Belegarbeit

The L4 Font Server

Henrik Malecha

25th July 2005

Technische Universitat Dresden
Department of Computer Science
Operating Systems Group

Supervising Professor: Prof. Dr. rer. nat. Hermann Hartig
Supervisor: Dipl.-Inf. Norman Feske, Dipl.-Inf. Christian Helmuth

Erklarung

Hiermit erklare ich, dass ich diese Arbeit selbststandig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 25th July 2005

Henrik Malecha

Contents

1

Introduction 1
1.1 OVEIVIEW o o e e e 1
1.2 Layout. 2
State of the art 3
2.1 Historyoffonts e 3
2.2 FontTerminology e 3
2.2.1 Outlinesandgeometricaspects. 4
2.2.2 Glyphmetrics. e 7
2.2.3 Kerning e e e e e e 8
2.3 UniCode e e 9
2.4 FreeType2 10
25 FontsinLinux 0 e e e e e 10
251 XLFD o e 11
252 FontSystems e 11
253 Xfontsel. e 11
254 Fontconfig 12
Design 13
3.1 DesignGoals e 13
3.1.1 Library-baseddesign o0 14
3.1.2 Server-baseddesign 14
3.2 DesignDecisions 15
3.2.1 Internal Server Structure Lo 15
3.2.2 Interface 16
3.2.3 ClientLibrary e 17
3.24 FontLoading 18
3.25 FontSelection 20
3.2.6 ASESSION e e e e 21
3.2.7 Unicode Support 22
3.28 ExampleTools 22
3.29 Dfontsel. e 23
3.2.10 SPet- Simple Performance Tester 23

Contents

4 Implementation 25
4.1 Porting Freetype2 e 25
4.2 GlyphBitmap Transfer 25

42.1 [IPCvs.Dataspace i 25
4.2.2 Glyph Buffer Structureo 27
42.3 LargerStrings e 27
4.3 HandlingClients e 28
4.4 SupportingFontModules 29
45 Serialvs. Parallelo 30
451 loadFonis 31
4.6 FontSelecticn e 31
4.7 Kerning o o 33

5 Evaluation 35
5.1 Performance L 35
5.2 Security 36

6 Conclusion and Outlook 39
6.1 CoNncClusSionN e e e e 39
6.2 Future Work 39

6.2.1 InternalChallenges 40
6.2.2 Client-SideChallenges 41
Bibliography 43

VI

List of Figures

2.1
2.2

3.1
3.2

4.1
4.2
4.3

Glyphmetrics e e 7
Withoutand withkerning 8
Design scheme ofthe L4 FontServer. 15
Fontfamily list 20
Shared memory schemeo 26
Fontselectionmodes 31
Principle ofget_kerning Lo 32

Vi

1 Introduction

1.1 Overview

Font management and electronic typesetting is a widespread field. Different fonts for different
languages, like English, Greek or more complex types like Arabic or Asian one’s with a huge
amount of letters make it a big challenge for programmers that want to localize their programs
to other languages. Fonts must be scalable and should always look the same, regardless of their
size. Take for example the traditional X fonts used in terminals. They always have the same
distance and are only fixed font sizes, and that is not desirable in a contemporary typesetting.

To the humans eyes, font files with variable symbol distances are more readable and comfort-
able. Furthermore, a today’s font has to be scalable to any size and modern font renderers are
often required to support anti-aliasing for letter smoothing. Font formats like Adobe’s Type 1
or Apple’s True-Type present such more sophisticated ways of font handling.

Nowadays, computer systems are often required to use these scalable, variable-spaced fonts,
because fonts are an integral part of a computer system, as they are used to present information
to the user. When reading or creating documents, like manuals or letters, surfing in the Internet
or writing e-mails or even if you work with the operating system, you are always confronted
with fonts.

Moreover, as there are many different languages on the world, using various scripts that vary
highly in their count of symbols, it is a real challenge to cope with internationalization. In
the early years, computers generally supported the ASCII character set. This provides the user
with Latin characters, necessary for typing in the English language. ASCII only consists of 127
characters, which means that 7 bits of a byte are used in that code. This has historical reasons,
because, in the beginning of the usage of ASCII, there were computers that handled 7-bit words.
Later, the eighth bit was often used as a parity bit.

The problem is that just the fewest languages have such a small number of letters as English
has. Perhaps, one of the most extreme example is the Chinese type with its over 70000 symbols.
Alternative methods of character representation had to come up, which resultedinitioele
Projectand thelSO 10646standard, for example.

My thesis deals with the font support for thé environmentTheL4 system has been devel-
oped by the OS Group of the Departure of Computer Science at the Dresden University of
Technology. It is build on top of a so-called microkerriéiescoby name. For more informa-
tion about the system, look at [L4€01].

The goal of the thesis is to develop a server that provides clients with fonts. Concretely, this
means that a client can request rendered bitmaps of characters in a font he chooses out of a font
list, the server offers. Moreover, the server shall be able to handle international character sets,
not only the standard ASCII sets.

