und dort das Interrupt-Flag geldscht wird.

Die Interrupt-Routine merkt sich die aufgetretene Unterbrechung in einer globalen Variable, ohne diese zu
behandeln. Sie kehrt dann zum IPC-Pfad zuriick.

Der IPC-Pfad lauft nun weiter mit geschlossenen Interrupts bis zum néchsten Unterbrechungspunkt. Ein Un-
terbrechungspunkt besteht dann aus einem Lesezugriff und einen bedingten Sprung. Es wird einfach anhand
der globalen Variable Uberprift, ob ein Interrupt aufgetreten war. Wenn dieses nicht gesetzt ist, wird der IPC-
Code weiter ausgefuhrt.

Ist diese Variable gesetzt, wird der gespeicherte Interrupt nachtraglich behandelt. AuRerdem werden die Inter-
rupts erneut freigegeben, weil diese von der Interrupt-Routine gesperrt wurden. Dadurch werden auch weitere
anhéngige Unterbrechungen behandelt.

So kénnen weiterhin die einzelnen Operationen zum Sperren und Freigeben der Interrupts beschleunigt wer-
den. Diese Setzen und Loschen einfach ein weiteres globales Flag, welches durch die Interrupt-Routine aus-
gewertet wird. Wenn dieses Flag gesetzt ist, werden die Interrupts nachtraglich gesperrt, der aufgetretene

54

6.3 Optimierung des IPC-Pfades

Interrupt gespeichert und die Interrupt-Routine kehrt sofort zurlick. Ist dieses Flag geléscht, wird der Interrupt
normal behandelt. So werden die teuren Maschinenoperationen zum Sperren und Freigeben der Interrup
eingespart. Der grof3te Nachteil ist der Aufwand, um Race-Conditions zu vermeiden. Die Anpassung de:
Fiasco-Kerns ist auf dieser tiefen Ebene komplex, so dass die Implementierung nur einen experimentelle

Zustand besitzt.

55

7 Auswertung

Als Testrechner stand ein x86-PC mit einem 1.6Ghz Pentium IV (Willamette) und 256 MB DDR-Ram zur
Verfugung. Die CPU besitzt getrennte L1-Caches fur Code und Daten. Es handelt sich um einen 8KByte
groRen L1-Cache fur Daten und einen L1-Cache fiir Code, welcher bis zu 12000 so genannte Mikroops spe
chern kann. Im Gegensatz zu anderen CPUs, wo der L1-Cache fur den Code komplette x86-Maschinenbefeh
enthéalt, werden in diesem L1-Cache schon dekodierte Maschinenbefehle abgelegt.

Der L1-Datencache ist physisch markiert und virtuell indiziert. Weiterhin werden neben den physischen Tags
noch “virtuelle Hinweise”, dievhints in der Cachezeile abgelegt. welche als Hinweis dienen, welcher Weg
(Cachezeile) aus der Menge der méglichen Cachezeilen genommen werden soll. Der L1-Datencache ist vie
fach assoziativ, und die Cachezeile ist 64Byte gro3. Es werden fiinf Bits der Adresse zur Adressierung de
Cachezeile und sechs Bits zur Adressierung des Bytes innerhalb der Cachezeile verwendet. Diese Adressi
formation kann komplett aus dem 12 Bit groRen Offset der Adresse gewonnen werden, so dass hier die Ur
terscheidung zwischen virtuell und physisch indiziertem Cache irrelevant ist. Wenn zur Adressierung die Bis
mit dem niedrigsten Stellenwert genutzt werden, werden Adressen, die sich um 2KByte unterscheiden, au
die selbe Menge von Cachezeilen abgebildet. In diesem Fall hilft dann nur noch die vierfache Assoziativitét,
um Konflikte zu vermeiden. Die TCB-Grol3e betragt 2KByte, so dass hier Konflikte bei dem Zugriff auf den
L1-Cache auftreten kdnnen.

Der L2-Cache ist ein gemeinsamer Code- und Datencache. Die Gré3e des L2-Caches betragt 256KByte ur
die Organisation ist achtfach assoziativ. Adressen, deren Abstand ein Vielfaches von 32KByte betragen, wel
den somit auf die gleiche Menge von Cachezeilen abgebildet.

Ein Datum kann sowohl im L1 wie auch im L2-Cache enthalten sein. Eine Garantie gibt es hierflir nicht. Es
kann der Fall eintreten, dass eine L1-Cachezeile und ihre entsprechenden L2-Cachezeilen unterschiedlicl
Daten enthalten und beidkrty sind, so dass beide zurtickgeschrieben werden missen, bevor ein neuer Inhalt
gelesen werden kann.

