An ATM Driver for DROPS

Uwe Dannowski

Uwe.Dannowski@inf .tu-dresden.de

Dresden University of Technology

July 14, 1998

Diese Arbeit entstand im Rahmen des Groflen Belegs im Studiengang Informatik an der
Technischen Universitat Dresden.

Institut: Betriebssysteme, Datenbanken und Rechnernetze
Lehrstuhl: Betriebssysteme
Betreuender Hochschullehrer: Prof. Dr. Hermann Hartig

Contents

1

Introduction
1.1 Motivation
1.2 Synopsis e e

Related Work

2.1 L4 . . e

2.2 Linux e e e e e

2.3 ATMon Linux e

2.4 PCA-200E Linux Driver
2.4.1 High Level Functions
2.4.2 The AALI e

Design

3.1 Framework.o
3.1.1 Memory Management L.
3.1.2 Time Management
3.1.3 Imterrupt Handling
3.1.4 ATM-on-Linux Functions

3.2 IPClInterface

3.3 Process Model

Implementation

4.1 Framework Lo
4.1.1 Memory Lo e
4.1.2 Time e
4.1.3 Interrupts L
4.1.4 ATM-on-Linux Functions.

4.2 TPC lInterface e
4.2.1 DETECT e
4.2.2 ACTIVATE o
423 SEND o
424 RECEIVE o

4.3 Client Library
4.3.1 pca200e_init Lo
4.3.2 pca200e_activatevein Lo
4.3.3 pca200e_send
4.3.4 Receive Function Prototype

(@]

© © 00 o I N

10

11
11
12
12
13
13
14
15

435 ESL. .. . o 24

4.4 Linux Driver Stub 25
5 Performance 26
5.1 Theory o 26
5.2 Measurement Setupo 26
5.3 Send Performance 27
5.4 Receive Performance L. 29
6 Summary 30
6.1 Future Work 30
7 Appendix 31
7.1 The ATM Device Operations Structure atmdev_ ops 31
7.2 The ATM VCC Structure atm_ veC c v v o v i oo . 32

List of Figures

1 PCA-200E driver in Linux 9
2 PCA-200E L4 driver in DROPS 11
3 Threads in the L4 driver oo oL 15
4 IPC interface 18
5 IPC message structure Lo 19
6 request membero L. L Lo 19
7 DETECT request 19
8 DETECT reply o o 20
9 ACTIVATE request it 20
10 ACTIVATE reply o o o o sl 20
11 SEND request e 21
12 RECEIVE message i i ittt 21
13 ATM cell header 22
14 Architecture overview using the Linux driver stub 25
15 sendcallcosts 27
16 send throughput. Lo oL 28
17 send performance - optimized 28

1 Introduction

1.1 Motivation

The Dresden Real Time Operating System (DROPS) project aims at providing applica-
tions with “Quality of Service” (QoS) support from the operating system. To this end,
based on the L4 pkernel, a multi server environment is being developed. The DROPS
project attempts to develop design techniques for the construction of distributed real time
systems where each component can guarantee a certain quality of service to applications.

To be able to provide QoS support even in networking environment, ATM is the network
of choice for the basic communication.

All new operating systems suffer from missing applications and hardware support. Hard-
ware and software manufacturers often support only few systems of commercial impor-
tance. There are mainly two approaches to overcome this problem: developing the needed
components from scratch or porting existing code to the new system. The former could
possibly lead to highly efficient code for the target system but means inventing the
wheel once again. Porting existing code to a new system can be facilitated by means
of a framework emulating the source system’s functionality using the target system’s
resources. Once this framework exists - providing compatibility on either the binary or
the source code level - a number of applications becomes available for the new system.
When using this scheme for device drivers, the respective hardware is available, too.

With L4Linux DROPS demonstrated that Linux as a whole can be ported to a new
platform - the L4 pkernel - by (mainly) modifying only the architecture dependent part
of the Linux kernel. L4Linux provides binary compatibility with Linux thus offering the
ability to run existing Linux applications. The L4Linux system itself with its monolithic
kernel is not a real time system. But it is possible to run real time tasks besides L4Linux
on top of L4 - better to run L4Linux not influencing real time tasks. This way the DROPS
project combines QoS support for real time tasks with full Linux functionality.

As stated above, L4Linux and hence the device drivers in its monolithic kernel are unable
to provide reliable services with guaranteed parameters for real time tasks. Therefore, ef-
forts are spent on isolating some of Linux’ device drivers into separate L4 tasks (servers).
When isolated, these servers are potentially able to give guarantees in respect of band-
width, memory or CPU utilization.

This work aims at porting the existing Linux driver for FORE Systems’ ForeRunner
PCA-200E ATM network board to L4. The result should be an L4 server providing a
smart interface to access the PCA-200E’s hardware and a Linux stub to be used with
this server.

1.2 Synopsis

Section 2 gives an overview about related work - the two systems L4 and Linux with
ATM-on-Linux. In addition, the PCA-200E Linux driver is described. Section 3 shows the
design of the targeted L4 server with its IPC interface. In Section 4, some implementation
details are pointed out and the IPC interface as well as the client library are introduced.
Performance measurement results are presented in Section 5. Section 6 summarizes this
work and discusses the scope for further work.

The reader is assumed to be familiar with basic ATM principles and vocabulary.

2 Related Work

This section briefly introduces the projects this work is based on: the L4 pkernel, Linux
with ATM-on-Linux and - slightly more detailed - the PCA-200E Linux driver.

2.1 L4

L4 is a pkernel which has been developed by Jochen Liedtke at the National Research
Center for Information Technology (GMD) and IBM Watson Research Center. The initial
version of L4 runs on Intel’s 80x86 - meanwhile there are implementations available for
DEC-Alpha from the Dresden University of Technology and for MIPS from the University
of New South Wales.