1 Introduction

1.2 Layout

Section 2 deals with related work in the field of fonts. It starts with a short overview about the
history of fonts that is followed by an introduction into the font terminology, which is necessary,
because there are some specific terms. Afterwards, some basic technologies and concepts, like
FreeTypeandUnicodeare introduced, that will be used within thd Font ServerThe section
closes with a look at font solutions under Linux.

In Section 3, | describe the design alternatives and the final decisions about the concept of
a font server implementation. The internal and external architecture are introduced and basic
guestions of how to use the server are answered.

On the base of that, the Section 4 is a more in-depth description of several important aspects
of the implementation.

Section 5 tries to evaluate the implemented server. Questions of “what is good” and “where
are the drawbacks” are considered.

Finally, a conclusion in Section 6 summarizes the features already included and what has to
be done in the future development.

2 State of the art

In this chapter | give an overview of related work and state-of-the-art solutions in the field of font
handling and rendering. After a short overview about the historical origins of fonts and type-
setting, an introduction in the terminology and the basics of fonts follows. The concept of True-
Type fonts has to be clarified, because it is necessary to understand the work of the font server.
As well an explanation dfreeType2an important core element of my implementation is given.

For the internationalization task, | provide an insight into th@code Project Afterwards, |
describe how the Linux system deals with font management and challenges like scalable fonts
and internationalization.

2.1 History of fonts

Like many concepts that found their way into computer technology, fonts and typesetting have
already been existing for a long time. As mentioned in [Fon05], the term font is derivated from
the French wordonte(i. e., something that has been melt).

The oldest verified notes about printing with movable type were found in China. In the 11th
century, a Chinese called Bi Sheng invented movable letters. Later, in Europe, the German
printer Johann Gutenberglso invented the movable type fmundry typeand thereby revolu-
tionized the printing technology. lfloundry typesach character was cast into a block of metal,
which was an alloy of lead. Every block contains one letter, number or any other symbol. The
look of the images on that blocks was callggeface which is still used today. By combining
the blocks, one could form pages that were inked and then used for fast reproduction. By that,
books and information spread all over Europe and layed one of the cornerstones of renaissance.

This technology was used for hundreds of years, until the middle of the 20th century. In the
1950s a new method came up by tifeotographic typesettingvhich had the advantage to be
scalable. Therefore, the fonts were saved on discs or rolls of film.

But the era didn't take that long, since, in the 1980s, the digital typography began their
relentless conquest of typesetting. Thus, nowadays, digital typesetting is widespread and, in
smaller dimensions, usable by everyone, who owns a computer and a printer.

Nowadays, when we speak of fonts, we usually mean computer fonts saved in a file. We
use them to present information on screens, to print documents and so on. Many terms in
digital type-setting have their origin in the historical technologies. In the next section, the most
important of them are explained.

2.2 Font Terminology

On computers, fonts are an important part of the system, as they are used to display information
in text-only environments as well as in systems with a graphical user interface. Furthermore,

2 State of the art

more sophisticated use of fonts, for example WYSIW@xt editors or desktop publishing
software, is widely spread and quasi-standard. Because of that, an efficient representation guar-
anteeing high output quality is desired. Therefore, font designs are defined in files, which are
used by diverse font handlers, which can read these files and use the fonts for character render-
ing. This section gives a short overview about the subject, for more details, consider |[FTy05a]
and [MSTO5].

Several font formats are available for use in the computational type-setting. There are classic
bitmap fonts, used in old terminal programs, as well as formats with a vectorized representation
of the font’s characters. In this section, | will describe the structure of these formats and the
important terms to deal with them.

Basically, a font is a collection of images that represent letters. Such an image isytgled
A single font holds glyphs with common attributes, for instanceldlog, the styleor weight(a
bold font has a higheweightthan a normal font). Th€ourier font, for example, contains
glyphs of characters that all look like the script of a typewriter.

A font has a family, for example Roman, Sans or Courier. Everybody who has already worked
with a WYSIWYG text editor knows that such a font may have more than one style (i. e., bold,
italic). So, there has to be a way to carry more than one glyph set in a font. The so-called faces
take care of that aspect. There can be more than one face for a font family, thus, a font file is
often referred to as a font collection. They can differ in the style, or in other attributes, in a way
that they still can be recognized as members of one family (i. e., the look is similar).

Depending on the format, a single font file can include one or more faces. But it is also
possible to spread a font family’s faces over more than one file. That's why it is often slightly
imprecise, when people talk abdieints Usually, they usdont to circumscribe the terrfont
family. For instance, when you selaxurierin a common text editor, you select the font family
and think of it as the font. But, in another situation, you have a single font file, with only one
face of the family and speak of this face as a font, too. Although there can be other font files that
also carry faces of the same family, but maybe of another style. To avoid misunderstandings in
my thesis, | will use the terrfontas a synonym fofont family.

In the most font formats, a font file contains a set of glyphs and several character maps. The
glyph set consists of representations for characters that are supported by the font (e. g., Latin
characters and Arabic figures). For a single letter there can be more than one glyph in a file,
depending on the context and script. In several fonts there may be pre-rasterized bitmaps for
the most-used sizes. Tlharacter mapsssign character codes to glyph images. The character
codes differ between representations like ASCII or Unicode encodings. A single font file may
contain more than one character map.