Es wurden in verschiedenen Experimenten Aspekte des maodifizierten Kerns ausgemessen und mit dem o
ginalen Kern verglichen. Zuerst werden die einzelnen IPC-Operationen in Mikro-Benchmarks ausgemesser
Dann werden die Echtzeiteigenschaften unter verschiedensten Lasten untersucht. Zum Schluss erfolgt ei
kurze Bewertung und Analyse.

7.1 Mikro-Benchmarks

Senderwarteschlange

Die Performance der neu implementierten Senderwarteschlange im Vergleich mit der alten Senderwarte
schlange wird untersucht. Wahrend die bisherige Implementierung, mit einer Liste nur eine FIFO-Strategie
ohne Berucksichtigung der Prioritdten bietet, beachtet die neue Lésung die Prioritaten. Die Warteschlang
wurde mit Hilfe einedTriesimplementiert, und selbst im ungtinstigen Fall ist die Zeit zum Ein- und Ausketten
eines Elements auf acht Iterationen begrenzt.

57

7 Auswertung

Kosten Ein- und Ausketten aus Senderwarteschlange
600 T T T

Sender mit IF‘rio. 0 ——
Sender mit Prio. 255 —@—

500 b

400

300

Cpu Taktzyklen

200

0 n n | n n | n n | n n | n n | n
10° 10t 102 10° 10* 10° 108
Anzahl enthaltender Sender

Abbildung 7.1:Abhangigkeit der Kosten von der Grof3e der Senderwarteschlange

Es wurde die Zeit zum Ein- und Ausketten eines Elements in eine Senderwarteschlange verschiedenster GréRe
ausgemessen, Abb. 7.1. Die Warteschlangen enthielten Sender zufélliger Prioritét im Bereich von 1-254. Es
wurde einmal ein Sender mit der Prioritat Null, ein Sender mit der Prioritéat 127 und ein Sender mit der Prioritat
255 ein- und ausgekettet. Bei dem Ausketten des Senders mit der Prioritat 255 ist jedesmal eine Bestimmung
des neuen Maximums notwendig. Selbstt¥i Sendern betragt die Summe der Zeit zum Ein- und Ausketten

bei heiRem Cache nicht mehr als 440 Takte. Diagramm 7.2 zeigt die durchschnittliche Zeit fur das Ein- und
Ausketten von Sendern verschiedener Prioritét in Warteschlangen, welche einmal 1, 100 und 1000 Elemente
enthalten.

Die gemessenen Werte erfolgten alle mit heil3en Caches. Bei kalten Caches sind die Zeiten hoher. Die einfache
Liste ist in diesem Fall besser. Bei demme sind diese Zeiten schlechter, da das Ein- und Ausketten zum
groRen Teil aus vielen Speicheroperationen besteht. Um die Verzogerungszeiten nicht zu grof3 werden zu
lassen, wird jedoch vor dem Ein- und nach dem Ausketten ein Unterbrechungspunkt gesetzt.

Der alte IPC-Pfad kettete den Sender in die Warteschlange ein, bevor er das Rendezvous mit dem Empfanger
versuchte. Durch ein spéteres Ein- und Ausketten, kann im Durchschnitt viel Zeit eingespart werden.

Synchronisation

Ein weiterer Grund, warum der bisherige IPC-Pfad langsam ist, ist die Synchronisation. Der neuen IPC-Pfad
wird im besten Fall durchlaufen, ohne dass sich ein Lock geholt werden muss. Der bisherige IPC-Code sperrte
dagegen jedesmal vor dem Rendezvous den Empfanger und gab ihn nachher wieder frei. Rund 200 Takte
werden dadurch eingespart.

Weiterhin wurden die vieleRetry-loopszur Synchronisation entfernt, da nur noch nach einem Unterbre-
chungspunkt auf einem gultigen IPC-Zustand des aktiven Threads gepruft werden muss.

58

7.1 Mikro-Benchmarks

Durchschnittliche Kosten des Ein- und Ausketten aus der Senderwarteschlange
600 T T

T
Senderliste mit 1 Element

Senderliste mit 1000 Elementen

500 1

400 -

300

Cpu Taktzyklen

200 i I,

o0 i |11 {11

0 1 1 1 1 1
0 50 100 150 200 250

Sender-Prio.

Abbildung 7.2:Durchschnittliche Zeit zum Einketten von Sendern unterschiedlicher Prioritét

Timeouts

Das sortierte Aufspalten der Timeout-Liste in mehrere Listen beschleunigt den durchschnittlichen Fall zum
Einketten eines Timeout-Objektes, siehe Abb. 7.3. Selbst wenn wenig Timeouts eingekettet sind, wird bei acr
Listen in eine kurze Liste eingekettet, so dass nicht lange nach der passenden Position gesucht werden mu
Bei dem Pingpong-Benchmark ist kein Gewinn festzustellen, da die Empfangs-Timeouts verzégert gesetz
werden und die IPC schon abgeschlossen ist, bevor die IPC-Timeouts eingekettet werden mussen.