As the name “pkernel” implies, L4 offers only:

e fast, message based inter process communication (IPC)
e page based memory management
e priority based scheduling with hard priorities

e tasks as security domains

External pagers allow implementation of almost any desired memory management outside
the kernel. This minimalistic design offers greatest flexibility at high speed.

The following definitions for L4 primitives are an excerpt of [Lie96]:

IPC Interprocess communication in .4 is message based and takes place between ex-
actly two threads. For a message to be transferred both parties must agree to the transfer.
Message transfers happen always synchronously. There are mainly two types of messages
- short messages and long messages. A short message consists of words where (the size of
a word and) the maximum number of words is architecturally dependent. Short messages
are transported entirely in the processor’s register set. Hence, short messages provide
the fastest communication path. Long messages use a message descriptor (message dope)
located in memory. By use of long messages any number of words can be copied between
the IPC partners, either located in the message dope itself or referenced in the mes-
sage dope. When a message is marked having Flexpages, the words of the message are
interpreted as Flexpage descriptors.

Address spaces An address space is a mapping which associates each virtual page to a
physical frame or marks it non-accessible. Address spaces can be manipulated by sending
Flexpages in IPC messages. L4 supports recursive creation of address spaces outside the
kernel. But, to prevent corruption of address spaces all changes must be controlled by
the kernel.

Flexpages Flexpages are regions of the virtual address space, consisting of all pages
mapped in this region. Sending a Flexpage by means of IPC adds all the pages currently
mapped in this Flexpage to the destination’s address space.

Threads A thread is an activity, being characterized by some kind of state information
(registers, instruction and stack pointer, priority, ...) and an associated address space.
L4’s scheduling works on thread level.

Tasks A task is the entirety of an address space and all threads (active or inactive)
executing in this address space. Moreover a task is also a protection domain for IPC.

Interrupts In L4 hardware interrupts are translated into an IPC message to a certain
thread. A thread can register with a hardware interrupt to be notified when that interrupt
occurs.

2.2 Linux

Linux is a freely-distributed UNIX-like operating system, originally created by Linus
Torvalds. Developed under the GNU General Public License, the source code for Linux
is available to everyone. With the freedom to create and adapt Linux for a wide variety
of platforms, Linux has become quite popular worldwide for business and personal use.
Lots of developers worldwide contribute to the Linux project by creating applications
and extending the kernel (device drivers, protocol stacks, etc.).

From the system developers view Linux is an operating system with a monolithic ker-
nel. According to [Sta96] in [Tan90] a monolithic kernel is defined to be a collection
of procedures with each procedure being allowed to call any other procedure if needed.
This results in a quite intricate structure making isolation of a single component more
difficult. As there’s no protection inside the Linux kernel itself, a failure in one procedure
may influence others, and hence, the whole kernel might become instable due to a single
failing component.

2.3 ATM on Linux

ATM-on-Linux adds ATM networking support to Linux and is being maintained by
Werner Almesberger at Ecole polytechnique fédérale de Lausanne (EPFL). ATM-on-
Linux offers support for PVCs, SVCs, Classical IP, LAN Emulation (emulates services
of existing LANs across an ATM network) and Arequipa (experimental mechanism to
create short-cut ATM SVCs for IP traffic). The API to access the ATM-related services
is the slightly extended well-known Socket API (see [Alm96a] for details). The interface
to ATM-on-Linux’ device drivers is well structured and defined in [Alm96b).

Adding support for a new ATM network board mainly means providing a set of board-
specific functions acting as handlers for protocol requests (open, close, send, etc.). If
the network board uses interrupts, also an interrupt handler function must be provided.

2.4 PCA-200E Linux Driver

The Linux driver for FORE Systems’ ForeRunner PCA-200F is designed to work with
ATM-on-Linux (Fig. 1). Therefore its upper interface obeys the Linux ATM Device
Driver Interface [Alm96b]. The driver accesses the hardware via the AALI [FOR97],
which actually is a communication protocol to the firmware running on the board’s
control processor. Some of the operations provided by the AALI have semantics similar
to the functions required by ATM-on-Linux.

[Linux application]

system call

Linux kernel

ATM-on-Linux

- - PCA-200E driver --

y 4
PCA-200E hardware

Figure 1: PCA-200E driver in Linux

2.4.1 High Level Functions

In ATM-on-Linux connections are represented by a atm_vcc structure (see Appendix 7.2).
A physical ATM device is represented by an atm dev_t structure. In Linux’ networking
code, a piece of data is referenced by a socket buffer structure (skb). Registering a
physical device in ATM-on-Linux mainly means calling the function atm_dev_register
with a structure containing function pointers (see Section 7.1).

In the PCA-200E driver only open, close, send and ioctl are implemented. open
enables transmission /reception of cells on the specified VPI/VCI, close disables trans-
mission/reception for the given VPI/VCI. send is called to actually send data referenced
by the buffer descriptor skb over the connection described by the connection descriptor
vce. The ioctl function provides a way to monitor/control the board’s behaviour. Re-
ception of incoming data from the network is handled in the interrupt service function
(which is not a member of the ops structure). Received data is put into an skb and then
push, a member function of the corresponding vcc, is called to push the data upwards
in the protocol stack.

2.4.2 The AALI

The ATM Adaption Layer Interface (AALI) is the programming interface for the Fore-
Runner 200 series hardware [FOR97] and is implemented by the firmware running on
the board. The interface consists mainly of several queue structures and a few special
function registers, all located in a shared memory region provided by the network board.

Queues are simply an array of queue entries. Each queue forms a logical ring list by
wrapping around after the last array element to the first. Queue lengths are configurable
at initialization time. The queues in detail are:

e Command queue
The command queue is used to send commands to the firmware:
activate_vci (open), deactivate_vci (close), request_stats, zero_stats, etc.

e Transmit queue
To send data, a Transmit PDU Descriptor (TPD, contains location/length of data
in host memory, ATM cell header, ...) located in host memory is filled and then its
address is written to the transmit queue.

e Receive queue
The receive queue holds references to Receive PDU Descriptors (RPD). These RPDs
are located in host memory and are written to by the firmware on reception of data
from the network. An RPD holds references to buffers containing the received data
in host memory.

e Buffer queues
Via the buffer queues new receive buffer descriptors are supplied to the firmware.
There are two buffer pools, each with two buffer sizes, giving four buffer queues.

