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Chapter 1


Introduction


In the past several years, increasing clusters of workstations have been replacing single expen-


sive mainframes as a high-performance facility. In such a distributed computing environment


a lot of performance goes unused because machines generally are idle. The utilization of the


additional processing power introduces a demand for dynamic allocation and re-allocation of


computational resources. In many distributed systems it is possible to transfer data, such


as files, between various machines. Some of them additionally allow the movement of the


process’ execution site, a mechanism known as process migration.


Process migration enables a variety of benefits, such as load balancing, fault tolerance,


and data access locality. With the ever-increasing deployment of distributed systems and


the World Wide Web, process migration continues to attract both research and product


development. Especially commercial services provided over the Internet need to agree on


Quality of Service. Therefore more and more distributed operating systems are designed with


process migration in mind.


Despite the benefits, process migration has not achieved widespread use in the past because


of the complexity of adding transparent migration to systems originally designed to run stand-


alone. Another reason was the additional computation overhead of a migrating process that


often limits the benefits of process migration [1].


To make process migration more suitable for practical use, the major goal of research is to


optimize the performance of process-migration facilities.


1.1 Motivation


The algorithm that transfers the process from one machine to another has the highest influ-


ence on the performance of a process-migration facility. In the last 15 years, many process-


migration algorithms have been proposed in the literature, such as Pre-Copy [2], Flushing [3],


Post-Copy [4] and Freeze Free [5]. Basically they differ in the amount of transferred data and


response time. These algorithms have been implemented on various systems, which makes a
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direct comparison difficult to obtain. Thus, it is not known which algorithm performs best


under certain conditions such as low network bandwidth.


Most of the distributed systems supporting process migration are academic systems and are


already designed with process migration in mind. Usually they provide only one standard


algorithm to transfer a process, which is not particulary adaptive in cases of environment


changes or different process behaviors, and can cause a performance penalties.


This thesis deals with two major aspects. First, in contrast to other works [6, 3, 7, 8],


the process-migration algorithms are implemented on top of the widely used Linux operating


system instead of an academic system. Second, the thesis presents an analysis of a wide


range of process-migration algorithms. For the first time, five different algorithms execute


under the same environment. A comparative evaluation determines under which conditions


each algorithm performs best. The most interesting metrics for performance analysis are the


duration of the complete migration and the time period during which where the migrating


process is suspended.


The results show the influence of the size and memory-access pattern of a process as well as


the network characteristic on the performance of various process-migration algorithms. Such


an evaluation is interesting for the development of an adaptive process-migration manager


that can select the best migration algorithm for different conditions.


Furthermore, to the best of my knowledge, I present within this thesis the first working


implementations of the Post-Copy and the Queued Pre-Copy algorithm. Additionally to the


existing algorithm, I introduce the new Assisted Post-Copy algorithm.


1.2 Overview


This thesis aims to provide a comprehensive evaluation of process-migration algorithms.


Chapter 2 gives a background on process migration in general and describes existing process-


migration algorithms. Chapter 3 provides design issues, presents the Smile project, and intro-


duces a new process-migration algorithm. A short description of the implementation is given


in Chapter 4. A qualitative evaluation and a quantitative evaluation of the implemented


algorithms can be found in Chapter 5. Chapter 6 presents related work about evaluation


of process-migration algorithms. Finally, Chapter 7 provides a summary of this thesis and


presents a perspective of the future work.
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1.3 Declaration


I declare that all parts of this work were autonomously written by me using only legal re-


sources. All resources used within this work are explicitly announced. To the best of my


knowledge the content of this work is original and was not published before by me or another


author.


Mathias Noack, Dresden, 29th July 2003
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Chapter 2


Process Migration


This section gives a background on process-migration characteristics and defines necessary


terminology. Furthermore it presents a detailed description of fundamental process-migration


algorithms.


2.1 Characteristics


In a distributed environment, process migration introduces opportunities for sharing process-


ing power and other resources between different machines. Therefore, it becomes a useful


and desirable feature in distributed systems. To support process migration, the operating


system must provide the possibility to extract information about a process on one machine


to recreate it on another.


The major goal of process migration is to improve the performance of a distributed system


in a number of areas.


Load Balancing The motivation for load balancing is the varying load of individual ma-


chines in a distributed system which causes considerable unused processing power. With


process migration, the work load can be spread equally across the entire system.


Data Access Locality Sometimes a particular resource cannot be moved (such as a device),


or the movement causes heavy network traffic. In this case it is often more efficient to


migrate the process to the machine where the resource resides instead of the reverse.


This results in reduced network traffic because the process does not have to access the


required resource via the network. Thus, it increases the efficiency of the migrated


process and resource usage.


Reliability and Availability Process migration can also be utilized to improve reliability


and availability of a distributed system. When a shutdown of a machine is known in


advance (for example in case of maintenance), all required processes can be migrated to


another machine. These processes will continue to be available even after the shutdown


of their former source.
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Existing implementations of process-migration facilities can be found in MOSIX [9], Sprite


[10], RHODOS [11], Accent [12] and Mach [13].


2.1.1 Initial Placement vs. Preemptive Process Migration


A very simple mechanism to achieve system-wide utilization of available resources within


a distributed system is Remote Execution or Initial Placement. Remote execution creates


the particular process on a remote machine prior to execution. Sometimes this involves the


transfer of code or process environments, such as opened files. Usually remote execution is


faster than process migration because it does not transfer potentially large amounts of process


information.


Nevertheless, the major disadvantage of remote execution is the lack of flexibility and trans-


parency to the process, which can only be moved at the time of its creation. Otherwise addi-


tional information about the behavior of the process can be obtained if the process runs for a


period of time on the source machine. This additional information can be used to make more


appropriate load balancing decisions.


Preemptive Process Migration dynamically relocates a running process to another machine


in a distributed system at an arbitrary time after initiating execution on the source machine.


The amount of information that has to be transferred depends on the employed migration


algorithm. Usually it is larger compared to remote execution because the information can


consist of the entire process environment including the process’ address space.


One advantage of preemptive process migration is that after a process has begun execution,


the changes of the load of a system can be estimated so that load balancing policies can make


more efficient decisions.


Preemptive process migration leads to a better system-wide utilization of available resources


compared to remote execution [5]. Therefore this thesis deals solely with Preemptive Process


Migration. The term process migration will refer to Preemptive Process Migration throughout


this work.


2.1.2 User-Level vs. Kernel-Level Process Migration


Process migration can be applied to different levels of an operating system where it results


in varying performance levels, fault resilience, and reusability. Existing implementations of


process migration are done at kernel-level or at user-level, including implementations as a


part of an application.


User-level process migration typically yields a simpler implementation without changing


the underlying operating system. To access kernel information about the process, the user-


level process-migration facilities have to cross the user-kernel mode boundary by using kernel


requests. These kernel requests are slow and limited, which means not all types of processes
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can be migrated. Despite the high migration cost, the implementation levels closer to an


application know more about its behavior. This leads to better load balancing policy decisions.


An example of a user-level process-migration implementation is Condor [14].


Kernel-level process migration involves modifications and extensions to the underlying op-


erating system kernel which leads to additional complexity. Therefore, deployment is more


difficult than with a user-level implementation. On the other hand, the direct and fast access


to kernel information about the migrating process results in smoother performance. Another


advantage of kernel-level process migration is transparency to the client application, which


does not need to be changed or designed with process migration in mind.


MOSIX [15] and Sprite [10] are examples of kernel-level process-migration implementations.


This thesis focuses solely on kernel-level process migration.


2.1.3 Homogeneous vs. Heterogeneous Process Migration


Homogeneous process migration stands for migrating processes in a homogeneous environment


of a distributed system. A process can be migrated only among machines with the same


compatible architecture and operating system but does not necessarily have the same resources


and capabilities. Most systems providing process migration are restricted to homogeneous


process migration, including MOSIX [15], RHODOS [11] and Sprite [3].


A single computer network often consists of machines that may vary in their architecture


and operating systems. With heterogeneous process migration it is possible to migrate a


process among such dissimilar machines. Obviously, the implementation of process migra-


tion in a heterogeneous environment leads to significantly more complexity and introduces


performance penalties due to costly translations. Architecture and operating-system-specific


features must be considered. Additionally, the state of a process must be represented in a


machine-independent way to be transferred and resumed. Systems implementing heteroge-


neous process migration are Emerald [16] and TUI [17].


This thesis concentrates solely on process migration between homogeneous machines running


the same operating system.


2.2 Terminology


When discussing process-migration characteristics and concepts, varying terminology is used.


To avoid potential confusion, this section presents the terminology that will be used through-


out this thesis.