Im schlechtesten Fall befinden sich alle Timeouts in einer Liste, und es muss die ganze Liste durchlaufel
werden, um die richtige Position zum Einketten zu finden. Dieser Fall lasst sich durch diese Losung nicht
beschleunigen. Um auch dort eine Verbesserung der Latenzzeit zu erreichen, miisste das Ein- und Auskett
mit Unterbrechungspunkten erfolgen. Dann wird jedoch die Suche nach der passenden Position sehr schwe
da sich die Liste beim Durchlauf &ndern kann. Ferner ist zu beachten, dass die Zeitgeber-Routine auf der
Stack eines Threads mit geringer Prioritat ausgefuhrt werden kann, die Timeoutliste jedoch Threads mit hohe
Prioritat enthalten kann. Eine unsortierte Timeout-Liste wiirde hier helfen, die zusatzlichen Kosten fallen danr
in der Zeitgeber-Routine an.

Die Synchronisation mittels Locks ist im vorhandenen Kern bisher nicht méglich. Die Zeitgeber-Routine
durchlauft und modifiziert die Timeoutliste, jedoch ist das Greifen von Locks in Interrupt-Routinen im bishe-
rigen Kern unmaoglich.

Eine andere Méglichkeit, ist die Behandlung der Timeout-Liste durch einen extra Kernthread, welcher unter-
brochen werden kann. Dann stellt sich jedoch die Frage, auf welcher Prioritat soll dieser Kernthread laufen.

Es gab Uberlegungen, endliche Timeouts abzuschaffen und nur unendliche Timeouts und keine Timeout
zuzulassen. In den meisten vorhandenen Systemen werden, bis auf Timeout Null und unendlichen Timeou
selten endliche Timeouts genutzt. Endliche Timeouts dienen oftmals nur dafiir, um eine bestimmte Zeit zL
blockieren. Ein Beispiel ist die Implementierung des Zeitgeberinterrupts in L4Linux.

59

7 Auswertung

Kosten Ein- und Ausketten von verschiedenen Timeouts
550 T T

T T
10 Elemente verteilt auf ein@ Liste —e—
10 Elemente verteilt auf 8 liisten —a—

500

450

400

350

300

250

Cpu Taktzyklen

200

150

100

50 ¢

0 20 40 60 80 100
Timeout in ms

Abbildung 7.3:Durchschnittliche Kosten zum Einketten eines Timeouts

IPC-Performance

Tabelle 7.1 und das Diagramm 7.4 geben einen Uberblick tiber die Kosten verschiedener IPC-Operationen
im Vergleich mit dem bisherigen IPC-Pfad. Die Werte umfassen die Kosten fiir einen kompletten Zyklus,
also zwei IPC-Operationen. Beide Kerne wurden mit grof3tmoglicher Optimierung compiliert. Der Aufruf des
Assembler-Shortcuts wurde jedoch unterbunden, so dass direkt der generische IPC-Pfad angesprungen wird.

Ein gro3er Teil des Geschwindigkeitsgewinns resultiert daraus, dass der neue IPC-Pfad Fall auf viele teure
Operationen verzichtet bzw. diese soweit wie méglich zuriickstellt. Dazu gehdren das Holen von Locks, CAS-
Operationen und das friihe Ein- und Ausketten aus der Senderwarteschlange.

Weiterhin tragen das Ausfaktorisieren und die Verschiebung von unkritischem Code, die Verwendung von
inline-Funktionen und verzdgertes Setzen des Threadzustandes zum Geschwindigkeitsgewinn bei. Ein Teil der
Optimierungen ware auch mit vollstandiger Unterbrechbarkeit moglich gewesen, jedoch nicht das Vermeiden
von Locks und der CAS-Operationen.

Im Short-IPC Fall, innerhalb eines Adressraumes, wird die doppelte Geschwindigkeit erreicht. Auch kurze
Long-IPC Operationen werden schneller, obwohl bei Long-IPC-Operationen nur das Setup und Rendezvous
von dem neuen IPC-Pfad profitiert.

Der bisherige Long-IPC Code enthielt einen Bug, welcher sich bei dem Benchmark in Seitenfehlern bei jeder
Long-IPC-Operation im IPC-Fenster zeigte. Mit diesem Fehler kostet eine Long-IPC in beiden Kernen rund
2000 Takte mehr.