10

3 Design

The main objective of this work is to port the Linux driver to L4 without major changes
to the code. Therefore, Linux kernel functions used by the Linux driver need to be emu-
lated on L4. Affected are memory and time management as well as interrupt handling.
Emulation of the required functionality can be done by means of of a framework.

The existing Linux driver can be seen as being divided into two layers: low level functions
directly dealing with hardware access and high level functions offering the service required
by the ATM-on-Linux Device Driver Interface.

As the L4 driver should conceal hardware accesses from its clients, it offers access to
the low level functions through an IPC interface. Figure 2 shows how the PCA-200E L4
driver is embedded in DrRoPs. It will serve the ATM protocol component. When this
work started, the ATM protocol component was not even designed.

realtime
applications

L4Linux

with non-realtime

applications ATM protocol

component

1L

PCA-200E driver

1L

PCA-200E hardware

A
Y

Figure 2: PCA-200E L4 driver in DROPS

3.1 Framework

This section describes how the required Linux functionality is implemented using [.4
resources.

11

3.1.1 Memory Management

The Linux driver makes use of the following Linux kernel functions: vremap(),
kmalloc(), kfree(), __get_dma_pages() and free_pages().

vremap() maps a region of memory into the Linux kernel’s virtual address space, thus
making it accessible for the driver. It returns the virtual address of the region. On L4 this
operation can be easily performed by mapping the requested range of physical memory
to an arbitrary position in the driver task’s address space.

Linux’ kmalloc() allocates a 4 byte aligned memory area of the requested size and
returns that area’s base address which equals its physical address.

__get_dma_pages () allocates contiguous pages (4KB) located in the first MB of physical
memory (due to the ISA DMA limitation). The virtual address of each of these pages
is equal to their physical addresses. In the Linux driver, __get_dma_pages() is called
to allocate memory which is at least 32 bytes aligned. The same functionality can be
achieved on L4 by using a suitable implementation of kmalloc(). __get_dma_pages is
a macro for __get_free_pages with an option to request DMA-able pages.

Since all memory allocation takes place during initialization of the driver, freeing memory
would be required only on L4 driver shutdown. Shutting down the driver can be done by
flushing the whole driver task, which in turn frees all memory “allocated” by this task.

In summary, the memory management required by the L4 driver can be reduced to simple
pointer arithmetics over a fixed size area of contiguous memory.

3.1.2 Time Management

The Linux driver does busy waiting during initialization, especially while it polls for
completion of the INIT command. In order to avoid blocking of the whole Linux system
in case of a firmware initialization failure, there is a upper limit for the duration of the
INIT command. This limit is ensured by repeatedly polling the global variable jiffies
which is incremented on each timer interrupt.

In the Linux driver, busy waiting is also used with the command queue. When a control
command is sent to the board, the driver waits until the command has completed. Al-
though it would be possible to trigger an interrupt when command execution has finished,
this feature is not used. This is mainly due to historical reasons: during the early days of
the Linux driver, repeatedly polling a memory location was a lot easier than waiting for
an interrupt. Requesting generation of interrupt on command completion would require
parsing of the command queue on each interrupt. Under normal circumstances, the time
spent on waiting for command completion can be neglected.

The global variable jiffies in the Linux kernel can be represented by an L4 task global
variable in the L4 driver. This variable could be incremented by a separate thread that
repeatedly sleeps for a certain time using sleep-IPC.

12

3.1.3 Interrupt Handling

The Linux kernel provides a convenient way to install an interrupt handler by using
the function request_irq(). As one of this function’s parameters, a reference to the
interrupt handler function is specified. The interrupt handler function is called each time
an interrupt arrives on the requested interrupt line. Thus, on arrival of an interrupt,
the currently executing kernel activity is suspended until the interrupt handler function
returns.

L4 converts an interrupt occuring into an IPC message to a certain thread. The message
is send to the thread that has previously successfully applied for being notified on arrival
of the interrupt.

However, the behaviour of Linux can be emulated on L4 using a separate thread that
associates itself to the interrupt. It then waits for the Interrupt message, and executes
the interrupt handler function as usual in Linux.

Whether this interrupt thread becomes active or not depends on its priority. If there’s
any other thread in the driver task with a higher priority and its state is “ready”, it
can’t be guaranteed that the interrupt handler will be executed as expected. To achieve
a Linux-like behaviour, the interrupt thread should be the one with the highest priority
in the driver task. Thus, all other threads working on “former kernel activities” can’t
become active until its work is done.

3.1.4 ATM-on-Linux Functions

In the Linux driver, there are several direct calls to functions being part of the ATM-
on-Linux kernel patch, as atm_dev_register and atm_dev_deregister are. The former
simply returns a pointer to a (newly allocated) atm_dev structure - the latter can be left
empty, since shutting down the L4 driver is not planned.

Far more complex is the call structure in the receive part, especially in the function
pca200e_intrx. This function parses the receive queue of the board and pushes received
protocol data units (PDUs) upwards in the protocol stack. Firstly, the original Linux
driver scans the list of connection descriptors (VCCs) of the respective device for the
VPI/VCI of the received PDU. Maintaining a list of VCCs is not required in the L4
driver, since it will have one client only. Secondly, if the VCC is found, the VCC’s
member function peek is called with the size of the receive PDU as one of its parameters.
peek is a function that allocates a socket buffer with at least the given size. In ATM-on-
Linux it is a member function of the VCC, thus allowing easier adaption to the higher
level protocols needs. The data chunks belonging to the received PDU are copied into
the socket buffer. In the L4 driver, these two actions (requesting buffer, copying into
the buffer) can be omitted; the PDU content is passed to the client through the IPC
interface. Lastly, the function pca200e_inttx is called to free completed transmit queue
entries and the associated socket buffers. On L4 only freeing of queue entries would be
left over from the Linux version of pca200e_inttx, since VCC’s are not part of the L4

13

driver.