A glyph representation also holds geometric information, like a bounding box and advance
values, necessary for displaying them so that they are written in one line and have the correct
distance between them.

2.2.1 Outlines and geometric aspects

This section focuses primarily on scalable fonts, like True-Type or Typel. Non-scalable fonts
have the grave disadvantage that they contain only rasterized bitmaps of glyphs for fixed sizes.

LWYSIWYG: abbreviation foMWhat You See Is What You Get

2.2 Font Terminology

Within such font files, there may be more than one bitmap for one glyph representing different,
but fixed sizes. If you wish to use another size than available, an existing bitmap has to be
resized, which reduces quality by giving it a more or less grainy look.

Scalable fonts, on the other hand, use so-called outlines, which are vectorized representations
of symbols. Curves of different types are used for that (e.g., B-Splines). The advantage of
vector images is that the image is not represented in a pixel-fixed grid, that means in the image
it is not said that pixel has the color black. Instead the curves are defined by control points in
an abstract coordinate system. The curves can be scaled to any size and afterwards, a renderer
convertst into a bitmap image of a certain size.

Resolution Between devices like monitors and printers, the resolutions are not the same.
Pixels on one screen have another size than on another display or a printed paper. Device
resolutions are given idots per inch short: dpi. For instance, a printer has a resolution of
300x600 dpi (i.e., 300 dpi horizontal and 600 dpi vertical) and a monitor may have 96x96 dpi.
Because of the differing resolutions, it is not useful to specify font sizes in pixels and that is
why another measuring is introduced: the point size. The point size is different from the pixel
size and 1 point equals 1/72th of an inch. So, the point size is not device-specific and we can
easily calculate the pixel size (i.e., the count of pixel used to draw the point) by the help of the
point size and the device resolution:

pixel_size = point_size * dev_resolution / 72.

Since the horizontal and vertical device resolution are not necessarily the same, a device
resolution value consists of values for both dimensions and size conversion have to be done
individual for both of them.

Vector Outlines An outline is a collection of so-callecbntours which are closed paths of

line segmentandBezier arcgdelimiting inner and outer regions of the glyph. The Bezier arcs
can be defined by quadratic polynomials, as done in the True-Type format, or in cubic curves
as in Type 1. A simple glyph has only one contod), (more complex ones may have more
contours B). Control characters will be mapped to a glyph without contours and compaosite
characters are combinations of two or more basic glyphs.

Contours are sequences of consecutive points. A straight line is defined by two points laying
directly on the outline. Bezier arc definitions use two types of points - the normal points laying
on the curve and the control points that don't lay on the curve. As the name indicates, they
are used to control a curve in its direction and concavity, you can think of it as parameters.
Following a contour by increasing point numbers, it is stated that the right side of it will be the
filled side (i. e., the body).

EM squares Theem squardnas its origins in the traditional type-setting. Formerly, it was a
tablet on which the glyphs were drawn. Now, in the computer font terminology, it is almost the
same, but imaginary. It works as an orientation for the size and alignment of glyphs.dmthe
square the smallest unit of measure is the so-cafteat unit

2 State of the art

The dimensions of the em square usually include the whole body height of a font and a little
extra space below and above, so that lines of text not collide with each other. It is important to
mention that the font designer is not restricted to the em square. It is thus possible to extend a
glyph beyond the square’s size.

Grid The font unitsdefine a grid in the em square that is used to address the points of a
glyph outline. The grid is a two-dimensional coordinate system in which the x axis describes
horizontal movement and the y axis the vertical movement. Each point of the outline must be
defined within the range of -16384 and +16383 font units. The size of the points is determined
by the resolution that is chosen.

The granularity of the em square is given in font units per em. By that, the em square is
divided into small units. The higher the number of units, the higher is the precision of the
addressing. The font units within the em square define a relative addressing not depending on
the point size. That means, if the point size is increased, the em square will be scaled to its new
size but the count of units in that square will not change. Because of that, the whole outline of
the glyph will be scaled relatively to its new size. For conversion, the following formulas can
be used:

pixel_size = point_size * resolution / 72
pixel_coord = grid_coord * pixel_size / EM_size

Hinting In the file of a scalable font, the glyph is stored asoaline with its dimensions
defined in font units. It has to be scaled to the given resolution before it can be rasterized into
a bitmap. Unfortunately, the scaling comes along with undesirable side-effects, like stems with
different sizes in height and width.

Therefore, the scaled glyphs need to be aligned along the pixel grid, which is referred to as
grid-fitting or hinting. Three different techniques are established:

* explicit grid-fitting:
True-Type is a format that uses the so-calegblicit grid-fitting For that purpose, in
True-Type there is a stack- based virtual machine defined. A font designer can write small
programs with about 200 opcodes. As a consequence, each glyph definition contains an

outline and a small program for control of the grid-fitting. Thus, the grid-fitting is left to
this font-embedded program.