The terms host and node will be used interchangeably to refer to an individual physical


machine. The term source host will be referred to the execution site of a process prior to


migration, with the new site of execution being referred to as destination host.
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A process is defined as an instance of a computer program in execution. The necessary


information required for resuming a migrated process is called the process state. This state


includes execution state, communication state, register set, memory information, and other


operating system dependent data. All information including the process state needed for a


complete process migration is called process information. Principally the process information


consists of the process’ address space and the process state.


The term page refers to a contiguous, fixed-sized group of addresses within the address


space of a process.


Residual dependencies occur when process information remains at the source host after


migration. Thus, the migrated process is still dependent on its former node. If the source


host crashes or the network connection is broken, the execution of the process will fail because


of missing information.
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Figure 2.1: Time periods of process migration


There exist several important metrics for evaluating the performance of a process migration


algorithm. Figure 2.1 gives a simplified outline of the different time periods occurring during


process migration.


The initial migration time describes the time passed since the request for migration until


the process continues execution on the destination host.


The total migration time is the time passed since the request for migration until the end of


the process information tranfer. Process migration algorithms with residual dependencies do


not have a total migration time because portions of the process information still reside at the


former node, so the migration never finishes completely.


The terms down time refer to the time period where the migrating process is suspended.


Usually during this time the process state is transferred to the destination host depending on


the employed migration algorithm. The down time is particularly important to processes that


communicate with other processes, because they cannot receive messages during this time.
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After a certain time, the communications system detects a failed receiver and either aborts


the communication connection or relies on error recovery.


This thesis introduces two more time periods, the preparation time and the post-processing


time. The preparation time refers to the transfer of several parts of the process information,


usually the address space, prior to actual migration. The post-processing time is used to


eliminate residual dependencies on the source host by shipping all remaining data of the


process to the destination host.


2.3 Process Migration Algorithms


This section discusses the basics about the structure of process-migration algorithms and


presents a number of existing fundamental algorithms.


To migrate a process, much information must be transferred to the destination host, such


as process’ address space, execution state, communication state, and other operating-system-


dependent information. Usually, the address space constitutes by far the largestunit of the


process information and therefore is the element with the highest influence on the performance


of process migration [18]. Various transfer strategies have been proposed to reduce the high


cost of address space transfer. These strategies dominate process-migration characteristics


such as performance, complexity, and fault resilience.


All existing process-migration algorithms have the following basic tasks in common:


� Decide to migrate the process


� Suspend the process at the source host


� Transfer process state to the destination host


� Reconstruct the process state at the destination host


� Resume execution of the process at the destination host


� Remove all remaining information about the process from the source host (not neces-


sarily)


The order and the degree of completion of each task varies between the migration algorithms.


The decision of when it is useful to migrate a particular process and which destination host


to use are system policy decisions and will not be discussed as they are outside the scope of


this thesis. A detailed treatment of these issues can be found in [9].


The major difference between process-migration algorithms is the point in time when the


address space of a process is transferred. Either the entire address space is shipped at once or


the source host ships parts of the address space on demand. The former method is controlled
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by the source host and results in a long initial migration time. In the latter method the


destination host requires remote paging to request referenced pages from the source host.


This additional request results in a delayed execution of the migrated process.


Most of the fundamental algorithms perform process migration from a source host directly


to a destination host. To avoid residual dependencies, a few algorithms involve a third entity


such as a file server.


The following sections describe various existing process-migration algorithms.


2.3.1 Total Copy


The Total Copy algorithm is the most commonly used process-migration algorithm. It is very


simple and was the first invented. Amoeba [19] and Charlotte [7] are example systems that


implemented the Total Copy algorithm.


The basic idea of the algorithm is to suspend the process at the source host, transfer all


process information such as the address space, open file information, open network connec-


tions, and message channels. After the transfer, the process is immediately resumed at the


destination host.


& stop process
Start migration process


information


Source host


Destination host


down time


Resume process
& complete migration


Time


Figure 2.2: Total Copy algorithm


The following tasks must be undertaken to migrate a process with the Total Copy algorithm:


1. Suspend execution of the process at the source host


2. Transfer the entire process information


3. Continue execution of the migrated process at the destination host


4. Remove the process from the source host
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The advantage of this algorithm is its conceptual simplicity, which allows a relatively


straightforward implementation. Residual dependencies are eliminated by shipping all in-


formation at once to the destination host. The algorithm is efficient regarding memory costs


because successfully transfered memory can be immediately released.


However, shipping the whole address space during the down time of the migration dramati-


cally increases the appearance of communication failures since the process is unable to receive


messages for long time. Figure 2.2 illustrates the Total Copy algorithm.


2.3.2 Demand Paging


The Demand Paging algorithm can only be deployed if there is remote paging support. In


contrast to the Total Copy algorithm, there exist different strategies of Demand Paging. The


Copy-on-Reference strategy transfers only the process state whereas the Eager Dirty strategy


additionally ships all modified (dirty) pages of the process during the initial migration time.


Both request all remaining information on demand from the source host. Figure 2.3 illustrates


the different time periods of the Demand Paging algorithm.


Start migration 
& stop process


Resume process


Destination host


Source host


down time


process state


requested pages


Time


post−processing time


Figure 2.3: Demand Paging algorithm


The following shows a generalized variant of the Demand Paging algorithm:


1. Suspend execution of the process at the source host


2. Transfer of the minimally necessary process state


3. Resume execution of the migrated process at the destination host


4. Request information needed by the process during execution


Once the new process resumes execution, it may reference pages of the address space that


still reside at the source host. Since there was no transfer of the entire address space, every
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page has to be requested from the source host. To resolve a page fault, the process sends a


request to the source host that returns the desired page immediately. During the request the


execution of the process is suspended. This delay of the execution is potentially longer than


a delay of a locally resolved page fault and increases the run-time cost of the process. The


exact duration of the delay depends on the characteristics of the network connection between


source and destination host.


The Demand Paging algorithm significantly reduces the amount of data shipped during the


migration by avoiding the need to transfer all information of the process. Additionally, the


algorithm exploits the fact that processes tend to use only a small portion of their address


space during execution [18]. Therefore, it eliminates the transfer of address space pages,


which will never be used after migration.


The major disadvantage of the Demand Paging algorithm is that the source host must


maintain the remaining address space of the migrated process until it completes execution.


These long-term residual dependencies are a problem. If a process migrates multiple times,


then a page fault causes a search for the missing page at every host involved in past process


migrations.


However, if the source host is to fail, the page fault handler cannot resolve the page faults


and the process fails as well. This residual dependency decreases the fault tolerance of the


destination host.


The Accent system [18] was the first that implemented the Demand Paging algorithm by


using the Copy-on-Reference strategy. Further example systems are RHODOS [6] and Mach


[13].


2.3.3 Flushing


The Flushing algorithm is the first algorithm that involves a third entity for process migration.


It was introduced in the Sprite operating system [10], which uses a file server in addition to


the source and destination host. The goal of Sprite’ process-migration mechanism was to


achieve the efficiency of the Demand Page algorithm while avoiding the residual dependency.


The Flushing algorithm depends upon the operating system’ implementation of virtual


memory. In the example of Sprite, backing storage for virtual memory is implemented using


ordinary files. These backing files are stored by the network file server and are accessible from


anywhere in the network. In Figure 2.4, the different time periods are illustrated as well as


the role of the file server.


Briefly, the Flushing algorithm is carried out as follows:


1. Stop execution of the process at the source host


2. Flush all modified pages to a network file server
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3. Transfer the process state to the destination host


4. Continue execution of the process at the destination host


5. Resolve all page faults raised by the process via requests to the network file server


The Flushing algorithm leaves no residual dependencies at the source host and significantly


reduces the down time of a process compared to Total Copy. The data transfer to the file


server represents an overhead not present in other migration algorithms.


However, to efficiently handle page faults using a file server, the file system needs to be


highly optimized. Sprite provides a file-system-based communication that uses the same


access mechanism for memory and files. This enables fast file server access and speeds up the


transfer of requested pages to resolve the page faults.


flush pages


process state


requested pages


Start migration 
& stop process


Destination host


Source host


File server


Resume process


down time


Time


post−processing time


Figure 2.4: Flushing algorithm


2.3.4 Freeze Free


The Freeze Free algorithm [5] represents a highly optimized version of the Eager Dirty strategy


mentioned in Section 2.3.2. Most distributed systems support message-based interprocess


communication (IPC). The time period where a process is unable to receive messages is


called freeze time. During this time, the communication subsystem can either buffer incoming


messages or rely on error recovery. With all previously described algorithms, interprocess


communication is a major problem during the migration because the freeze time is equal to


the down time.