To summarize this section, the receive function pca200e_intrx and the maintainance
function pca200e_inttx must be changed, mainly by removing superfluous code related
to VCCs and socket buffers.

3.2 IPC Interface

To offer its service to other system components the server provides an IPC interface.
This interface must implement operations to access the underlying hardware.

The operations are:
detect
open
close
send
receive

The design of DROPS implies that there is only one client accessing the PCA-200E server.
Hence, demultiplexing of received data and VPI/VCI ownership checks in close and send
can be omitted. This is done in the ATM protocol component of DROPS.

detect (magic number) — (magic number, hwaddr) provides a way to check for
correct initialization of the board and the driver and to obtain the board’s hardware
address (6 significant bytes). On initialization failure the operation might time out or
deliver incorrect values. Therefore a magic number is used to verify its correct execution.

open (vpi,vci,aal) — (status) tries to open the specified VPI/VCI by enabling re-
assembly with the given AAL. The operation is expected to return an error if the VPI/VCI
is already in use, the values for VPI or VCI are out of range or if the maximum number
of connections the firmware can handle is exceeded.

close (vpi,vci) — (status) tries to close the specified VPI/VCI. The operation might
return an error if the VPI/VCI has not been opened before.

send (vpi,vci,aal,data) — (status) builds an entry for the board’s transmit queue
and thus requests transmission of the referenced chunk of data via the given VPI/VCI
and AAL. The operation reports an error in case of a filled-up transmit queue.

receive (vpi,vci,data) — (status) isnot a client initiated operation as detect, open,
close and send are. This is caused by the nature of networks, where reception of
data (normally) is an externally triggered event. Since the PCA-200E can trigger an

14

interrupt on arrival of data from the network, the occurring interrupt message wakes
up the appropriate thread. This thread parses the receive queue and sends a message
containing received data to the client.

3.3 Process Model

In this special case, there are mainly two design principles: single-threaded and multi-
threaded server. This distinction depends on whether there is only one thread serving
client requests and interrupts or more. Single-threaded constructions are most suitable
when the server thread and the interrupt thread work on the same structures and thus
need to be properly synchronized. Whereas multi-threaded solutions can be used if
interrupt handling and client serving are not tightly coupled.

Due to the design of the PCA-200E’s interface, no synchronization is required between
the server thread and the interrupt thread. Hence, multi-threaded design suites best.

The PCA-200E driver for L4 is an L4 task with three threads (Fig. 3):
1. server thread
2. interrupt thread

3. timer thread

All threads run independent from each other. There is no direct interaction by means of
IPC.

IPC message client notification

O () C
/

server thread timer thread

PCA-200E driver task

interrupt message

Figure 3: Threads in the L4 driver

The timer thread periodically waits using sleep-IPC (a receive operation with given re-
ceive timeout) and increments the jiffies variable on wakeup. It provides the timing
basis for the driver.

15

The server thread waits for an IPC message from the “client”, where the client is the one
thread that sent the first message to the server thread. The messages contain commands
for the driver as described in Section 3.2. After execution of the requested operation, the
server thread replies to the client with the result of the operation and waits for the next
message.

The interrupt thread waits for a message from the L4 kernel, reflecting arrival of an
interrupt. If such a message is received, the thread calls the interrupt handler function
and waits again afterwards.

16

4 Implementation

4.1 Framework

The framework described in Section 3 implements the “missing” Linux functions used by
the driver. This gives compatibility at the source code level. Hence, no modifications of
the driver source code are required to use the Linux driver on L4. This section discusses
selected implementation details of this framework.

4.1.1 Memory

The framework’s memory management is initialized by a call to mm_init(start,end)
to set up the local memory pool in the range [start,end]. kmalloc(size) returns the
current beginning of the memory pool and increments the beginning by size (rounded
up to the next multiple of 32 - see Section 3.1.1).

vremap(offset, size) establishes a mapping of the 4MB superpage containing the
requested physical address offset. Therefore it sends a mapping request to the driver’s
pager which must have access to physical memory. The requested area is mapped to
virtual address offset - 1GB.

__get_dma_pages tries to request the specified number of 4K-pages by repeatedly calling
get_page_from_l14. get_page_from_14 requests a 4K-page from the pager.

4.1.2 Time

The framework provides the jiffies variable, as this is used by the driver to enforce
bounding of polling delays during initialization. jiffies is being incremented by a
dedicated thread, which is activated during jiffies_init(lthreadno). The function
jiffies_thread being executed by this thread is an endless loop - sleeping for 10ms and
incrementing jiffies;

4.1.3 Interrupts

Interrupts from hardware are wrapped into a message to a thread by the L4 kernel.
Thus, to get notified of an interrupt from the board, a thread must be waiting for an
appropriate message from the kernel. In the framework thread 1 is used for that.

The framework’s function request_irq(irq,handler,flags,name,dev_id) activates
thread 1 (one) and starts the framework’s interrupt handler irq_thread(irq,handler,
dev_id). The parameters of irq_thread are exactly the same as in request_irq, except
from flags and name, which are of no use in the driver’s context.

irq_thread attaches to the respective interrupt and waits for a message from the kernel.
Upon arrival of a suitable message, the function that was passed to irq_thread as the

17

handler parameter, is called. According to Linux conventions, its parameters are the
interrupt number, the dev_id parameter and a pointer to the cpu register structure,
where the latter one is NULL, as it is not used/needed.

For this interrupt handling to work as it does under Linux, the interrupt thread is required
to have the highest priority in the driver task. This is necessary to ensure that no other
action be performed in the task until the interrupt handler has finished its work.