* implicit grid-fitting:
On the other hand, font formats like Type 1 add additional tags to a glyph definition,
calledhints. They define features, used for grid-fitting. In contrast to the explicit grid-

fitting, the font renderer has to interpret these features and take care of the grid alignment,
which may lead to a different hint-feature interpretation.

» automatic grid-fitting:

For automatic grid-fitting, no extra hint information is needed. The renderer will guess
hinting features, thus making the quality of the grid-fitting highly dependent from the
renderer’s automatic hinting abilities.

2.2 Font Terminology

xMin xMax
\ \
width
-
| — — — — — 71— YMax
bearingX . bearingY
height
+
/ |
origin \
777:7777"7 yMin
advance "

Figure 2.1: Glyph metrics
[Glyph metrics]

The differences of these three approaches lie in the performance and resulting quality. Explicit
grid-fitting provides a high output quality, but, on the other side, faces bad performance, because
running a virtual machine is time-expensive. The other two approaches cause inconsistencies
in the resulting output bitmap, because hinting relies on the font renderer and not on a glyph-
specific mini-program.

2.2.2 Glyph metrics

Drawing a collection of glyphs as lines of text, the corresponding bitmaps are placed on the
so-calledbaseline It depends on the language, whether the baseline is horizontal or vertical. In
the following explanations, | will narrow the view to the horizontal case.

All glyphs of a line of text rest on this baseline. The pivotal point for glyph drawing is the
pen positioron the baseline. The bitmap will be drawn from this point. Incrementing between
two consecutive glyphs will be done by thdvance widthwhich is a glyph-specific value.

The following paragraphs give an overview about important terms for dealing with glyph
metrics (see also Figure 2.1):

Typographic metrics ~ Theascentand thedescengare the distances from the baseline to the
highest, respectively to the lowest outline point in the font. Tihe-gapis the distance that
must be placed between two consecutive lines of text.

2 State of the art

AW AW

\
|

\

Y

\ i

Position + advance Position + advance + kerning

Figure 2.2: Without and with kerning
[Kerning]

A bounding boXbbox encloses a glyph as tight as possible. Itis defined by the vaMes,
xMax, yMin , yMax, which can be defined in font units or in pixel values.

Bearings and advances bearingX defines the distance from the current pen position to
the left side xMin) of the glyph’sbbox Analogously, the distance from the baseline to the
bbox’supper edge is referred to BearingY

The value by which the pen position is incremented in the drawing process, is the so-called
advanceX . There is also amadvanceY , which is used for vertical text layouts.

2.2.3 Kerning

Kerning is used to adjust the positions of neighboring glyphs according to their outlines that
gives the output string a more natural look. Take for example the characters “A’ and “W". Both
characters have angular edges. When kerning is not applied, the “W” will be put on the right
side of the “A” in a way that we can cut a vertical line between the displayed glyphs. But it
has proved by common habits that it looks much better, if successive characters are displayed
interleaved.

As a consequence, many font faces contain a table of kerning pairs. They are ordered (i. e., a
pair “A,W" is different to a pair “W,A") and are defined in grid units, since the kerning pairs are
assigned directly to glyphs (and, thus, their outlines) and not to characters.

2.3 Unicode

To apply the kerning, the particular kerning value of a glyph pair has just to be added to the
pen position, before drawing the second glyph of a pair. By the kerning, the advance value may
be increased or decreased.

2.3 Unicode

In the beginning, most computers only supported the basic ASCII character set represented by
7 bits. But, in fact, this set only contains the basic symbols of the Latin script necessary to
output text in English language. However, there is a huge amount of other scripts all over the
world with more or less complex character sets. Take for example the Asian or Arabic scripts.
Because it is desirable to localize software for specific languages, there is a need of a unified
standard to represent all these scripts.

Therefore, in the late 1980s, two attempts for standardization were made. One Wa®the
10646 projectof the International Organization for Standardization (IS@hd the other one
was theUnicode Projecta consortium of multi-lingual software manufacturers. Later, in 1991,
they joined their efforts on creating a single unified code table. WBi& 10646is not much
more than a character set table, the Unicode definition contains more semantic definitions and
is thus more useful in practice.

Unicode claims to contain a representation for characters and symbols of most of the used
languages in the so-calléghiversal Character Set (UCSBasically, the ASCII set is covered.
Furthermore, sets like Turkish or Greek are integrated, as well as Asian scripts and even exten-
sions like the artificially created language of J.R.R. Tolkien. 1SO 10646 originally defined a
31-bit character set, which has been constricted to 21-bit set, belatedly. This was done because
31 bits offers more space than will be needed in the nearer future.

Because Unicode is just a standard and not an encoding scheme there are different concrete
encodings available:

UCS-2 As the name indicates, this encoding uses 2 bytes for specifying character codes.
Although ISO 10646 uses more than 16 bits for the character set, almost 99% of the symbols,
a program will ever encounter, are covered. Thus, it is mostly sufficient to use this Unicode
encoding. On Windows platforms, the String Library defaults to UCS-2 use, if the STR_-
UNICODE symbol is defined.