Bei den Messungen der IPC-Geschwindigkeit, stellte sich eine Eigenart der Pentium IV Caches heraus. So-
bald sich die virtuellen Adressen der TCBs von beiden Pingpong-Threads um ein Vielfaches von 64KByte
unterschieden, verschlechterte sich die IPC-Performance signifikant. Eine einfache Short-IPC innerhalb eines
Adressraumes kostet dann doppelt soviel Zeit. Die physischen Adressen der TCBs spielten in diesem Fall
keine Rolle. Ein Grund fur diese Effekte kdnnen Wigintsder Caches sein.

60

7.2 Echtzeiteigenschaften im Vergleich

Neuer IPC-Pfad Bisheriger IPC-Pfad
Operation| CPU-Taktzyklen CPU-Taktzyklen| Gewinn
Short-IPC, innerhalb eines Adressraumes
HeilRer Cache 1028 2275 121%
Kalter Cache 13612 18734 37%
Short-IPC, zwischen Adressraumen
HeilRer Cache 2426 3815 57%
Kalter Cache 15341 20298 32%
Long-IPC (4 Worter)
HeilRer Cache 3641 5525 51%
Kalter Cache 26643 29227 9%
Long-IPC (256 Worter)
HeilRer Cache 6131 8215 33%
Kalter Cache 28776 33021 14%
Short-Flexpage-Map (4Kbyte) 3798 5210 37%
Seitenfehler zwischen Adressrdumen 6751 8046 19%

Tabelle 7.1 Geschwindigkeitsvergleich bisheriger und neuer IPC-Pfad

7.2 Echtzeiteigenschaften im Vergleich

Um die Echtzeiteigenschaften des IPC-Pfades zu bestimmen, wird die Interrupt-Latenzzeit unter unginstige
Bedingungen ausgemessen. Die Ergebnisse werden dann mit den Werten des bisherigen IPC-Pfad vergliche

Als periodische Interruptquelle dient der Local-APIC der CPU. Diese Interrupts werden vom Fiasco-Kern

durch IPC an ein Nutzerprogramm zugestellt. Es liest den Zeitzahler des Local-APIC aus, und bestimmt sc
die Zeit zwischen dem Ausloésen des Interrupts bis zur Aktivierung des Interrupt-Threads. Der Nutzerthread
welcher mit dem Local-APIC-Interrupt assoziiert ist, besitzt die hdchste Prioritat im System, und lief in einem

eigenen Adressraum.

Der Fiasco-Kern verwendet als Zeitgeber den PIT. Der PIT wird in einem periodischen Modus betrieben, da-
durch muss der Interrupt nur am Interruptcontroller bestétigt werden. Eine teure Bestatigung wie bei der RTC
ist nicht notwendig. Der Zeitgeber-Interrupt besitzt im Normalfall die héchste Prioritat im System. Es wur-
den zur Bestimmung der “Worst-case”-Zeiten, alle IPC- und Interrupt-Shortcuts deaktiviert. Der Assembler-
Shortcut lauft zwar auch mit gesperrten Unterbrechungen, aber bei kaltem Cache ist seine Laufzeit geringer a
die des neuen IPC-Pfades, welcher auch mit geschlossenen Interrupts lauft. Daher wird auf dem Assemble
Shortcut verzichtet.

Mit aktivierten Interrupt-Shortcut liegen gemessenen Verzdégerungszeiten erheblich geringer, selbst bei hohe
Last sind sie unter 16s.

Es werden verschiedene Lasten verwendet um die Echtzeit-Eigenschaften der Kerne auszumessen und
vergleichen:

» Cache-Flooder: Neben dem Thread zur Ermittlung der Verzdgerungzeit lief in der restlichen Zeit ein
Cache-Flooder, um die Caches der CPU zu invalidieren. Die Ergebnisse zeigt Diagramm 7.5. Die Zeit
fur den schlechtesten Fall betragt fur den bisherigen IPC-Pfad a8d fir den neuen 15s5. Im Schnitt
unterscheiden sich die durchschnittlichen Zeiten ws.1

» |IPC-Flooder: Als Last dienten hier mehrere Threads in verschiedenen Adressraumen, welche sich ge-
genseitig IPCs zustellen. Solange nicht der Interrupt-Thread aktiv ist, werden sténdig IPC-Operationer

61

7 Auswertung

Pertormance—Vergleich

12000 alter IPC—Pfad
8000 -

Takte
T

6000
4000
=
0
w

191y34uaNas

(S eaul) Ddi-Hoy
(SV se3u1) OdI-Hoys
(spiom 1) OdI-buo
(sp1om 952) Dd1-buoT
de\—abedxal4 Gy

Abbildung 7.4:Geschwindigkeitsvergleich.

ausgefihrt. Die Ergebnisse zeigt Abb. 7.6. Die “Worst-Case”-Zeit betragt flr den neuen IPC:Bfad 8
fur den bisherigen IPC-Pfad:8 bei hoher IPC-Last mit warmen Cache. Wieder sind ein wenig schlech-
tere Verzbgerungszeiten flr den neuen IPC-Pfad erkennbar.