4.1.4 ATM-on-Linux Functions

From the set of functions provided by ATM-on-Linux only atm_dev_register and
atm_dev_deregister are used and implemented. The former allocates a new atm_dev
structure, just to have one for all the driver’s lowlevel functions. atm_dev_deregister
is simply left empty, because it won’t get called at all.

4.2 TPC Interface

From the client’s point of view, there are two interface threads in the driver. The server
thread accepts control messages and send messages, replying with code returning status.
The interrupt thread sends receive messages to the client. This way, the send and receive
directions are almost independent (Fig. 4).

User Application
receive thread (client)
DETECT
ACTIVATE RECEIVE
SEND
timer
send thread receive PCA-200E driver
thread thread (server)

Figure 4: IPC interface

The current implementation of the interface uses “indirect strings”, a feature (or curse ?)
of L.4’s Intel-version. This was the choice for the first implementation, as indirect strings

18

seemed to be easy to use, surely punished by a certain lack of performance (... allowing
performance improvements in the future).

All messages from the client to the server have the same format. They consist of two
dwords and one optional indirect string (Fig. 5):

31 0
request dword 0
[PDU length] dword 1
***************** [reference to PDU content] 1 o
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, indirect
string

Figure 5: IPC message structure

If used, the second dword holds the length of the PDU copied in the indirect string,
whereas the first dword contains the request (Fig. 6).

31 28 27 20 19 43 10
L oP | VPl vCl AAL| |

ACTIVATE J

Figure 6: request member

In the following sections the current structure of the messages being passed via IPC will
be discussed in detail.

4.2.1 DETECT

The DETECT request (Fig. 7) is sent to the server for two reasons. Firstly, to check if
initialization of the board was successful, and secondly, to obtain the hardware address
(ESI - end system identifier) of the board.

31 28
OP ‘ dword0
dwordl

OoP=1

Figure 7: DETECT request

19

If initialization of the board was successful, the DETECT reply (Fig. 8) contains a magic
number, 0x1014. The six significant bytes of the board’s ESI fill up the remaining bytes.

31 24 23 16 15 0
ESI[1] ESI[0] magic number dword 0

ESI[5] ESI[4] ESI[3] ESI[2] dword 1

Figure 8: DETECT reply

4.2.2 ACTIVATE

The ACTIVATE request (Fig. 9) opens or closes a certain VCI. Whether reassembly for
cells of this VCI is enabled or disabled, depends on the ACTIVATE flag in the request.
Setting this to 1 opens the VCI by enabling reassembly of received cells with this VCI,
using the AAL from the AAL field in the request. If the ACTIVATE flag is zero, a
previously opened VCI is closed. Valid values for the AAL field are 0, 4 and 5. The
maximum number of open connections supported by the board is 1024.

ACTIVATE

31 28 19 43 1)

oP vCl AAL| | dwordo
dwordl

oP =2

Figure 9: ACTIVATE request

The reply to an ACTIVATE message returns the result of the requested operation in the
ST field (Fig. 10). A value of 1 indicates success, whereas 0 means, that the operation
completed with an error. Common causes for errors are an invalid value in the AAL field
or an already opened VCI.

31 28
ST ‘ dword0

dwordl

Figure 10: ACTIVATE reply

20

4.2.3 SEND

Using the SEND request, a client can cause the PDU content passed along with the
request to be sent. The information from the fields VPI, VCI and AAL are used to
build the ATM cell header. The PDU content is copied from the client’s string buffer
to the server. The PDU size is limited to 64KB (maximum AAL5 PDU). Owing to L4
requirements, the string buffers must be at least 4 bytes long. That’s why the second
dword of the message holds the exact PDU size in bytes (Fig. 11).

31 28 27 20 19 43 1
oP VPl Vel AAL| | dwordo
‘ PDU length dwordl
indirect
oP=3

Figure 11: SEND request

The reply to the SEND request is sent back after complete emission of the PDU. The
SEND reply message has the same structure and meaning as the ACTIVATE reply mes-
sage.

4.2.4 RECEIVE

A RECEIVE message (Fig. 12) is sent from the server to its client, when reassembly of
a PDU was successful. The first dword contains the ATM cell header provided by the
firmware. Its structure is shown in Figure 13. The HEC field (the fifth byte of an ATM
cell header) is missing; it is completely hidden by the firmware. Along with the exact
PDU size in dword 1, all necessary information describing the PDU is transferred to the
client. The PDU content is copied into the client’s string buffer. The client’s string buffer
should have a size of at least 64 KB. This is the maximum PDU size that is copied with
the RECEIVE message. It is the maximum PDU size for AAL5, too.

31 0
ATM cell header dwordo

PDU length dwordl

PDU content 'S't’r?'nrgd

Figure 12: RECEIVE message

21

31 28 27 20 19 43 1
GFC VPI VCI PTI

CLP o

Figure 13: ATM cell header

There is no reply to a RECEIVE message; the IPC operation is performed with a send
timeout of 0. In case of the client not being ready to receive the next message, this
ensures nonblocking operation of the PCA-200E driver.

4.3 Client Library

The client library hides the IPC interface from the application programmer. It provides a
convenient way to use the PCA-200E L4 driver’s service through a C-language interface.
The C functions are obviously made “compatible” with the lowlevel functions in the
Linux PCA-200E driver. In the following these functions are discussed briefly.

4.3.1 pca200e_init

Declaration:
int pca200e_init(void (*rxfunction) (unsigned int vpi,
unsigned int vci,
voidx* p,
unsigned int pdulen));

Parameters:

The one and only parameter rxfunction is a pointer to the receive function (see
Section 4.3.4).