UCS-4 UCS-4, on the other hand uses 4 bytes for character codes. It is the standard Unicode
encoding in Linux. UCS-4 is used in the String library, if STR_UNICODE is defined.

UTF-8 UTF-8is an abbreviation foB-bit Unicode Transformation Formatnd stands for a
variable length encoding scheme for Unicode. Each character is encoded in 1 to 6 bytes. Itis
standardized in the RFC 3629. This encoding is most compatible to older UNIX tools, which are
used to handle ASCII files. It would require modifications to these tools to enable them to deal
with UCS-2, for example. UTF-8 is transparent to standard C legacy functionstiikepy

orstrcat that are accustomed to 8-bit characters.

2 State of the art

In UTF-8, the ASCII characters (UCS code U+0000 to U+007F) are encoded akdtes
to OX7F , thus guaranteeing ASCII compatibility. That means that 7-bit ASCII strings have the
same encoding under UTF-8.

| UCS character code | byte sequence \

U-00000000 - U-0000007F: OXXXXXXX

U-00000080 - U-000007FF] 110xxxxX LOXXXXXX

U-00000800 - U-0000FFFF} 1110xxxX 1OXXXXXX LOXXXXXX

U-00010000 - U-001FFFFF; 111210xxx 10XXXXXX LOXXXXXX LOXXXXXX
U-00200000 - U-03FFFFFF: 111110xX 10XXXXXX LOXXXXXX LOXXXXXX LOXXXXXX
U-04000000 - U-7FFFFFFH: 1111110x 10xxxxXxX LOXXXXXX LOXXXXXX LOXXXXXX LOXXXXXK

Table 2.1:The UTF-8 encoding scheme

UCS characters-U+007F are encoded in a sequence of several bytes (up to 6 bytes). The
first byte of a sequence is always betw®C0 andOxFD and it indicates the number of used
bytes. Table 2.1 demonstrates the UTF-8 encoding scheme. Furthermore, a good overview
about Unicode is given in [Kuh99].

2.4 FreeType2

FreeTypeZ[FTy05L)]) is a font library that offers basic functionality in the handling of fonts. As
it will be an important core part of the font server design | will propose later in this document,
| will give a short introduction into the concept BfeeType2

FreeTypeds a popular software library that enables all kinds of software to access font files.

It can handle several font formats, of both bitmap and scalable vector-based, for instance, True-
Type, Typel, Open-Type and Windows FON/FNT.

The internal library structure is module based. Because of that, every format is supported
via an extra module, as well as the different renderers. Currently, in the FreeType library there
are render modules that can generate 1-bit monochrome bitmaps or bitmaps with multiple gray
levels (256).

The FreeType library itself is very portable. It is thus a candidate for the use in an L4 font
management system.

Another important point to mention is that the FreeType2 library is not thread-safe, but
instead, it uses no global variables. If a program wants to use FreeType2 it has to create a
FT_Library -object, at first. This object will be used for storing variables necessary for the
work with FreeTypeZ2.

2.5 Fonts in Linux
In order to design and implement a font manager, it is useful to look at existing solutions. In

the Linux environment several attempts promise to be a helpful inspiration. In this section | will
give a basic overview of these solutions.

10

2.5 Fonts in Linux

2.5.1 XLFD

The XLFD (X Logical Font Description) is a string of characters that describes the
properties of a font a user want to select. It contains 15 fields that are parted by hyphens. The
fields are:
FontNameRegistry-Foundry-FamilyName-WeightName-Slant-
SetwidthName-AddStyleName-PixelSize-PointSize-ResolutionX-

ResolutionY-Spacing-AverageWidth-CharSetRegistry-CharSetCodin
By that, we can specify the font we would like to use. Take for example the following string:

-jis-fixed-bold-r-normal--16-150-75-75-c-160-jisx0208.1983-0

The string describesfixedfont with a weight ofbold and a point size of6. The font is created
for a display (i. e., a screen or a printer) resolution of 75 * 75 dpi.

To select a font the user has to define such a string. It is up to the user, whether he specifies
all fields or leaves fields as wildcards.

2.5.2 Font Systems

In Linux, there are basically two font systems ([Chr03]) that are used bXtBerver : the
original core X11 font systernd Xft fonts system.

The coreX11 font systeraxists since 1987 and supports only 1-bit monochrome bitmaps. As
a result, it also lacks support for anti-aliasing.

It can handle bitmap fonts, as well as scalable fonts. They are placed in a fonts directory
that contains a special file, “fonts.dir”. This file enlists the names of the font files and a font
description in XLFD. A typical entry would look like the following:

bens.pfb -softmaker-benjaminsans-medium-r-normal--0-0-0-0-p-0-is08859-1

Thefonts.dir file can be created with the tomlkfontdir . If scalable fonts are used, an
extra file “fonts.scale” is needed, sino&fontdir cannot automatically recognize scalable
fonts. This file can be created manually or with another program, callddntscale

In order to handle gray-scaled high-quality fonts, ¥fe(X FreeType interface library) fonts
system has been developed. It uses the FreeType library in the background and supports scal-
able fonts likeTrueTypeand gray-scaled glyph bitmapXft is the base of most WYSIWYG
applications in Linux.