The Freeze Free algorithm is carried out as follow:


1. Suspend the process at the source host
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2. Separate process state and communication state


3. Transfer a minimized process state including the first stack, code, and heap page


4. Continue execution of the process


5. Transfer the communication state


6. Flush all modified pages to a file server


The major improvement of Freeze Free is minimizing the freeze time so message receiption


can proceed in parallel with process migration. The algorithm isolates the process state and


the state of the communication from each other. The entire communication state is held


in a separate memory region within the address space of the process. Incoming messages


are buffered in this particular memory region and all relevant message queue information is


recorded; however, the migrating process is not informed of message receipt. After the transfer


of the process state, the communication state is shipped separately to the destination host.


During this transfer, incoming messages at the source host are rejected and the new location


of the process is transmitted to the sender. The new process at the destination host continues


execution without waiting for the communication state. However, the process blocks if it tries


to communicate before the communication state has arrived.


This procedure effectively eliminates message freeze time because message receipt never


stops but is only delayed during the transfer of the communication state.


In contrast to previously described migration algorithms, Freeze Free only transfers the


process’ current code, stack, and heap page during the down time. The current heap page is


determined by using a heuristic at the source host.


The transfer of the address space is done by flushing modified pages to a file server. All


page requests from the destination host are satisfied either by the source host if the page


has not yet been flushed or by the file server. After completely flushing all pages, even clean


pages are available from the file server. However, there exist residual dependencies on the file


server, and the cost of requesting a page is potentially higher compared to resolving a page


fault locally.


2.3.5 Pre-Copy


The Pre-Copy algorithm was first invented in the V operating system [2] to overcome the


disadvantage of high down times in the Total Copy algorithm. In contrast to the previously


described algorithms, Pre-Copy does not suspend the migrating process until most of the


process’ address space is transferred together with the execution of the process on the source


host.


Unfortunately during the execution, the process alters pages that are already transferred.


Therefore, the algorithm keeps shipping modified pages until the number of these pages is
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sufficiently low. Then it suspends the process and starts the transfer of the process state. This


transfer must be accompanied by a final flush of the address space to transfer the remaining


modified pages. Figure 2.5 displays the time flow of Pre-Copy.


process state
& pages


Source host


Start migration Stop process


preparation time down time


Destination host


Resume process


& complete migration
pages


Time


Figure 2.5: Pre-Copy algorithm


The following steps are performed by Pre-Copy:


1. Initially transfer the entire address space together with the execution of the process


2. Check if the number of modified pages is reasonably low; if not, continue transfer of


modified pages


3. Suspend process and ship the process state


4. Finally, flush the remaining modified address space


5. Resume execution of the migrated process at the destination host


The Pre-Copy algorithm reduces the pages shipped during the migration of the process.


After migration no residual dependencies to the source host exist which leads to higher system


reliability. Depending on the exact memory-access pattern of the process, several pages


have to be transferred multiple times because they were modified by the process during the


preparation time. If the process modifies too many pages, the predetermined limit will never


be reached and the algorithm fails. Usually the number of pages affected is the number of


pages in the working set of the process, which can be reasonably low [18].


2.3.6 Queued Pre-Copy


The Queued Pre-Copy algorithm is a slightly improved variation of the Pre-Copy algorithm.


It reduces the number of multiple page transfers by ensuring that frequently used pages are


transferred as rarely as possible.
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A short description of the steps carried out during the preparation time is as follows:


1. A set W holds all pages of a process while the process continues execution


2. Each page in W is removed from W, marked read-only in the page table, and queued


on a queue R


3. The previous step reruns during a certain time interval until the migration is complete


4. If the process raises a page fault because of a write access to a page marked read-only,


the page is removed from R and inserted into W and marked writable


5. A background thread continually dequeues the first page of R and transfers it to the


destination host


6. If R is empty, the size of W may be gauged, and if the size is lower than a fixed limit, the


migrating process is suspended and all pages in W are queued into R and transferred


Pages which are infrequently written will stay in R longer and will be transferred first.


This reduces the number of multiple page transfers, but the algorithm can still fail. As in


Pre-Copy, if the predetermined limit is too high, it will never be reached. The algorithm was


first described in the Nomadic Operating System [20] but has not been implemented yet.


2.3.7 Post-Copy


The Post-Copy algorithm displays several similarities with the previously described algo-


rithms. Initially Post-Copy transfers the process state. It avoids residual dependencies by


transferring the remaining process information after the process has been resumed at the


destination host. As in Pre-Copy, the process information is transferred in parallel with the


process execution, but differs in that the process executes at the destination host. Figure 2.6


illustrates the different time periods of Post-Copy.


Process migration using Post-Copy proceeds as follows:


1. Suspend the process at the source host


2. Transfer process state to the destination host


3. Continue execution of the migrated process


4. Transfer all remaining process information in parallel with the execution of the process


5. Request pages needed from the executing process of the source host
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During the execution of the process at the destination host, the transfer of pages needs to


be transparent. As with Demand Paging, the process may reference pages of its address space


that still reside on the source host. These references are trapped by the kernel, and a request


is sent to the source host. The request takes precedence over normal transfers of remaining


pages, and the desired page is sent back immediately. Nevertheless, the request takes some


time and the process execution is suspended during this delay. The delay depends on the


characteristics of the network connection and how fast the source host can serve the request.


Potentially it takes less time to resolve a page fault locally than via a network.


Residual dependencies exist only during the finite post-processing time where the remaining


pages are transferred from the source host.


Start migration 
& stop process


Resume process


down time


Destination host


Source host


Migration complete


process state


pages


requested pages


Time


post−processing time


Figure 2.6: Post-Copy algorithm


The Post-Copy algorithm was first described in Post-Copy Migration [21] and has not been


fully implemented.


2.4 Summary


Table 2.1 summarizes and categorizes all previously described algorithms. For each algorithm


the existence of the preparation and post-processing time are listed below. Additionally,


the residual dependencies and systems where the particular algorithm has been realized are


shown.


The table shows clearly that all algorithms exploit at most two time periods and some of


them need a third entity to avoid residual dependencies at the source host. Furthermore


most of the algorithms have been implemented on top of different academic systems, so that


a direct comparison is difficult to obtain. Additionally the Queued Pre-Copy and Post-Copy


algorithm have only been described in the literature. Prior to my work, there was no working


implementation available.
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preparation post-processing residual systems
time time dependencies


Total Copy no no no RHODOS
Charlotte


Demand Paging no yes yes MOSIX
on source host RHODOS


Flushing no yes yes Sprite
on file server


Pre-Copy yes no no V kernel
Queued Pre-Copy yes no no -


Post-Copy no yes no -
Freeze Free no yes yes Choices


on file server


Table 2.1: Characteristics of process-migration algorithms
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Chapter 3


Design


To implement and evaluate process-migration algorithms, a suitable migration facility has to


be found. This chapter presents the Smile project, which provides such a migration facility.


Furthermore, it gives a short overview of design decisions and introduces a new process-


migration algorithm.


3.1 Smile


The Smile project deals with the realization of service migration for the Linux operating


system and was invented by Jan Glauber at the Dresden University of Technology. Service


migration means the movement of an arbitrary number of processes that provide a service and


communicate among each other. Smile was developed on top of Linux and has the following


features:


Transparent migration of unmodified Linux applications Service migration is com-


pletely transparent to the user and applications need neither be recompiled nor be


relinked.


Complete migration without residual dependencies In case of maintenance, it may be


necessary to shut down a host. Thus, Smile supports complete service migration with-


out leaving resources behind. However, during a short post-processing time, residual


dependencies are tolerated for the transfer of remaining data from the source host.


Minimal changes to the Linux kernel For process migration it is necessary to alter and


possibly create new instances of key data structures of the operating system. Most of


these structures are only accessible within the kernel, such as address space information


(page table). Therefore, some form of support for process migration from an operating


system is required. Linux does not support process migration at all.


Smile realizes kernel-level service migration on top of Linux. Thus, the assistance of the


kernel is indispensable. A kernel patch is always a simple but inflexible solution to add


new functionality to the Linux kernel.
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Alternatively a dynamically loadable kernel module can be used. The advantage is that


no recompilation of the kernel is needed and migration support can be added or removed


from the kernel at run time. Modules use a well-defined but limited interface to access


kernel structures and functions. Still, dynamically adding new features to the Linux


kernel by using a kernel module is more desirable for Smile than patching the kernel.


Smile is not restricted to a certain process-migration algorithm and provides a well-defined


interface to integrate any migration algorithm. It even allows to migrate a service by using


both the preparation and post-processing time.


Because of these features, Smile provides a migration facility that is suitable for implemen-


tation and evaluation of process-migration algorithms.


3.2 The Assisted Post-Copy Algorithm


All previously described process-migration algorithms use at most two time periods during


migration. To exploit the fact that Smile provides the opportunity to use all three time


periods during process migration, I invented the Assisted Post-Copy algorithm. Even after


an extensive literature review, I was unable to find any previous description of this algorithm.


Therefore I assume the Assisted Post-Copy algorithm has neither been implemented nor


described elsewhere.