» |PC-Last und Cache-Flooder: Hier wird vor jeder IPC der Cache invalidiert. Dadurch ist die IPC-
Last geringer als im vorherigen Experiment und es wird sichergestellt, dass der IPC-Pfad einen kalten
Cache vorfindet. Die Ergebnisse in Abb. 7.7 unterscheiden nur unwesentlich gegeniiber dem ersten
Experiment, wo nur der Cache-Flooder aktiv war.

» DOpE + Cache-Flooder: Neben dem Cache-Flooder, wird die DOpE-Umgebung [FHO3] als Last ver-
wendet. Es laufen der DOpE-Server, weitere bendtigte Server und mehrere aktive DOpE-Applikationen,
welche fur eine hohe IPC-Last sorgen. Die Eingabe- (libinput) und die Semaphorebibliothek (libsema-
phore) sind modifiziert, so dass deren Threads nicht mehr die héchste Prioritat verwenden. Damit wird
sichergestellt, dass der Thread fiir den Local-APIC-Interrupt die héchste Prioritéat im System besitzt.
Grafik 7.8 stellt die Ergebnisse dar. Hier ist die maximale Zeit fir den neuen IPC-Pfad erstmals mit
18us groRer gegentiber dem bisherigen IPC-Pfad, dessen Zeit betrégFbtner ist an der Verteilung
ein besseres durchschnittliches Verhalten fir den bisherigen IPC-Pfad zu erkennen.

Besonders im letzten Experiment ist die Zeit im unglnstigen Fall fir den neuen IPC-Pfad, gegentber dem
bisherigen Pfad, umi4 hoher. Die Experimente zeigen auch, dass der Cache den grof3ten Einfluss auf die
Verzogerungszeiten besitzt. Als Ziel muss daher gelten, bei nicht unterbrechbarem Kerncode die Belastung
des Caches moglichst gering zu halten. Andere Hardware-Kosten spielen dagegen kaum eine Rolle. Es besteht
die Moglichkeit den Cache zu partitionieren [LHH97], damit ein Teil des Caches fiir den Kern reserviert bleibt.
Messungen mit aktivierten Assembler- und IRQ-Shortcut ergaben in beiden Fallen erheblich kleinere Zeiten.
Da diese Optimierungen in ungunstigen Féllen nicht genommen werden, wurde in den Experimenten darauf
verzichtet.

Es konnen, auf Kosten der Geschwindigkeit, weitere Unterbrechungspunkte gesetzt werden, um den Ab-
stand zwischen dem neuen und bisherigen IPC-Pfad zu verkleinern. Die Diagramme 7.9 und 7.10 zeigen die
Abhangigkeit der IPC-Performance und Verzégerungszeiten unter Last beziglich der Anzahl der Unterbre-

62

7.3 Auswertung

Verzoegerungszeiten Interupt (Cache-Flooder)

10° L4 T T T
neuer IPC-Pfad —l—
alter IPC-Pfad —@—
10t
1072
N
g
o
B \
104 \
w0 - YA\
10°®
0 2 4 6 8 10 12 14 16 18 20

Verzoegerungszeit in us

Abbildung 7.5:Cache-Flooder

Verzoegerungszeiten Interupt (IPC)

T T
neuer IPC-Pfad —l—

alter IPC-Pfad —@—
i / \'\
-2

! . \%
N
b5
2 10
o
iy \ \.

10

10°

108

0 2 4 6 8 10 12 14 16 18 20

Verzoegerungszeit in us

Abbildung 7.6:hoher IPC-Durchsatz

chungspunkte im geschwindigkeitskritischen Programmteil. Wenn die Optimierung, das verzégerte Sperrel
von Interrupts, verwendet wird, unterscheiden sich die Performancewerte nicht.

7.3 Auswertung

Implementierung und Optimierung

Die Anzahl der Unterbrechungspunkte ist zu minimieren, um die Geschwindigkeit zu optimieren. Dem Ge-
genuber steht der Assemblershortcut, welcher einen groRen Teil der Short-IPC-Operation behandelt und d
generische IPC-Pfad selten genommen wird. Dieser behandelt dann nur Long-IPCs, das Einblenden von Fle:
pages, Timeouts.

In L4Linux 2.6 [Lac04] wird eine Ausnahme-IPC, mittels des implementierten IPC-Pfads, an den Linuxser-
ver zugestellt. Die Antwort durch den Linuxserver erfolgt mit IPC-Shortcut. Hier ist ein geringer Gewinn
feststellbar.