2.5.3 Xfontsel

Xfontsel([Moh02]) is a tool for the work with fonts in a Linux system. It is a X client and
enables the user to select fonts by several attributes, to view examples of a font and to get a full
XLFD Description (see Section 2.5.1) of a font. The user can interact with the program via a
graphical user interface.

As a client of the X Window System, which includes the font system of Linux, Xfontsel does
the font selection by the font information retrieved from the font system.

11

2 State of the art

2.5.4 Fontconfig

The idea behindrontconfig([Pac05%]) is to provide a unified system-wide way to select and
configure fonts. It basically consists of two modules: A configuration module that builds an
internal configuration by the help of loaded XML files and a matching module, which returns
matching fonts, when a request has been made.
Within the XML files, mappings can be defined by which the fonts loaded are gathered in
groups. For example, fonts likBmesor Bitstream Vera Serifare so-calledserif faces (i.e.,
fonts with hooks or serifs on the letters) sans-seriffaces likeArial or Verdanawithout the
hooks. Differences in the denotions of font properties, like the family, are tried to be mapped
to the same name. Seans serifandsansare both mapped tsans-serif By that, the fonts
are grouped together and discontinuities are disposed. The user can select fonts by defining a
pattern that he hands over to the matching module. Within thatlit@ncebetween the pattern
and all provided fonts is calculated and, finally, the font with the nearest distance to the pattern
is returned. The distance is calculated by the match or dismatch of the particular font attributes.
To do that, there is a certain priority, as the family is more important as the style, for example.
The benefit of the tool is the system-wide availability for font selection, which delivers static
results to the programs working with this system.

12

3 Design

This section gives a requirement specification and the alternatives in design and the resulting
structure of the.4_Font_ServerFirst, there is an overview about the design goals, followed by
the decisions | made.

3.1 Design Goals

A font server has to fulfill several requirements. It is quite plain that it should be able to handle
fonts and is flexible in respect to different font formats like Typel, True-Type, simple bitmap
fonts and, at best, is extendable for further formats. It must have the ability to render glyphs of
these fonts and return bitmaps of them to the clients. Furthermore, it should supply the using
programs with geometric information, such as a bounding boxes or kerning information for each
glyph bitmap, which is needed to draw the bitmap glyph to the screen in a proper way.

In order to handle the fonts we will need a font library. For instancefFteeTypedibrary,
already introduced in Section 2.4 is a sophisticated font library, which is able to cope with both
fixed-size bitmap fonts and scalable fonts. FreeType2 is the font library of choice for the use in
the L4 font system.

Itis necessary to select and configure fonts. Clients need, at least, knowledge of offered fonts
and possible information about the font's capabilities, like size, style or the character set (i. e.
UTF-8). Clients can make a selection of attributes, the selected font should satisfy. We have
already seen, in which way the Linux font selection (Section 2.5) works.

Furthermore, the font rendering mechanism will have to satisfy the needs of a variety of
programs with different habits. One client may want to render whole pages of text and thus,
making the rendering a complex, time-critical task and another one just wants a few strings
(e. g., for displaying his own GUI). Resulting goals afficiencyandflexibility.

For the sake of internationalization, Unicode support is a major requirement. With Unicode,
the font server will be able to render a huge variety of characters of different languages from all
over the world. The result is that we are not limited to the ASCII set.

As the title of the thesis says, the goal of implementation is a font server, but in the decision
process we have to look at all imaginable options. In the case of the L4 environment, there are
two alternatives to integrate font rendering engines. | will present both of them however it will
soon become clear that only one of them is really useful. The basic question is where to put
the whole font management, including the rendering engine. Put it all into an extra server or
entirely into an all-in-one library? In the following subsections, | will discuss these two options
and develop a concrete design of the option of choice.

13

3 Design

3.1.1 Library-based design

One option is to write a library, which acts as the font management system. This means that the
font rendering engine is also included in the library. Every program that needs font support has
to run an extra instance of the font system.

There may be advantages to this concept, for example for the sake of security: if every client
use its own instance of a font manager instead of a central server, then there can't be a flow of
information or, in other words, the probability of hidden channels is smaller than a system with
a central server version could assure. Servers always run the risk of being attacked by one of
their clients, thus possibly affecting other clients that are waiting for a font server’s response.

Furthermore, font management requires an intense information exchange between a client
and a font server and thus implies high traffic on the communication channel and risking a
bottleneck. But, if the font management is embedded in the client as a library, one doesn’t have
to take the indirection via IPC.

These may be convincing arguments, but nevertheless the disadvantages carry a higher
weight. The use of an all-in-one library linked to each program that needs fonts would require
that each library instance has to initialize the available fonts. This means, that the library has to
read the font files to get face descriptors holding attribute information. Consider a system with
about 100 fonts or more. Every instance would have to initialize these descriptors (i.e., reading
the font files) and store them in its own address space.