Basically, Assisted Post-Copy is a synthesis of the Pre-Copy and the Post-Copy algorithm.


For the first time a process-migration algorithm uses all three time periods for process mi-


gration. Figure 3.1 illustrates the Assisted Post-Copy algorithm.


pages


process state


requested pages


down time


Source host


Start migration 


preparation time


Stop process


Complete migrationResume process


Destination host Time


post−processing
time


Figure 3.1: Assisted Post-Copy algorithm


Briefly, the following steps are performed by the new algorithm:


1. Transfer the entire address space once while the process keeps executing on the source


host
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2. Store received pages temporarily at the destination host


3. Suspend the process


4. Transfer the process state


5. Continue execution of the migrated process at the destination host


6. Transfer all modified pages from the source host


7. Request pages immediately needed by the executing process


8. Insert all clean pages locally from the temporary store


As with Pre-Copy, the entire address space of the executing process is initially transferred


during the preparation time. The pages are stored temporarily at the destination host instead


of being inserted into the new process’ address space. After the initial transfer, the source


host suspends the migrating process and ships the process state. The migrated process is


immediately resumed.


When the process continues execution, it starts to reference pages. Immediately a page fault


is raised due to the empty address space. Resolving the page fault by referencing the page


locally from the temporary store can cause inconsistency. This is so because it is unsure wether


the page remained unmodified during the preparation time at the source host. Therefore a


request is sent to the source host, and if the page was modified it needs to be transferred


again. Otherwise it can be referenced from the local temporary store. All pages which do not


reside in the process’ address space need this kind of consistency check.


To avoid that every page needs to be checked, the source host transfers modified pages in


parallel with the execution of the migrated process. These pages are consistent and can be


inserted in the process address space. When all modified pages reside on the destination host,


the consistency check is no longer needed.


Finally, some pages still do not reside in the address space because they remained unmodified


on the source host. They need to be shipped from the local temporary store to the process’


address space.


The major improvement of this algorithm is the elimination of the predetermined limit


needed by Pre-Copy and Queued Pre-Copy. In contrast to both algorithms, Assisted Post-


Copy transfers the address space of the process only once during the preparation time.


As in Post-Copy, residual dependencies exist only for the duration of the transfer of modified


pages from the source host.


Most of the existing algorithms transfer every page only once, whereas with Pre-Copy and


Queued Pre-Copy it is difficult to determine in advance the number of times a page will be


transferred. This depends on how often the process accesses a page.
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With the new Assisted Post-Copy algorithm, it is now possible to determine the number of


multiple page transfers even though it uses the preparation time. Each page is transferred


a maximum of two times: once during the initial address space transfer and another time it


was modified during the preparation time. This reduced number of multiple page transfers is


the best that can be achieved with Pre-Copy-like algorithms.


3.3 Parallel Execution


For the majority of the implemented process-migration algorithms, parallel execution of pro-


cesses is essential. Unfortunately, the Linux kernel is not completely preemptive. Thus, a


running process cannot be preempted while it remains in kernel mode except if it voluntar-


ily relinquishes the control of the CPU. This fact is a big disadvantage for the implemented


algorithms because Smile provides kernel-level process migration.


For example, a migrating process has no chance to access and change its address space


while the migration facility running in kernel mode is actually transferring the process’ address


space by using the Pre-Copy algorithm. Therefore the advantages of Pre-Copy cannot be fully


exploited and the algorithm behaves similarly to the Total Copy algorithm. The Queued Pre-


Copy, Post-Copy and Assisted Post-Copy algorithms are in the same situation. All require


real or quasi parallel execution of processes to be efficient. Only the Total Copy algorithm


does not need any parallelism because it doesn’t perform any parallel activities.


Nevertheless, there is a chance of pseudo parallelism even when the migration takes place


on a uniprocessor. In case of a slow network connection, the send queue of the network


device can be full or the receive queue at the destination host can be empty. Then the


migration algorithm, which runs in parallel with the execution of the migrating process,


blocks and releases the CPU. Now the migrating process has a chance to take over control


of the CPU. However, this will happen rarely, so it does not improve the efficiency of the


migration algorithms at all.


To achieve more realistic results, SMP (Symmetric Multi-Processing) machines are much


more suitable for the actual implementation and evaluation of process-migration algorithms.


The chance of parallel execution of all participating processes increases significantly and


depends only on the SMP scheduler. But still it can happen that both processes run on the


same processor. Additionally, assuming to use SMP machines is realistic because in practice


process migration is mostly used in a distributed environment consisting of multiprocessor


servers.


The mechanism of moving processes between SMP machines using shared memory will not


be considered in this thesis.
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Implementation


This chapter presents my implementation of process-migration algorithms on top of Smile.


First a short overview of the Linux paging mechanism is provided. Second, it describes in


detail the first working implementation of the Queued Pre-Copy, Post-Copy and Assisted


Post-Copy algorithms.


4.1 Paging in Linux


To simplify the understanding of my implementation, a background of the paging mechanism


in Linux is necessary. Linux provides the concept of virtual memory with the virtual address as


the main ingredient [22]. The paging unit of Linux translates virtual addresses into physical


ones by using page tables. Every virtual address refers indirectly to a physical address by


specifying certain offsets to access the different page table levels. Linux assumes three levels


of page tables: the page global directory, the page middle directory and the page table. Figure


4.1 shows the three-level paging model and the format of a virtual address.


The page global directory includes the addresses of several page middle directories, which in


turn include the addresses of several page tables. The page table contains page table entries


that include, along with several status and protection bits, the address of a physical page. To


translate a virtual address, Linux traverses the different page tables in the given order until


it finds a valid page table entry.


Each platform on which Linux runs must provide translation macros that allow the kernel


to traverse the page tables for a particular process. In this way, the architecture-independent


part of the kernel does not need to know the format of the page table entries and how they


are arranged.


Every Linux process has its own address space, which is subdivided into virtual memory


areas (vm area) containing contiguous virtual addresses. Each vm area provides a set of func-


tion pointers for opening, closing or manipulating it. One of these is the no page() function
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Figure 4.1: The Linux page table organization


pointer. It usually contains a function that is called when a page fault occurs and the page


is not present and not swapped out. By replacing this pointer with a pointer to a different


function it is possible to change the behavior of the page-fault handler, for example, to request


a needed page from a different location.


4.2 Integration into Smile


One part of this thesis deals with the actual implementation of process-migration algorithms


and the integration into Smile. The implementation is restricted to algorithms without resid-


ual dependencies because Smile does not support residual dependencies.


Within this work I implemented and integrated the following process-migration algorithms


into Smile:


1. Total Copy


2. Pre-Copy


3. Queued Pre-Copy


4. Post-Copy


5. Assisted Post-Copy


For further considerations within this thesis, the term process-migration algorithms refers


to the implemented algorithms only.


The Total Copy and the Pre-Copy algorithm have been previously implemented in various


academic systems such as MOSIX [9], RHODOS [6], and Amoeba [19]. Both algorithms are


the most commonly used process-migration algorithms without residual dependencies.
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As for the Post-Copy algorithm, a first attempt at implementation on top of the Mach


distributed system had to be aborted, and a second incomplete one exists on top of the Linux


operating system [21]. Therefore, within this thesis, I present the first working implementation


of the Post-Copy algorithm.


The Queued Pre-Copy has only been described in the literature [20] and awaits its first


actual implementation, which is presented here.


Furthermore, this chapter outlines the implementation of the new Assisted Post-Copy al-


gorithm introduced in Section 3.2.


In contrast to other works, I implemented the process-migration algorithms on top of the


widely used Linux operating system instead of on an academic system. For the first time, five


different algorithms execute under the same environment and can be compared. This enables


an expressive and comprehensive evaluation.


The following sections describe details of the implementation of the Queued Pre-Copy, Post-


Copy and Assisted Post-Copy algorithm.


4.2.1 Queued Pre-Copy


Basically, Queued Pre-Copy is a slightly improved variation of the Pre-Copy algorithm. Dur-


ing execution of the migrating process at the source host, the address space is traversed and


each page table entry is stored in a dynamic list sendq. The virtual address of each page


(addr) is kept as well for later use.


In contrast to Pre-Copy, only clean, unmodified pages are copied to the destination host


during the initial transfer. Modified pages are not transferred and marked as delayed using the


delayed flag within the sendq list. The function pte mkclean() (linux/include/asm/pgtable.h)


clears the dirty bit in all page table entries (pte). Each time a process modifies a clean page,


the dirty bit of the page table entry is set by the processor. Therefore it becomes an indicator


for recently used pages.


initial transfer(pages);


while ((delayed pages > CKPT PRECOPY MAXPAGES) and (reruns < CKPT PRECOPY RERUNS)) {


if (page is clean and delayed)


transfer page(page);


if (page is dirty) {


pte mkclean(pte);


set delayed(page);


}


}


stop process(process);
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final flush();


After the initial transfer, the number of delayed pages are compared to a predetermined


fixed limit CKPT PRECOPY MAXDPAGES. The algorithm traverses the process’ address space again


using the sendq list if the subset of delayed pages is too large to achieve a reasonably short


down time during migration. In contrast to the initial transfer, the algorithm transfers all


clean pages only if the delayed flag is set. For all modified pages, the dirty bit is cleared and


delayed is set again. The traversing of the address space continues until the subset of delayed


pages is sufficiently low. Then the process is suspended and the process state as well as the


remaining address space is finally shipped to the destination host.