63

7 Auswertung

Verzoegerungszeiten Interupt (Cache-Flooder + IPC)

0 e
10 T T T
neuer IPC-Pfad —l—
alter IPC-Pfad —@—
-1

2D
| o

10 N
i
0 2 4 6 8 10 12 14 16 18 20
Verzoegerungszeit in us

Frequenz
=
S
w

Abbildung 7.7:1IPC + Cache-Flooder

Verzoegerungszeiten Interupt (DOpE + Cache-Flooder)

0
10 T T T T T
; neuer IPC-Pfad —l—
alter IPC-Pfad —@—
-1

Frequenz
=
S
w

10" -
10°® \ \\\

e]

0 2 4 6 8 10 12 14 16 18 20
Verzoegerungszeit in us

Abbildung 7.8:Dope + Cache-Flooder

Daher ist es besser, mehr Unterbrechungspunkte zu setzten, da die wirklich schnellen IPCs vom Shortcut
behandelt werden und nur die langsameren IPC-Nachrichten mit dem normalen IPC-Pfad lUbertragen werden,
wo der Gewinn prozentual geringer ausfallt.

Es werden im neuen IPC viele Inline-Funktionen verwendet, die einige Takte einsparen. Wenn diese Funktion
jedoch mehrfach bendtigt wird, vergré3ert sich der Kerncode. Besonders die IPC-Funktion wird an mehreren
Stellen im Kern verwendet. Beispiele sind der IPC-Systemaufruf, Seitenfehlerbehandlung und Exception-
IPCs. Fur grol3e Funktionen, wie die_ipcFunktion, lohnt sich das Inlining in der Praxis daher kaum.

Weiterhin stellt sich die Frage von Optimierungen, welche man mehr als “Hack” bezeichnen kann. Zum Bei-
spiel das verzogerte Sperren der Interrupts, oder das Uberschreiben des Kernstacks, damit der Empfanger
moglichst schnell zum Nutzer zuriickkehrt. Diese Optimierungen sind schlecht wartbar, und da der Short-
cut viele IPC-Operationen schon schnell behandelt, spielen diese nur bei komplexen IPCs eine Rolle, wo ihr
Gewinn prozentual sehr niedrig ist. Ferner sind diese Optimierungen oft sehr plattform-spezifisch und un-
portabel. Es wurden zwar einige dieser Optimierungen umgesetzt, da der absolute Gewinn im spateren Kern
jedoch minimal war, wurden einige dieser Optimierungen aufgrund der Wartbarkeit wieder fallen gelassen.

64

7.3 Auswertung

Einfluss der Unterbrechungspunkte auf die IPC-Performance

Short-IPC (|nterAS)
3000 Short-IPC (|ntra AS)

2500
2000
1500
1000
500
0

Anzahl der Unterbrechungspunkte

Taktzyklen

Abbildung 7.9:Abhangigkeit der IPC-Performance von Unterbrechungspunkten

Einfluss der Unterbrechungspunkte auf Verzoegerungszeiten

10° T T T T
0 Unterbrechungspunkte
1 /\\ 2 Unterbrechungspunkte
10 / \ 3 Unterbrechungspunkte
102 \
N N—
3 102 \
g N
(TR
107
5
10°®
0 2 4 6 8 10 12 14 16 18 20

Verzoegerungszeit in us

Abbildung 7.10:Abhangigkeit der Echtzeit-Eigenschaften von Unterbrechungspunkten

Ergebnis

In den Messergebnissen sind deutliche Unterschiede zwischen dem bisherigen, unterbrechbaren IPC-Pf
und dem neuen, groR3tenteils nicht unterbrechbaren IPC-Pfad, festzustellen. Der letztere ist zwar schnelle
die Latenzzeiten sind jedoch auch groRer. Es werden nur das Rendezvous und der Transfer von Short-IP
mit gesperrten Interrupts ausgefuhrt. Kopieroperationen fiir Speicherinhalte, welche im Normalfall erheblich
langer dauern, mit gesperrten Interrupts durchzufiihren, lohnt sich dagegen nicht. Des Weiteren ist hier auc
der Cache zu beachten, ity Cachezeilen, kénnen solche Kopieroperationen sehr lange dauern.

Im Fiasco-Kern werden noch andere kritische Abschnitte mit geschlossenen Interrupts, z.B. die Behandlun
des Zeitgebers und der Interrupts, ausgefiihrt, so dass im Vergleich dazu die Latenzzeiten des neuen IP!
Pfades gegenlber dem bisherigen akzeptabel sind. Wenn geringere Verzégerungszeiten bendtigt werden, ki
nen weitere Unterbrechungspunkte hinzugefugt werden. Ein nicht voll unterbrechbarer IPC-Pfad ist somit fur
einen Echtzeit-Mikrokern geeignet, wenn gentigend Unterbrechungspunkte vorhanden sind.