Description:
This function initializes the client library. Firstly, it tries to find the PCA-200E
server task. Secondly, it sends the DETECT request, in order to register the client
at the server and to obtain the board’s ESI which is then stored in ESI[0]..ESI[5].
Lastly, a new thread (0x73) is activated, that waits for a RECEIVE message from
the server. If this thread receives a RECEIVE message it calls the receive function.

Return value:
If initialization was successful, pca200e_init returns 0, otherwise the value re-
turned is the error code returned by rmgr_get_task_id.

22

4.3.2 pca200e_activatevcin

Declaration:
int pca200e_activatevcin(unsigned int activate,
unsigned int aal,
unsigned int vpi,
unsigned int vci,
unsigned int mtu);

Parameters:
activate 0Oor 1 enable or disable reassembly
aal 0,4 o0r5 the AAL to be used for reassembly
vpi ? not used
vci 0..16383 VCI to open
mtu ? not used
Description:

This function opens (activate=1) or closes (activate=0) the VCI vci. If
activate is 1, reassembly of cells with this VCI is enabled using AAL aal. If
activate is 0 a previously opened VCI is closed. Trying to reopen an already open
V(I fails, except for VCIs opened for AALO.

Return value:
If the operation completed successfully, the value returned is 1, otherwise zero.

4.3.3 pca200e_send

Declaration:
int pca200e_send(unsigned int vpi,
unsigned int vci,
unsigned int aal,
voidx p,
unsigned int pdulen);

Parameters:
vpi 0.. 255
vci 0.. 16383
aal 0,40r5 the AAL to be used
P pointer to PDU content

pdulen 1 .. 65535 PDU length

Description:
The chunk of data that p points to is sent to the network via the given VPI/VCI,
using the given AAL. p must point to a region of mapped memory. The region
must be 4 byte aligned. The function returns after the PDU is emitted completely
- this is is a synchronous operation.

23

Return value:
If the operation completed successfully, the value returned is 1, otherwise zero.

4.3.4 Receive Function Prototype

Declaration:
void rxfunction(unsigned int vpi,
unsigned int vci,
void* p,
unsigned int pdulen);

Parameters:
vpi 0.. 255
vci 0. 16383
P pointer to PDU content

pdulen 1 .. 65535 PDU length

Description:
This is the prototype declaration for the receive function whose entry address is
passed as an argument to pca200e_init.

Return value:

4.3.5 ESI

Declaration:
extern unsigned char ESI[6];

Description:
After a successful call to pca200e_init, ESI will hold the six lower bytes of the
board’s ESI. This information is mainly useful for address registration in the net-
work.

24

4.4 Linux Driver Stub

Like the original PCA-200E Linux driver, the PCA-200E L4Linux driver is also available
as a loadable module. It is used in combination with the PCA-200E L4 driver running as
a stand-alone L4 task. The module was derived from the Linux driver’s code by removing
all lowlevel functions (these are in the L4 driver), adding the client library and a receive
function. The PCA-200E L4Linux driver represents the high level part of the original
PCA-200E Linux driver.

Application L4Linux

kernel
ATM-on-Linux

pca200e-stub PCA-200E/L4

A

Y
| PCA-200E hardware |

Figure 14: Architecture overview using the Linux driver stub

When an L4Linux applications is going to use the ATM services, the request finally
arrives in the PCA-200E L4Linux driver. Here the request is sent via IPC (hidden in
the client library) to the PCA-200E L4 server which in turn handles the request. Replies
and receive messages travel along this path in the opposite direction (Fig. 14).

25

5 Performance

In the following sections, the performance of the components as well as some optimization
steps are discussed.

5.1 Theory

Before evaluating any measurements, it is necessary to explore the achievable values.

Since the PCA-200E used in this work has an SONET STS-3c interface, it works with
an STS-3c stream of 155.52 Mbps [ATM94]. With respect to SONET framing overhead,
a continuous byte stream of 149.76 Mbps is available, which is tightly filled with cells of
53 bytes. Thus, the available cell rate is 353207.55 cells/s. Every cell has a header of 5
bytes, leaving 48 bytes per cell for payload, which gives a maximum bandwidth of 135.63
Mbps of user data.

The value Tppy(s) is the time it takes to emit an AAL5-PDU of size s. From that, the
achievable throughput B(s) can be calculated.

. cells per PDU [7PDUI§“+8-|06U
T PDU = 1
ppu(PDUsize) line cellrate 35320755 @
PDUsize
B(PDUs:i = 2
(PDUsize) Tpou(PDUsize) 2)

5.2 Measurement Setup

Measurements were done on a machine with the following hardware configuration:

Intel Pentium 133 MHz

Asus Mainboard P/I 55TP4N, 256KB Cache
32MB EDO RAM

FORE Systems PCA-200E ATM Network Adapter, running
ForeThought 4.1 firmware

The measurement software setup consists of a test application (client), the PCA-200E L4
driver (server) and the Resource Manager. The client has the client library (discussed in
Section 4.3) statically linked with it.

26

5.3 Send Performance

The test application tries to send data as fast as possible using the pca200e_send function
in the client library. The time spent in the send operation is measured by means of the
rdtsc instruction.

Send performance - Pentium 133
10000 T T T T - T

T T
Tpdu
time spent in send function ---—+-- 1

A

1000

100

microseconds

T
o } T A /

10

1 4 16 64 256 1024 4096 16384 65536
PDU size

Figure 15: send call costs

In Figure 15, the contiuous line shows the time spent in the send function of the client
library in order to send a PDU of the given size. This duration covers the time for the
send request IPC, to send the PDU out through the AALI and for the reply IPC. As
shown, the overhead is significant for small PDUs. It is almost neglectable for PDU sizes
of about 8 Kbyte and grows for larger PDUs. This asymptotic slope results from the way
the PDU content is transferred to the PCA-200E driver. Using indirect strings to copy
the whole PDU content into the driver’s address space consumes a remarkable amount
of time, presumably introduced by cache influences. The resulting throughput is shown
in Figure 16.