As with Pre-Copy, the Queued Pre-Copy algorithm can fail if CKPT PRECOPY MAXDPAGES is


never reached. This can happen if the migrating process modifies too many pages. Therefore,


to prevent the algorithm from looping infinitely, a maximal number of reruns is specified in


CKPT PRECOPY RERUNS.


4.2.2 Post-Copy


The Post-Copy algorithm suspends the migrating process and transfers the process state to


the destination host. Immediately after the transfer, the process continues execution and


starts to reference pages. The process’ address space remains empty because no pages have


been transferred so far.


The occurring page faults of the executing process are trapped by the kernel and handled


by an appendant page-fault handler that invokes a virtual memory area (vm area) specific


no page() function. During the down time, in every vm area the no page() function has been


replaced by a function that performs the following tasks:


spin lock();


send virtual address(addr);


receive page();


spin unlock();


This particular no page() function sends the virtual address of the needed page to the source


host that still holds all pages of the migrated process. A request handler at the source host


immediately ships the requested page to the destination host.


An additional transfer process ships the remaining address space from the source host in


parallel with the execution of the migrated process. For each virtual memory area (vm area


of the process’ address space, it invokes the get user pages() function. This function tries
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to access every page within the vm area. If a page fault occurs because of a missing page,


get user page() resolves this page fault by invoking the previously described no page() func-


tion.


For simplicity of the implementation, a spin lock prevents the transfer process as well as the


page-fault handler of the migrated process from requesting a page simultaneously. Normally


this kind of serialization is done at the source host by protecting the page table of the process


from manipulation by two processes. Thus, it does not matter if the serialization happens on


the source or destination host. The latter is much easier to realize, so it has been implemented


within this work.


The process migration completes and the transfer process exits with the last transferred


page. Finally, no process information remains at the source host, so no residual dependencies


exist.


4.2.3 Assisted Post-Copy


This section describes my implementation of the Assisted Post-Copy process-migration algo-


rithm. No other previously described implementation could be found in the literature.


During the preparation time Assisted Post-Copy behaves similarly to the Pre-Copy algo-


rithm. After the initially transferring of the entire address space during the preparation time,


suspending the process and copying the process state, the execution of the process is resumed


at the destination host. Additionally, all pointers to page table entries are kept in a list at


the source host for later dirty bit lookup during the post-processing time.


The major problem of Assisted Post-Copy is to determine if a referenced page at the des-


tination host was modified during the preparation time at the source host. To solve this


problem, all transferred pages are stored temporarily in a list dataq instead of being directly


inserted into the process’ address space. The page table of the process remains empty after


the initial transfer. Thus, every page access results in a page fault during the post-processing


time.


The implementation of the post-processing time is similar to previously described Post-


Copy implementation. All page faults are handled by the same no page() function that sends


requests to the source host. The difference is that the source host transfers only pages which


were modified during the preparation time. All other pages have already been transferred


and can be fetched from the local dataq list. The following pseudo-code example describes


the request handler at the source host using the Assisted Post-Copy algorithm.


while() {


wait for request();
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if (page is modified)


send page();


else


send page not modified();


}


}


The request handler checks if the requested page was modified during the preparation time.


If so, the page needs to be transferred again. Otherwise, an short message informs the


destination host that the requested page was not modified and can be fetched locally from


the dataq list. This mechanism avoids multiple page transfer.


The transfer process exits after the last modified page has been received and inserted. All


still missing pages are locally transferred into the address space from the dataq list and finally,


the process migration completes.
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Evaluation


This thesis presents for the first time a comparative evaluation of a wide range of process


migration algorithms measured on top of the same environment.


The following chapter discusses performance issues and the actual results of my performance


measurements obtained from process-migration algorithm implementations described in Sec-


tion 4. Subsection 5.1 provides a qualitative evaluation that estimates all potential results


of the different time periods performed by the implemented algorithms. A description of the


test-bed system and the chosen representative processes to migrate is provided in Subsection


5.2. Furthermore, the Subsection 5.3 presents and discusses the actual measurement results


carried out in the described test environment.


The last section summarizes the results of experiments and presents an argumentation.


The major influence of process migration on a process behavior is the suspension of the


process and the interruption of any communication with the process. Therefore, the down time


of a process is the most important time period to estimate the performance of an algorithm.


Along with the down time, another important metric that will be considered is the total


migration time.


Besides the time periods, another influence of process migration on a process is delay of


execution. In the following sections, I shortly discuss this delay for all evaluated process-


migration algorithms.


5.1 Qualitative Evaluation


For the Total Copy algorithm, the down time equals the total migration time. On the one


hand, I expect that the down time of Total Copy is the highest of all process-migration


algorithms because all process information is transferred during this time period. On the


other hand, the total migration time is to be expected as the lowest of all algorithms because


information has to be neither requested nor need to be transferred twice. Furthermore, Total


Copy uses neither the preparation time nor the post-processing time.
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In contrast to Total Copy, the Pre-Copy algorithm exploits the preparation time to transfer


information prior to actual process migration. This reduces the amount of data transferred


during the down time. Therefore, with Pre-Copy the down time will be significantly shorter


compared to Total Copy but certainly higher than using Post-Copy or Assisted Post-Copy.


It depends on how many pages have to be finally flushed.


A comparison of the total migration time is difficult to obtain because it is strongly affected


by the preparation time and the number of multiple page transfers. If the migrating process


modifies a large number of pages, I expect that the total migration time of Pre-Copy will be


the highest of all migration algorithms.


Compared to Pre-Copy , the Queued Pre-Copy algorithm reduces the number of multiple


page transfers and therefore the total migration time. Furthermore, I expect the down time


of Queued Pre-Copy to be slightly lower than the Pre-Copy down time.


I anticipated that the Post-Copy algorithm will have a significantly shorter down time


because it ships only a minimum process state during this time period. During the post-


processing time both the migrated process and the algorithm request pages from the source


host. Thus, the execution of the migrated process is significantly delayed and the total


migration time of Post-Copy results in a higher rate compared to Total Copy.


The Assisted Post-Copy algorithm will probably result in the shortest down time because


it transfers a further reduced process state to the destination host. The algorithm uses both


preparation and post-processing time, whereas each time period is shorter compared to the


original algorithms like Pre-Copy and Post-Copy. Furthermore, I expect that the Assisted


Post-Copy algorithm will result in the highest total migration time.


This qualitative evaluation is hypothetical only and awaits confirmation from actual mea-


surements.


5.2 Test Environment


This section describes the test environment that I used for the performance measurements.


The distributed test system consisted of two SMP machines, one Dual Athlon with 1800


Mhz, 512 MB RAM and a Dual Pentium III with 450 Mhz, 256 MB RAM. They were


connected within a LAN (Local Area Network) via Ethernet and running Linux 2.4.20 as the


host operating system. To achieve optimal results, both machines were lightly loaded, so no


other processes influenced the evaluation. The time-stamp counter provided by processor was


used to measure the different time periods during process migration.


The address space of a process constitutes by far the largest part of process information.


Thus, the actual transfer of this address space dominates the cost of process migration. For
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my measurements I migrated representative processes with different memory-access pattern


and sizes of the address space.I chose three different kinds of processes to undergo process mi-


gration, each has different properties. Therefore, the results obtained for theses representative


processes are characteristic of other processes with similar properties.


getpid() Process


The process obtains its process identifier infinitely by using the system call getpid().


It represents a class of light-weight processes that frequently use system calls and thus


enter the kernel mode. Light-weight processes own a small address space and rarely


alter it.


Random Memory Access (RMA) Process


The process owns a large address space and randomly modifies pages as fast as possible.


Therefore it represents heavy-weight processes and a worst-case scenario for migration


algorithms, because most processes touch a relatively small portion of their address


space on average during their lifetime [18].


Reference Process


A number of researchers have reported on the time taken to migrate a 100 KB (Kilobyte)


single-threaded user process [5, 19, 7, 6]. To compare my results with others published


in the literature, I measured the time periods during the migration of such a process


with a total size of 100 KB. The process frequently modifies all address space pages and


does some computation. Because of its size and memory-access pattern, the reference


process can still be classified as a light-weight process.