Die Kosten fiir die Synchronisation sind im bisherigen IPC-Pfad sehr gro3. Eine Umstellung der Synchro-
nisation fur kleinere und mittlere kritische Abschnitte, auf das Sperren von Interrupts, z.B. der Zugriff auf

65

7 Auswertung

TCBs wiirde diese Kosten minimieren. GroRere kritische Abschnitte kdnnen in mehrere kleinere Abschnitte
aufgebrochen werden.

66

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein neuer IPC-Pfad entworfen und implementiert, der signifikant schneller als der
bisherige IPC-Pfad ist. Obwohl er zum gréf3ten Teil mit gesperrten Interrupts ausgefiihrt wird, ist die Echtzeit-
fahigkeit durch Unterbrechungspunkte sichergestellt. Die Verzégerungszeiten sind im unginstigen Fall etwa
héher als bei dem bisherigen IPC-Pfad.

Zum Beginn der Arbeit wurden die Kosten fiir verschiedene Hardware Ereignisse und Instruktionen und be-
sonders kritische Kernoperationen wie Kontextwechsel und Interruptcode analysiert. Hier zeigte sich die nega
tive Wirkung des Caches auf die Verzégerungszeiten. Das anfanglich gesetzte Ziel, Latenzzeiten zu erreiche
welche nicht wesentlich groRer als der Zeitaufwand fur den langsten Maschinenbefehl sind, zeigte sich scho
dort unerreichbar, sobald der Cache mit einbezogen wird. Selbst ein einfaches Laden eines Registers Kka
im schlechtesten Fall mehrere hundert Nanosekunden betragen. Ferner gibt es auch durch die PC-Architekt
Beschrankungen. Das Bestatigen eines InterruptSpecial fully Nested Modeann auf der Testplattform

mehr als 5000 Takte kosten.

Nicht unterschéatzt werden darf, dass sich die Verzégerungszeiten von bestimmten Ereignissen und Oper
tionen addieren. Wenn die CPU einen kritischen Abschnitt mit gesperrten Interrupts bearbeitet, muss eir
ausgeldster Interrupt am Interruptcontroller warten. Erst wenn die CPU die Interrupts freigibt, erfolgt die Zu-
stellung des Interrupts vom Interruptcontroller zum Prozessor. Dieser fuhrt dann die Interrupt-Routine aus
Bis der Interrupt dem Nutzer zugestellt ist, ist im unglinstigen Fall eine Zeit vergangen, welche der Summe
der bendtigten Zeiten fur diese drei Operationen entspricht.

Ein Hauptproblem in dieser Arbeit, war das atomare Umschalten vom Sende- in den Empfangszustand. De
bisherige IPC-Code besitzt hier Fehler, zum Beispiel Timeoutfehler oder Prioritatsinversion. Der neue IPC-
Pfad behebt diese Probleme.

Bei der Implementierung wurde nur ein Teil des bisherigen IPC-Pfades tibernommen, ein grof3er Teil wurde
neu implementiert. Die meiste Zeit wurde fur das Ausmessen und Verfeinern des IPC-Pfades benétigt, um di
Geschwindigkeit zu maximieren. Heutige CPUs reagieren durch die verschiedensten Caches und Puffer se
unterschiedlich auf kleine Codeénderungen. Des weiteren wurden in dieser Arbeit noch kleinere Fehler i
bisherigen IPC-Code entdeckt und behoben.

Es bleiben einige Probleme offen, der neue und der bisherige IPC-Pfad fihren den Nachrichtentransfer m
der Prioritat des Senders durch. Korrekterweise misste man die Prioritat des Empfangers berticksichtigen ur
den Transfer mit dem Maximum der beiden Prioritaten durchfiihren. Weiterhin besteht das Problem, dass e
zu Prioritatsinversion kommt, wenn Threads mit hoher und geringer Prioritat, um einen Server mit geringer
Prioritat konkurrieren. In [US04] wird auf dieses Problem eingegangen und eine Lésung vorgestellt.

67

Glossar

CLI Clear Interrupt Flag

DOpE Desktop Operating Environment

DoS Denial of Service

DROPS Dresden Realtime Operating System
FIFO First-In, First-Out

IA-32 Intel x86 32-Bit Architektur

ID Bezeichner, engl. Identifier

IPC Inter Process Communication

IRQ Interrupt

KIP Kernel Information Page

Local-APIC Local Advanced Interruptcontroller

PIC Programmable Interrupt Controller
PIT Programmable Interval Timer

RTC Real Time Clock

STI Set Interrupt Flag

TLB Translation Lookaside Buffer

TSS Taskstatesegment

69

Literaturverzeichnis

[ABB86] ACCETTA, M. J., R. V BARON, W. BoLOSKY, D. B. GOLUB, R. F. RasHID, A. TEVANIAN und
M. W. YouNG. Mach: A New Kernel Foundation for Unix Developmeirt: USENIX Summer
ConferenceSeiten 93-113, Atlanta, GA, Juni 1986.