3.1.2 Server-based design

The alternative to a all-in-one-library approach is a centralized font system. In this case, only
one server is running an instance of the font management. Clients that are in the need of font
services just have to register at the server and then are able to use the font system. Unlike the
previous approach, the memory is not wasted by loading a font more than one time or running
multiple instances of the rendering system. It is obvious that this should be more resource
saving.

On the other side, there is the bottleneck problem described in Szction 3.1.1. Due to the fact
that the fonts are loaded in the server, all the meta information lies there. For example, if you
need kerning information between two letters it is usual toFask Type2vith a method taking
these two letters as a pair. Now imagine, you want to display a text and already have rendered
bitmaps of the necessary glyphs cached in your client’s memory. Because the kerning distance
is different between each pair of glyphs, it is not efficient to save the information attached to
the rendered glyphs. One way is to ask the server for the kerning of each glyph pair, it wants
to display. This produces traffic, because the server has to transmit the kerning pairs back to
the client. Such a kerning pair is small, but if you want to display a whole text, then you have
to get a lot of kerning pairs, which results in high communication costs. The point is that it is
a drawback indeed. But there are options to deal with it and to reduce communication costs,
through caching and well thought-out interface design.

To summarize, the Server-based design initializes the font list only once, in contrast to the
library-based design, where the initialization is done in every program using that font library.
Furthermore, the font face descriptors are hold at one centralized place, which is comparable to
Xftin Linux (see Section 2.5.2). By this centralization, the initialization time and the amount of

14

3.2 Design Decisions

L4 Font Server

client sessions

font |ist

A
\ 4

e font properties
e shared nenory

A

| nterf ace

renderi ng nodul es

Freetype2 nodul e

.client,
A
Y

\ 4

ot her font nodul e

A

Figure 3.1: Design scheme of the L4 Font Server

used memory is reduced. Because of that, the advantages of the server approach outweigh the
drawbacks. That is why the concrete implementation is based on a server based design.

3.2 Design Decisions

The concept of a server environment my be divided into three components: the internal server
representation, the IDL interface, and the client library. The internal structure is the most com-
plex part. One of the main goals to reach was flexibility in respect to the supported font formats.
FreeTypealready supports several formats (See in Section 2.4). With its capabilities of includ-
ing additional modules for font support and rendering it was predestinated for use. The result is
that a internal design should consider the usereéType2and possibly other font libraries.

3.2.1 Internal Server Structure

The central tasks of the server are font rendering and font management, like loading fonts,
selecting fonts and holding an info-list of them. Moreover the fonts come up with different
formats. Figure 3/1 shows basic components of the font server:

A structure that organizes registered clients
 Alist of available font faces (i.e., the face’s descriptor is stored in that list)

* A collection of registered font handling modules

15

3 Design

We have seen th&reeTypeZan handle these formats. So, why not just build the server atop
of FreeTypeause its interface throughout the server? As | saw it, this was the straightest way
to make the rendering services available to the clients. But, during the process of development
I came to the opinion that it would suit better to introduce modules for holding diverse font
renderers. AndrreeTypeds just one among of them.

The advantage of this approach is the less dependency on one technology. For instance, if
there is another font renderer library, overtakifige Type2n its quality and efficiency or maybe
it offers other wanted features, then you can simply write a new wrapper module for that library.
The fixed-freetype alternative would make it necessary to change existing code. That’s why the
font server uses the module scheme.

For the modules there has to be an interface, which provides the following methods:

1. load a font / get a font descriptor

2. configure a font

3. render requested characters to glyphs
4. get kerning information

It has to be mentioned, that further methods may be added in the process of implementation.

The information of fonts registered at the server, which has to be stored in a structure that
contains the font description, is intended to be centralized. This means that the font information
is kept in one place in the server, not caring about the format and to which render module a font
is assigned. The result is that there is a need of a somewhat generic representation of fonts, so
that we can handle them outside of their modules.

3.2.2 Interface

The communication interface is one of the first things to think about. What interface methods
are required? How will a typical font server session look like? What about efficiency and how to
keep the communication costs low? Important questions when you deal with security objections
and the avoidance of bottlenecks.

Start/End Sessions The wordsessioralready implies that a client working with the server

will have to register at the font server. Therefore commands dileet_session and
close_session are needed. The reason use sessions is, that the server has to hold client
specific information, like font configurations, shared memory spaces and so on. We will address
that later. The point is that the server will keep such information only as long as the session is
active.

Font Configuration ~ During a session a client has the ability to select and configure fonts.
One way to achieve this, is to send the explicit font properties each time you call the render
service. That means that everytime you want to render glyphs, you would have to transmit
the whole font properties, even if you call the render service a hundred times with the same
configuration. That would be too much overload and doesn’t meet the aim of efficiency.

16

3.2 Design Decisions

The better choice is an extra interface method (set, propid) that supplies a configura-
tion possibility. Thus, we can configure fonts, thereby registering the configuration at the server.
The interface will return a value that represents a so-caltegerty id To call the rendering
service fender_str , the client just has to transmit this id and the string to render, of course,
which results in smaller message sizes.

Render Strings The already mentionedender_str-call takes a string and a property
id. The server will render the requested string in glyph bitmaps of the defined mode (e.q.,
monochrome or gray-scaled) and, after that has been done, it will return it back to the client.