All described representative processes have several requirements in common. During the


migration only one process was transferred at the time. The processes access only their


address space and do not have any open files or open network connections or performed


any kind of IPC (Inter-Process Communication). Each process is transferred without shared


libraries or data segments that are read-only, so they can be reopened or remapped at the


destination host.


5.3 Quantitative Evaluation


I carried out a series of experiments on the previously described test environment to determine


average durations of time periods during process migration. In this section I describe the


actual evaluation of the process-migration algorithms listed in Section 4.2. Furthermore I


give a detailed analysis of my results obtained for the representative processes described in


the previous section.


For the measurements each representative process has been migrated separately with all


implemented algorithms. During the migration, the following time periods have been mea-


sured:
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� Preparation time


� Down time


� Post-processing time


� Total migration time


To show the influences of the network characteristics, I carried out each experiment with a


different network bandwidth. For the first measurement I used 10 MB/s, for the second 100


MB/s, and finally for the third 1 GB/s (Fiber) Ethernet. Each process has been migrated


100 times and the results represent the times on average.


The preparation time is determined at the point of time when the information has been


sent to the network device to be transferred. The moment when the device is actually sends


the information to the destination host depends upon the speed of the network connection.


In case of a slow network connection, when the source host suspends the process and starts


transferring the process state, the destination host still receives information sent during the


preparation time. This delayed transmission of the process state causes a longer duration of


the down time for all migration algorithms that exploit the preparation time. However, the


problem is limited by using fast network connections.


It is difficult to find an optimal value for the predetermined limit needed for the Pre-Copy


and Queued Pre-Copy algorithm because it strongly depends on the memory-access pattern of


the migrating process. This limit contains the maximum number of pages transferred during


the down time, so it primarily determines the duration of the down time. However, I decided


to set the limit a maximum 30% of the process’ address space.


Additionally both algorithms are allowed to traverse the address space six times to look for


modified pages. This fixed number of reruns prevents the algorithms from looping infinitely.


For the representative processes, I expect that the predetermined limit does not significantly


influence the performance of the employed algorithm. The reason for my assumption is that


the getpid() process accesses only a small portion of its address space and therefore the limit


is always reached after the initial transfer. In contrast, the RMA process accesses its entire


address space within a short period of time and therefore the limit is always violated.


Generally, process migration delays the execution of a migrated process. Obviously, the


down time is the major influence on the delay of the exectuion. Another influence is the


additional time a process needs to access a page after migration. Normally, frequently used


pages reside in a page cache at the source host, but after migration the page cache of the


destination host is invalid. Therefore the pages have to be read either from the main memory


or backing storage. This delay is caused by all algorithms.
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Especially, process-migration algorithm which rely on remote paging additionally delay the


process execution, because every page has to be requested from the source host. Therefore, I


measured only the delay caused by the Post-Copy and Assisted Post-Copy algorithm.


To migrate a process completely, a minimum amount of data needs to be transferred. This


data includes the process information and algorithm-specific message data. The Total Copy


algorithm always transfers the minimally necessary amount of data, because information have


to be neither requested nor transferred twice. All other algorithm ship additional data.


The following sections present the results of my measurements for each representative pro-


cess.


5.3.1 getpid() Process


To migrate the getpid() process completely, Total Copy transfers 62208 bytes. The process’


address space is only 57344 bytes, which classifies this process as a light-weight process. All


other algorithm nearly transfer the same amount of data, because the number of multiple


page transfers is reasonably low. The Assisted Post-Copy algorithm transfers the most data


with 63720 bytes.


The costs in Table 5.1 reflect in detail the durations of each time period by using 1 GB/s


network bandwidth.


Preparation Down Time Post-processing Total
Time Time Time


Total Copy 0 2.6 0 2.6
Pre-Copy 1.9 1 0 2.9


Queued Pre-Copy 0.9 1.8 0 2.7
Post-Copy 0 0.9 5.7 6.6


Assisted Post-Copy 1.9 0.8 1.4 4.1


Table 5.1: Time periods of getpid() Process using 1 GB/s (in ms)


As expected, the down time of Total Copy with 2.6 ms is the highest, whereas for the


Assisted Post-Copy algorithm a minimum down time of 0.8 ms was measured. The problem


of the delayed receipt of the process state only slightly influences the down time of Assisted


Post-Copy because the number of previously transferred pages was reasonably low. Because


of the further reduced process state of Assisted Post-Copy, the down time is decreased by


around 10% compared to Post-Copy and by 70% compared to Total Copy.


The process occasionally modifies only a tiny portion of its address space. Thus, almost the


entire address space can be transferred during the preparation time so that Pre-Copy achieves


nearly the down time of Post-Copy. As for Queued Pre-Copy the delayed pages during the
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preparation time have to be transferred during the down time and cause the higher duration


of 1.8 ms.


Obviously Total Copy has the lowest total migration time because it neither transfers in-


formation several times nor needs to request data from the source host like Post-Copy. As for


Pre-Copy and Queued Pre-Copy the total migration time differs slightly from Total Copy, but


both significantly reduce the down time by transferring the address space prior to the actual


migration. Post-Copy results in the highest total migration time because, all pages have to


be requested from the source host. Another reason for the high total migration time is the


additional computation overhead (see below) caused by the implementation of Post-Copy.


The influence of the predetermined limit used by Pre-Copy and Queued Precopy is very


low because the getpid() process modifies only few pages. Therefore, the limit is always


reached after the initial transfer. The Queued Pre-Copy nearly halves the preparation time


compared to Pre-Copy because it does not initially transfers modified pages. These pages are


sent during down time and therefore Queued Pre-Copy doubles the down time compared to


Pre-Copy.


The diagram in Figure 5.1 illustrates the durations of the time periods for each algorithm


by using 10 MB/s, 100 MB/s and 1 GB/s.
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Figure 5.1: Time periods of the getpid() process using different network bandwidth


The diagrams clearly show the influence of the delayed transmission on the down time of


the Assisted Post-Copy algorithm. For example, the transfer of the process state via 10


MB/s Ethernet takes 4.9 ms, which is the down time of Post-Copy. Normally the down time


of Assisted Post-Copy is less than 4.9 ms because of the further reduction of the process
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state, but the receipt is delayed by about 25 ms. Additionally this delay extends the total


migration time of Assisted Post-Copy. Also the down time of Pre-Copy and Queued Pre-Copy


dramatically suffer from this problem.


Another interesting aspect is the post-processing time of the Post-Copy algorithm. With


a high-speed network the difference between post-processing time of Post-Copy and total


migration time of Total Copy is significantly high. In contrast, with a low-speed network,


both times are almost equal. The reason for this difference is the implementation of Post-Copy


which adds overhead to the transfer time of a page. For instance, the source host runs through


the address space to find and send the correct page, whereas Total Copy sends all pages in a


row. This additional overhead is independent from the network speed and is always constant.


For example, transferring the whole address space of getpid() process using Total Copy with


1 GB/s costs about 2 ms, whereas with Post-Copy it costs about 5 ms. The overhead of 3 ms


represents more than half of the total time. In contrast, with a 10 MB/s network only 5%


of the total time is actually caused by the overhead. Thus, with a high-speed network the


additional time is remarkable.


Besides the delayed transmission, the relations of all durations measured with different


network speed are equivalent.


Table 5.2 illustrates the influence of Post-Copy and Assisted Post-Copy algorithm on the


getpid() process execution. The table displays the additional execution time needed after


migration with different network speed.


Network speed 10 MB/s 100 Mb/s 1 GB/s


Post-Copy 7.4 0.9 0.8
Assisted Post-Copy 0.6 0.5 0.4


Table 5.2: Delay of getpid() process execution (in ms)


The getpid() process needs only a few pages to continue execution. For example, with


Post-Copy and a 10 MB/s network it takes 7.4 ms to request all necessary pages. This delay


and the down time of Post-Copy nearly represent the total delay of execution.


The Assisted Post-Copy algorithm further reduces the delay compared to Post-Copy. The


transfer process is faster than the migrated process to request pages from the source host.


Therefore, the migrated process can fetch the pages from the local store.


5.3.2 Random Memory Access Process


This section gives an indication of the cost of migrating the Random Memory Access (RMA)


process. The minimum amount of data that has to be transferred is about 4 MB, where the
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address space is the dominating element. The process frequently modifies its entire address


space, thus it can be classified as a heavy-weight process.


Table 5.3 illustrates the results obtained for the RMA process during migration with a


network speed of 1 GB/s.