The throughput reduction for larger PDUs lead to two optimization steps. Due to the
dynamic development of DROPS, several general decisions regarding the DROPS design
have been made when this work was almost finished. So it can be assumed, that the
client of the PCA-200E L4 driver has knowledge of the physical address of the buffer
holding the PDU content. Thus, it is no longer necessary to copy the PDU contents into
a buffer whose physical address is known to the PCA-200E L4 driver. It is sufficient to
pass the address along with the length of the PDU to the driver.

27

Send performance - Pentium 133

achievalIJIe
- achieved --—+---

140

120 A

NS “
100 ‘ \/ y
80 / \

60 2

40

MBps

1 4 16 64 256 1024 4096 16384 65536
PDU size

Figure 16: send throughput

As a first cautious step, instead of the PDU contents only the physical address was
transferred in the string buffer. Thus, the time needed to pass the send message to the
driver was constant. As a second optimization, the address of the PDU buffer was no
longer copied in an indirect string, but in an additional dword. This lead to a remarkable
reduction of the overhead.

The effects of these two optimization steps are shown as “Protocol 2” and “Protocol 3”
in the following figures. “Protocol 2” eliminated the additional overhead for large PDUs
whereas “Protocol 3” reduced the general SEND message overhead.

Send performance - Pentium 133 Send performance - Pentium 133
10000 . .
Protocol 1 —+— Protocol 1 —+—
Protocol 2 -—-x-—- 160 Protocol 2 - |
Protocol 3 -~/ Protocol 3 -
7 140
/ =
/ IR
2 1000 ; We,.»—*\
£ 120 o]
2 o
s 2 Fi
2 &
< / 2 100
o = :
£
§ 100 y 5 ¥/
2 7 2 80 7
@ = £ i
8 /‘if/s 2 ;
2 gomeens o] ;
3 s 60
2 :
e
kel
H 10 2
20 -
1 0)‘_‘/
1 4 16 64 256 1024 4096 16384 65536 1 4 16 64 256 1024 4096 16384 65536
PDU size PDU size

Figure 17: send performance - optimized

28

5.4 Receive Performance

Traffic is generated on a second machine connected via a cross-link cable, running a
specialized version of the PCA-200E L4 driver. There the overhead of the IPC interface
is eliminated by directly inserting multiple send requests into the transmit queue. That
way, the highest send rates achievable with the PCA-200E are generated.

The test application tries to accept all the data from the network. The application-
provided receive function being called from the client library each time a PDU has arrived
counts the number of delivered PDUs.

Due to the design of the driver’s IPC interface, an application failing to keep up with the
incoming data stream is not critical, at least not for the driver. If the application (actu-
ally, the receive thread in the client library) is not ready to accept the next RECEIVE
message from the driver, the driver simply drops that PDU because of an IPC timeout.
To get the number of PDUs dropped at this point, a counter was added to the driver.

To summarize the measurements, at least 99.81 percent of the received PDUs really
arrived at the client, using the protocol described in the implementation section.

This value could be increased to approximately 99.95 percent by changing the protocol
the same way as described in Section 5.3. Thus, the protocol overhead is minimized by
simply copying the physical address of the received data to the client instead of the data
itself.

To have a reliable receive path, it was necessary to pay attention to the priorities of the
participating threads, the interrupt thread in the driver and the receive thread in the
client library. As there was no explicit rule for these thread’s priority, the receive thread
had a lower priority than the interrupt thread. This way, the receive thread could do its
work only in the time slice donated by the interrupt thread through IPC. If the IPC took
place just before the end of the interrupt thread’s time slice, the donated time might not
have been sufficient for the receive thread to become ready again. In this case, the next
IPC operation would fail, leading to a dropped PDU.

In several discussions about this problem a possible solution was identifed: The receive
thread runs with a higher priority than the interrupt thread. Thus, it always becomes
ready again, before the interrupt thread can send the next RECEIVE message. Although
in this scenario all PDUs arrive at the test application, there are some things to consider:
The receive thread should do nothing more than accept the data, store it in the client’s
buffer and return to receive the next message. Otherwise, the interrupt thread would be
blocked, possibly causing the board to drop PDUs itself due to a full receive queue or a
lack of free receive buffers.

29

6 Summary

This work aimed at porting the PCA-200E Linux driver to L4, with the additional chal-
lenge of minimizing changes to the code. The result is a stand-alone L4 server for the
PCA-200E, a client library for the client and an L4Linux driver stub which offers the
services of the L4 server to L4Linux as an ATM-on-Linux device. The changes to the
original Linux driver code have been minimized by means of a framework that emulates
most of the Linux functions required by the Linux driver.

With the PCA-200E L4 server and the corresponding client library it is possible to gen-
erate high bandwidth data streams over the ATM network and to receive those streams,
even on off-the-shelf standard PC machines.

The interface between the L4 server and its client is hardware independent. This allows
implementation of an L4 server for another board type but using the same interface. The
framework designed and implemented in this work serves well for ATM network boards.
But, due to the somewhat special nature of ATM (connection-oriented, point-to-point),
this framework doesn’t perfectly fit for other kinds of network boards.

6.1 Future Work

There is still some room for optimization. The send path could be implemented to use
the asynchronous capabilities of the board. The IPC protocol could be minimized in a
way that all requests use fast short messages.

Acknowledgements

I would like to thank the members of the Operating Systems chair at the Dresden Univer-
sity of Technology who helped bringing this work to a successful end, in particular Prof.
Hermann Hartig, Jean Wolter, Michael Hohmuth, Lars Reuther and Martin Borriss for
helpful discussions, Sebastian Schonberg and Volkmar Uhlig for repeatedly reading and
correcting this paper, and last but not least my friend for her understanding and her love
during this busy time.

All trademarks used in this work are hereby acknowledged.