[BF98] B. FORD, M.HIBLER, JAY LEPREAU. Interface and Execution Models in the Fluke Kerridch-
nischer Bericht, University of Utah, August 1998.

[Cla05] CLAuss, DIETRICH: lvestigation of Mechanisms to Support User-Level Thread Packages on Top
of the L4-Fiasco MicrokernelDiplomarbeit, TU Dresden, Februar 2005.

[FHO3] FESKE, NORMAN und HERMANN HARTIG: Demonstration of DOpE — a Window Server for
Real-Time and Embedded Systetns 24th IEEE Real-Time Systems Symposium (RTS&8gn
74—77, Cancun, Mexico, Dezember 2003.

[Hoh98] HOHMUTH, MICHAEL: The Fiasco Kernel: Requirements Definition Techni-
scher Bericht TUD-FI-12, TU Dresden, Dezember 1998. Available from URL:
http://os.inf.tu-dresden.de/papers_ps/fiasco-spec.ps.gz

[Hoh02a] HoHMUTH, MICHAEL: The Fiasco Kernel: System Architectui@chnischer Bericht TUD-FI02-
06-Juli-2002, TU Dresden, 2002.

[Hoh02b] HOHMUTH, MICHAEL: Pragmatic nonblocking synchronization for real-time systeDuktorar-
beit, TU Dresden, Fakultat Informatik, September 2002.

[HWL96] HARTIG, H., J. WoLTER und J. LEDTKE: Flexible-Sized Page-Objectsn: 5th International
Workshop on Object Orientation in Operating Systems (IWOQ8&)en 102-106, Seattle, WA,
Oktober 1996.

[Kau05] KAUER, BERNHARD: L4.sec ImplementatiorDiplomarbeit, TU Dresden, Mai 2005.

[Lac04] LACKORZYNSKI, ADAM: L*Linux Porting Optimizations Diplomarbeit, TU Dresden, Marz
2004.

[LHH97] LIEDTKE, J., H. HARTIG und M. HOHMUTH: OS-Controlled Cache Predictability for Real-Time
Systemsin: Third IEEE Real-time Technology and Applications Symposium (RB&g8¢&n 213—
223, Montreal, Canada, Juni 1997.

[Lie88] LIEDTKE, J.:An Overview on the L3 Operating Systeln: ISMM International Symposium on
Mini and Microcomputers and Their ApplicationSeite 407, Barcelona, Juni 1988.

[Lie93] LIEDTKE, J.:Improving IPC by Kernel Designin: Proceedings of the 14th ACM Symposium on
Operating System Principles (SO$SBgiten 175-188, Asheville, NC, Dezember 1993.

71

Literaturverzeichnis

[Lie96]

[Lie99]
[Pet02]

[Pug89]

[Ste02]
[Ste04]

[Tea05]

[US04]

[War02]
[War03]

72

LIEDTKE, J.:L4 Reference Manual (486, Pentium, PRrdrbeitspapiere der GMD No. 1021,
GMD — German National Research Center for Information Technology, Sankt Augustin, Sep-
tember 1996. Also Research Report RC 20549, IBM T. J. Watson Research Center, Yorktown
Heights, NY, September 1996.

LIEDTKE, JOCHEN: L4 Version X in a NutshellUnpublished manuscript, August 1999.

PETER, MICHAEL: Leistungs-Analyse und -Optimierung des L4Linux-SysteDiplomarbeit,
TU Dresden, Juni 2002.

PUGH, WILLIAM : Skip Lists: A Probabilistic Alternative to Balanced Treds: Workshop on
Algorithms and Data StructureSeiten 437-449, 1989.

STEINBERG, U.: Fiasco Microkernel User-mode Pgi2002.

STEINBERG, UDO: Quality-Assuring Scheduling in the Fiasco Microkern&iplomarbeit, TU
Dresden, Marz 2004.

TeEAM, L4AKA: L4 experimental Kernel Reference Manual, Version Xlg8iversity of Karlsruhe,
6st Auflage, 2005.

U. STEINBERG, J. WOLTER, H. HARTIG: Fast Component Interaction for Real-Time Systems
Dezember 2004.

WARG, A.: Portierung von Fiasco auf IA-§£2002.

WARG, A.: Software Structure and Portability of the Fiasco Microkerr&03.