Preparation Down Time Post-processing Total
Time Time Time


Total Copy 0 82.9 0 82.9
Pre-Copy 365.5 58 0 423.5


Queued Pre-Copy 36.1 56.3 0 92.4
Post-Copy 0 1 390.1 391.1


Assisted Post-Copy 79.1 6.3 435.8 521.2


Table 5.3: Time periods of the RMA process using 1Gb/s (in ms)


Again, the down time of Total Copy dominates with 82.9 ms, but it is now dramatically


higher compared to the other algorithms. Remarkable is the reduction of the down time of


the Post-Copy algorithm by about 98% compared to Total Copy, because of the constant size


of the process state. The Assisted Post-Copy algorithm can reduce the down time down to


6.3 ms, whereas the delay of the transmission is about 5.3 ms. Assisted Post-Copy transfers


nearly twice as much data compared to Total-Copy.


The down times of Pre-Copy and Queued Pre-Copy are now significantly higher compared


to Post-Copy. Because more than a few pages have to be shipped during the down time. The


preparation time of Pre-Copy shows that the algorithm failed to reach the predetermined limit.


Queued Pre-Copy fails the limit as well, but it rarely transfers pages during the preparation


time. All modified pages are delayed until the maximum number of reruns is reached.


Because of the multiple page transfer, Pre-Copy ships about 7 times more data than Total-


Copy. In contrast, Queued Pre-Copy does not transfer significantly more data because it


avoids multiple page transfers.


The results in Table 5.3 clearly demonstrate the advantage of Queued Pre-Copy over Pre-


Copy. Instead of transferring the whole address space, Queued Pre-Copy delays the transfer


of all modified pages. This delay causes a lower preparation time and total migration time.


Additionally, traversing the address space without shipping modified pages is much faster, so


the process has less time to alter its address space. Consequently, the number of pages that


have to be transferred during the down time are decreased, so the down time is reduced as


well. However, Queued Pre-Copy has a preparation time that is 10 times lower compared to


Pre-Copy, but has nearly the same down time with 56.3 ms.
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Noticeably, the Post-Copy is 5 times slower to complete the process migration than Total


Copy because of the same additional overhead described in Section 5.3.1. Both the execution


time of the process and the post-processing time are delayed.


The diagram in Figure 5.2 shows a comparison of all process-migration algorithms migrating


the RMA process with different network bandwidths.
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Figure 5.2: Time periods of the RMA process using different network bandwidths


The results of the lower bandwidth confirm the predicted disadvantages of Pre-Copy. Total


Copy needs only 20% of the time of Pre-Copy to completely migrate the particular process.


Because of the slow transfer during the preparation time, the process has enough time to alter


so many pages that the predetermined limit cannot be reached. Queued Pre-Copy minimizes


this problem because it does not transfer the modified pages during the preparation time.


Therefore with 100 MB/s, Queued Pre-Copy reduces the preparation time by about 90%


compared to Pre-Copy and has almost the same total migration time as Total Copy.


Further investigation of the predetermined limit show that it has no influence to the per-


formance of the Pre-Copy algorithm at all. During the time the entire address space is


transferred, the migrating process alters it completely.


With a lower bandwidth, the post-processing time of Assisted Post-Copy is always below


the post-processing time of Post-Copy because of the reduced amount of pages that have to be


transferred. In contrast to that, Assisted Post-Copy needs about 440 ms to ship just a portion


of the address space with 1GB/s, whereas Post-Copy transfers nearly the entire address space


in about 390 ms. The reason for this additional time is the computation overhead that
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the implementation of Assisted Post-Copy adds to the post-processing time. Similar to the


computation overhead of Post-Copy compared to Total Copy (see Section 5.3.1) it is constant


and only noticeable with a high network bandwidth.


This problem does not occur with light-weight processes because of the small number of


modified pages transferred during the post-processing time with Assisted Post-Copy.


Table 5.4 illustrates the influence of Post-Copy and Assisted Post-Copy algortihm on the


RMA process execution. The table displays the additional execution time needed after mi-


gration with different network speed.


Network speed 10 MB/s 100 Mb/s 1 GB/s


Post-Copy 3700 500 400
Assisted Post-Copy 2800 400 300


Table 5.4: Delay of RMA process execution (in ms)


The delays of the RMA process execution are more remarkable compared to the getpid()


process. To completely migrate the RMA process, at least 1000 pages need to be transferred.


The process itself requests half of these pages, whereas the other half is transferred by the


particular transfer process. For example, the execution of the migrated process is delayed


about 3.7 s while using Post-Copy and 10 MB/s network speed. This time is needed to


request approximately 500 pages from the source host.


Assisted Post-Copy can reduce the delay with lower bandwidth because most of the pages


are already reside locally. This advantage does not occur with higher network speed, because


the difference of the delay between Post-Copy and Assisted Post-Copy is minimal.


However, Post-Copy and Assisted Post-Copy achieve the lowest down time and a reasonable


total migration time even with a reduced network speed.


5.3.3 Reference Process


A number of published works about performance measurements of process-migration systems


report the down time while migrating a 100 KB process as a reference [5, 19, 7, 6]. To


be comparable with other systems, I present in this section my results obtained from the


migration of a 100 KB process.


The memory-access pattern of such a reference process is not further described in the


literature. Therefore, my Reference Process accesses the address space frequently and does


some computation.


First, Table 5.5 provides the results of migrating a 100 KB process in various process-


migration system. Additionally, the table lists information about the year the results were


published, the test environment, and the employed algorithms.
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Operating Year Platform Network Down Time Algorithm
System Mb/s in ms


V kernel 1985 Sun 10MHz 68010 Ethernet 10 680 Pre-Copy
Accent 1987 Perq workstation Ethernet 10 13,000 Demand Paging


Charlotte 1989 VAX 11/750 Pronet 750 Total Copy
Sprite 1991 SPARCstation1 Ethernet 10 330 Flushing


Mach OMS 1993 Intel80486 33MHz Ethernet 10 250 Demand Paging
Choices 1995 SPARCstation2 Ethernet 10 14 Freeze Free
RHODOS 1997 SUN 3/50 Ethernet 10 118 Demand Paging


351 Total Copy
Linux 2003 Dual Pentium 450 / Ethernet 10 89 Total Copy


Dual Athlon 1800 33 Assisted Post-Copy
5 Post-Copy


Table 5.5: Process Migration Systems and Down Time


To obtain comparable results, I used a 10 MB/s Ethernet network. The last line of Table


5.5 presents the down time measured during Total Copy, Assisted Post-Copy and Post-Copy.


One reason for the shorter down time is the better hardware of the test environment,


which can quickly process the incoming information. Besides, only the Post-Copy algorithm


with 5 ms down time is faster than the highly optimized Freeze Free algorithm with 14 ms.


Additionally, the latter transfers the first stack, code and heuristically determined heap page


(each 4 KB page size) during the down time. If I add these pages to Post-Copy with a transfer


time of 2 ms per page, the algorithm achieves a down time of 11 ms, which is still better than


Freeze Free.


Most of the process-migration systems employ the Demand Paging algorithm. As a tarde-off


for a minimal down time, residual dependencies are tolerated. As I expected the algorithms


implemented on top of Linux achieve better performance results.


For completeness, Table 5.6 illustrates the results of migrating the reference process with


10 MB/s network bandwidth in detail.


Preparation Down Time Post-processing Total
Time Time Time


Total Copy 0 88.5 0 88.5
Pre-Copy 52.4 36.5 0 88.9


Queued Pre-Copy 37.1 51.4 0 88.5
Post-Copy 0 4.9 93.4 98.3


Assisted Post-Copy 52.4 33.4 3.5 89.3


Table 5.6: Time periods of the Reference Process using 10 MBb/s (in ms)
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The results show the same proportions and characteristics as the results obtained for the


getpid() process, even with a different memory-access pattern.


5.4 Comparison


In this section I summarize the results obtained from the measurements of the representative


processes. Furthermore I generally compare the most important metrics, the down time and


the total migration time of each algorithm. The following two tables illustrate the efficiency of


the implemented migration algorithms under different conditions. For comparison, the down


time is always preferred to the total migration time.


The Table 5.7 rates the efficiency of each algorithm to migrate a light-weight process with


either high-speed or low-speed network connection.


Network speed Low Speed High Speed
Down Time Total Migration Time Down Time Total Migration Time


Total Copy - - ++ - - ++
Pre-Copy o + ++ +


Queued Pre-Copy - ++ o ++
Post-Copy ++ + ++ - -


Assisted Post-Copy - o ++ o


++ very good, + good, o moderate, - bad, - - worst


Table 5.7: Algorithm efficiency while migrating a light-weight process


As presented in Table 5.7, the Post-Copy algorithms offer the best properties for migrating


a light-weight process with low network speed. As always the down time is minimal and


the total migration time is reasonably low. Total Copy and Queued Pre-Copy suffer from


an unacceptably high down time but provide a sufficiently low total time, whereas Pre-Copy


performs moderately. The worst algorithm for low network speed is the Assisted Post-Copy


algorithm because of the longest total migration time and only a moderate down time.