30

7 Appendix

7.1 The ATM Device Operations Structure atmdev_ops

struct atmdev_ops {
int (*open) (struct atm_vcc *vcc,short vpi,int vci);
void (*close) (struct atm_vcc *vcc);
int (*ioctl) (struct atm_dev *dev,unsigned int cmd,unsigned long arg);
int (*getsockopt) (struct atm_vcc *vcc,int level,int optname,
char *optval,int *optlen);
int (*setsockopt) (struct atm_vcc *vcc,int level,int optname,
char *optval,int optlen);
int (*send) (struct atm_vcc *vcc,struct sk_buff *skb);
int (*sg_send) (struct atm_vcc *vcc,unsigned long start,
unsigned long size);
void (*poll) (struct atm_vcc *vcc,int nonblock) ;
int (*send_oam) (struct atm_vcc *vcc,void *cell,int flags);
void (*phy_put) (struct atm_dev *dev,unsigned char value,
unsigned long addr);
unsigned char (*phy_get) (struct atm_dev *dev,unsigned long addr);
void (*feedback) (struct atm_vcc *vcc,struct sk_buff *skb,
unsigned long start,unsigned long dest,int len);
int (*change_qos) (struct atm_vcc *vcc,struct atm_qos *qos);
void (*free_rx_skb) (struct atm_vcc *vcc, struct sk_buff *skb);

31

7.2 The ATM VCC Structure atm vcc

struct atm_vcc {

unsigned short flags; /*x VCC flags (ATM_VF_%*) %/

unsigned char family; /* address family; 0 if unused */

unsigned char aal; /* ATM Adaption Layer */

short vpi; /* VPI and VCI (types must be equal */
/* with sockaddr) */

int vCi;

unsigned long aal_optioms; /* AAL layer options */

unsigned long atm_options; /* ATM layer options */

struct atm_dev x*dev; /* device back pointer */

struct atm_qos qos; /¥ QOS x/

unsigned long tx_quota,rx_quota; /* buffer quotas */

atomic_t tx_inuse,rx_inuse; /* buffer space in use */

void (*push) (struct atm_vcc *vcc,struct sk_buff *skb);
void (*pop) (struct atm_vcc *vcc,struct sk_buff *skb); /* optional */
struct sk_buff *(xpeek) (struct atm_vcc *vcc,unsigned long pdu_size,
__u32 (xfetch) (struct atm_vcc *vcc,int i));
/* super-efficient xfers; note that */
/* PDU_SIZE may be rounded */
struct sk_buff *(*alloc_tx) (struct atm_vcc *vcc,unsigned int size);
/* TX allocation routine - can be */
/* modified by protocol or by driver.x/
/* NOTE: this interface will change */
int (*push_oam) (struct atm_vcc *vcc,void *cell);

void xdev_data; /* per-device data */

void *proto_data; /* per-protocol data */

struct timeval timestamp; /*x AAL timestamps */

struct sk_buff_head recvq; /* receive queue */

struct atm_aal_stats *stats; /* pointer to AAL stats group */
struct wait_queue *sleep; /* if socket is busy */

struct wait_queue *wsleep; /* if waiting for write buffer space */

struct atm_vcc *prev,*next;

/* SVC part — may move later */

short itf; /* interface number */

struct sockaddr_atmsvc local;

struct sockaddr_atmsvc remote;

void (*callback) (struct atm_vcc *vcc);

struct sk_buff_head listeng;

int backlog_quota; /* number of connection requests we */
/* can still accept */

int reply;

void *user_back; /* user backlink - not touched */

32

References

[Alm96al

[Alm96b]

[ATMOA4]

[BDHO7]

[Cav94]

[FML+97]

[FOR97]

[HHL+97]

[Lie96]

[Sta96]

[Tan90]

Werner Almesberger. Linur ATM API, Draft, version 0.4. Laboratoire de
Réseaux de Communication (LRC), Ecole polytechnique fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland, July 1996.

Werner Almesberger. Linuz ATM device driver interface, Draft, version
0.1. Laboratoire de Réseaux de Communication (LRC), Ecole polytechnique
fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, February
1996.

The ATM Forum. ATM User-Network Interface Specification, Version 3.1,
September 1994.

M. Borriss, U. Dannowski, and H. Hartig. Performance von TCP over ATM
unter Windows N'T und Linux. Technical report, Dresden University of Tech-
nology, October 1997.

John David Cavanaugh. Protocol Overhead in IP/ATM Networks. Technical
report, Minnesota Supercomputer Center, Inc., 1994.

Bryan Ford, Kevin Van Maren, Jay Lepreau, Stephen Clawson, Bart Robin-
son, and Jeff Turner. The Flux OS Toolkit: Reusable Components for OS
Implementation. In 6th Workshop on Hot Topics in Operating Systems (Ho-
t0S), Cape Cod, MA, USA, May 1997.

FORE Systems, Inc., 1000 FORE Drive, Warrendale, PA 15086-7502. Pro-
grammer’s Reference Manual for AALI Interface, May 1997.

H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. The per-
formance of u-kernel-based systems. In 16th ACM Symposium on Operating
System Principles (SOSP), Saint-Malo, France, October 1997.

J. Liedtke. L4 reference manual (486, Pentium, PPro). Arbeitspapiere der
GMD No. 1021, GMD — German National Research Center for Informa-
tion Technology, Sankt Augustin, September 1996. Also Research Report RC
20549, IBM T. J. Watson Research Center, Yorktown Heights, NY, Sep 1996;
available from URL: ftp://borneo.gnd.de/pub/rs/L4/14refx86.ps.

René Stange. Systematische Ubertragung von Geritetreibern von einem
monolithischen Betriebssystem auf eine mikrokernbasierte Architektur. Mas-
ter’s thesis, Dresden University of Technology, May 1996. available from
http://os.inf.tu-dresden.de/L4/stange-dipl.{html,ps.gz}.

A.S. Tanenbaum. Betriebssysteme - Entwurf und Realisierung. Carl Hanser
Verlag, Miinchen, 1990.

33