High-speed network connections allow a completely different argumentation. Here the Pre-


Copy algorithm achieved the best results followed by the Assisted Post-Copy and Queued


Pre-Copy algorithm. The total migration time of Post-Copy suffers from the previously


described overhead problem (see Section 5.3.1) and the down time of Total Copy is highest


of all algorithms.


The efficiency of each migration algorithm while migrating a heavy-weight process is shown


in Table 5.8. Again, different kinds of network speeds are used.


To migrate a heavy-weight process with low network speed, the Post-Copy algorithm is


again the best choice. Another option is Assisted Post-Copy, which needs additional time
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Network speed Low Speed High Speed
Down Time Total Migration Time Down Time Total Migration Time


Total Copy - ++ - - ++
Pre-Copy - - - - - -


Queued Pre-Copy o ++ - +
Post-Copy ++ + ++ -


Assisted Post-Copy + o + - -


++ very good, + good, o moderate, - bad, - - worst


Table 5.8: Algorithm efficiency while migrating a heavy-weight process


to complete the migration. Also Queued Pre-Copy performs acceptably with low network


speed. The Pre-Copy algorithm is absolutely inefficient with the chosen predetermined limit.


It always failed to reach the limit and that causes dramatically high costs.


The Post-Copy algorithm achieves the best result for a migration of a heavy-weight process


with a high-speed network. The down time is the lowest but the total migration time is much


higher compared to Total Copy. Assisted Post-Copy also obtains a acceptable down times,


but the total migration times suffer again from the implementation overheads. The Pre-Copy


algorithm fails again even with higher network speed. That shows that the predetermined


limit depends strongly on the process’ memory-access pattern, which has to be determined


individually for each process. But the behavior of a process is rarely predictable. Also the


Total Copy algorithm is ineligible for migrating heavy-weight processes because of the high


down time.


The measurements have shown the influence of the algorithm on the execution time of the


migrated process. Depending on the network speed the delay can be up to 3.7 s. With


Assisted Post-Copy, the delay is lower than with Post-Copy.


Generally with low network speed, Post-Copy is always a good choice, and with high net-


work speed Queued Pre-Copy performs best. Furthermore, the measurements show that the


new process-migration algorithms like Queued Pre-Copy, Post-Copy and Assisted Post-Copy


achieve better average performance than the fundamental algorithms such as Total Copy and


Pre-Copy.
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Related Work


Several performance measurements of process-migration implementations on top of various


systems have been published in the literature. This section presents related work for the


evaluation and assessment of process-migration algorithms.


6.1 Accent


Important efforts regarding process migration and address space transfer can be found in [18].


The Demand Paging algorithm was introduced and implemented first on top of the Accent


[12] distributed environment. The work in [12] presents a detailed analysis of the memory-


access pattern of a process and compares precisely the Total Copy and the Demand Paging


algorithm (including eager dirty and copy-on-reference strategies).


The results published in this work show that the number of bytes exchanged between nodes


by using Demand Paging drops by an average of 58%. This demonstrates the effectiveness of


Demand Paging, but it hides the problem of residual dependencies.


Furthermore it confirms the assumption that processes access a relatively small part of their


address space.


6.2 RHODOS


RHODOS [11] is an experimental distributed operating system developed at the Deakin Uni-


versity, Australia. It consists of a microkernel and provides message passing. The process-


migration facility of RHODOS has been designed to utilize different migration strategies and


hence to allow their comparison.


The logical design of the RHODOS multiple strategy process-migration manager has been


proposed in [23]. This facility allows to determine which migration algorithm can be used to


achieve the best performance under certain conditions.
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A performance comparison between a Demand Paging algorithm (copy-on-reference stra-


tegy) and a Total Copy algorithm on top of RHODOS is published in [6]. The only perfor-


mance metric that has been measured and evaluated was the down time.


With Total Copy, the down time was three time higher than using Demand Paging on the


same process. The measured results show clearly the low initial cost of process migration


using Demand Paging but in parallel, the run-time cost increases dramatically. However, a


detailed measurement of the different time periods performed by process migration was not


described.


6.3 Choices


Choices [8] is the host operating system for the implementation of the previously described


Freeze Free process-migration algorithm. The work in [5] describes the design and implemen-


tation of the Freeze Free algorithm. Furthermore some attempts towards normalizations of


the performance of process-migration algorithms were done in this work to allow an evalua-


tion of different migration strategies. A direct comparison was dropped from further coverage


in [5] because of the amount of work to implement different process migration algorithms on


top of Choices.


The File Server (or Flushing) algorithm implemented in Sprite and the Demand Paging


algorithm implemented in Accent are compared against the Freeze Free algorithm. Because


of the varying processor speeds, the normalization of the performance was done by analyzing


every step of each algorithm performed at the same speed as the implementation of the Freeze


Free algorithm.


The results confirm the advantages of the Freeze Free algorithm against other algorithms


with residual dependencies, even to a file server. Nevertheless, normalizing performance of


process-migration algorithms is often hard and inaccurate.


6.4 MOSIX


MOSIX [15] presents the widely-used load balancing system. The distributed operating sys-


tem was invented at the Hebrew University of Jerusalem and provides a preemptive process-


migration facility. It uses decentralized algorithms for automatic work distribution, load


balancing and memory ushering.


The employed process-migration algorithm in MOSIX is the eager dirty strategy of Demand


Paging. Only dirty pages and the user area of the migrating process are transferred at the


time of migration. All other information is faulted in as needed once the process resumes


execution at the destination host.
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6.5 Sprite


Sprite [10] was developed at the University of California in Berkley. It provides a network-wide


single system image with specialized file service, remote file access and transparent process


migration.


Sprite was the first system that overcame the problem of residual dependencies to the source


host by employing the Flushing algorithm. When a process is migrated, it is frozen at the


source host and all memory from its address space is flushed to a so-called page file on disk.


The process state is transferred as usual and every page can be requested from the page


file. The Sprite network file system ensures that in most cases the page does not cause disk


operations because the file server uses its memory as a cache for the page file. The Flushing


algorithm is optimized for the Sprite network file system and results the measurements can


be found in [3].


Unfortunately, no other migration algorithms have been implemented on top of Sprite and


therefore no evaluation is available.


6.6 Mach


The Mach [13] microkernel was developed at the Carnegie Mellon University, and the migra-


tion mechanism on top of Mach was invented at the University of Kaiserslautern.


Mach implements two kinds of migration facilities that provide different process-migration


algorithms. The Simple Migration Server (SMS) is a very robust migration facility and was


invented first. It only implements the Demand Paging (copy-on-reference strategy) for process


migration.


The Optimized Migration Server (OMS) provides user-level process migration and supports


the Demand Paging (copy-on-reference strategy), Total Copy and Pre-Copy algorithm.


Unfortunately no detailed process-migration times or evaluations of the different strategies


have been reported.
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Conclusion and Future Work


Within this thesis, I present for the first time a comprehensive comparable evaluation of a


wide range of process-migration algorithms including Total Copy, Pre-Copy, Queued Pre-


Copy, Post-Copy and Assisted Post-Copy. Previously, a quantitative evaluation of process-


migration algorithms was difficult to obtain because the implementations were done on dif-


ferent architectures and vary in their hardware, network and process environment.


To enable a direct comparison, I implemented the migration algorithms on top of the widely


used Linux operating system in contrast to previous work which used academic systems


only. For the first time, a considerable number of process-migration algorithms have been


implemented and evaluated on the same system.


Furthermore, to the best of my knowledge the Queued Pre-Copy and Post-Copy algorithm


presented within this work have not been previously implemented, and therefore, I provide


the first working implementation. In addition to the existing algorithms, I introduced the


new Assisted Post-Copy algorithm, which is the only one that exploits both the preparation


time and the post-processing time during migration.


For comparison, I measured the algorithms under the different conditions such as varying


memory-access pattern and network speed. The results of my measurements demonstrate the


advantages and disadvantages of each algorithm under different conditions. Mostly, the newly


invented algorithms like Post-Copy, Queued Pre-Copy and Assisted Post-Copy outperform the


existing algorithms such as Total Copy and Pre-Copy.


In the future, the introduced algorithms need to be optimized. The delayed transmission


presented in Section 5.3.1 is one problem that demands further considerations. Furthermore,


the computation overhead of Post-Copy and Assisted Post-Copy presented in Section 5.3.1


can be reduced by optimizing the implementation of these algorithms. Another interesting


challenge is the employment of algorithms with residual dependencies, such as the Freeze Free


and Demand Paging, for additional comparison. The delay of process execution also demands


further investigation and more detailed measurements are needed.
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The presented investigation opens many avenues for future research. The creation of an


adaptive process-migration manager is now conceivable. This work delivers the criterion for


the decision policy for a manager that allows to choose the best algorithm to migrate a


process under certain conditions. With an employed adaptive process-migration manager,


the performance of migration facilities can be significantly improved.
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