Load Fonts Furthermore, an option to load fonts, for example by transferring a buffer that
contains a font file, may be desirable. The number of fonts loadable is limited to a certain
maximum in order to avoid overloads, be it intended or not. The fonts a server has loaded will
be visible to all clients. This means that there is no extra font list for each client, only showing
fonts a client is allowed to see. However, this approach comes along with security lacks that has
to be discussed, which will be done in 3.2.4.

Get Font Information Last but not least, a client needs a list of the available font faces
and the according face attributes. Take for example the kerning information. The functions
get_flist andget_kerning will meet these goals.

3.2.3 Client Library

The client library is the part of the server environment a client includes to make the server’s
interface available to him. It works as a wrapper for the interface calls. Moreover, the library
can provide transparency and more convenience to the client. Beyond that it is on one side of
the client/server communication interface, giving it a role in the process of cost reduce. For
example, it is a good place to organize a caching for often used data.

The library functions arestart_session , close_session , set_propid
render_str andget kerning . Their operational aspects have already been explained
in Sectior 3.2.2.

Another task for the client library are caches saving kerning pairs and glyph bitmaps to reduce
communication. Therefore, the library functions shall at first look up in these caches and only
if that fails IPC calls have to be made. With the cache subject another design decision came up.

The question was, which kind of clients the font server will use. On the one hand there are
clients needing just a few strings for displaying few program specific information and on the
other hand, clients with a potentially high frequency of glyph requests, for instance text writers.
Keeping the design aim of flexibility in mind, we have to discuss the alternatives.

Such clients that only need a few strings to be rendered don't need that much information as
text writing tools that must be able to cope with whole pages full of text. For example, a text
writer will often need rendered glyphs, as well as kerning information of differing combinations
of glyphs. Other programs that just need glyphs for the graphical user interface, on the other
hand, will only request the server once, at startup. By that, they are satisfied with a thin client
library only fulfilling the task of communication between client and server.

17

3 Design

Now, assume a text writer using no caching. In the text writer, we open a document with
more than one page (although one page would be enough to demonstrate the disastrous effect).
For displaying the text, the program has to make calls for all the words in the text and everytime
the server has to repeatedly render the glyphs, wasting time.

What it comes down to is the necessity of caches on the client side. The best way is to use
a cache for holding rendered glyph bitmaps and one for kerning information. By these, the
amount of IPC calls and repeated renderings of the same character with identical properties
should be reduced drastically. But who is responsible for caching? Leave the caching task to
the clients themselves or integrate it into the client library? There are the following thinkable
approaches:

» Thick client library approach A thick clienttakes care of the point that it is not useful
to constantly reinvent the wheel. It implements caches within the library functions that
wraps the IPC calls. Because of that, the library would cache bitmaps and kerning infor-
mation all the time even though it is not wished. However, we can introduce a switch to
turn the caches on or off, but, nonetheless, we still have a relatively complex library layer.

 Thin client library approach Thethin client library ignores caches completely. Such a
library only serves as a communication point to the font server. In that case, the design
goals are slenderness and straightforwardness. Caching is left to the clients.

« Library layers approach The first two approaches stand for two opposite attitudes. With
the approach of multiple library layers we have a compromise between them. In this
design, the client is given the choice of different levels at which it can use the library.
While the lowest level is equal to thkin client library, the upper level supports caching
and uses the low level layer functions for server communication.

In the final implementation, thie4 Font serverclient library will use the layers approach, since
there is caching offered, while usage is not enforced. Furthermore, through the layers, the
program code is divided into logic partitions and thus not mixing tasks in one layer.

3.2.4 Font Loading

The font server needs font files that it can load. But how will we get the font files loaded into
the server? And who determines the fonts that will be loaded, especially when? To answer all
these question, we have to look at the alternatives:

 Load fonts at startup time

One option is to load fonts already at the startup of the font server. Several aspects
make that a reasonable approach. First, in that case the server is able to work when it
has been started. That means, if somebody wants to use the server, there is already a
selection of fonts offered. It can select a font or just use the default one. Second, if
we restrict the server to just allow font loading at startup time, nobody can influence
the server negatively at runtime (by havindoad fontsfunction as possible point-of-
attack) and thus the security may be increased. But, nonetheless, this would confine the
flexibility, of course.

18

3.2 Design Decisions

 Load fonts by clients

Another way is to give clients the opportunity to load fonts, maybe by passing a buffer
containing the font file to the server or just transferring a reference to a file provided by an
external file server. This approach has the advantage that fonts can be loaded at runtime.

A drawback of enabling clients to load fonts is the already mentioned security aspect.
When everybody has the right to load new fonts into the server there may be adversaries
who try to attack the server by making a high count of load requests. To avoid that, there
will be a maximum count of fonts that can be loaded.

What is even worse, is the probability of unauthorized communication via direct or hidden
channels. For example, clients could communicate by naming font filenames so that they
transport information. This is the reason why clients very probably won't be able to load
fonts. 1 will come back to that later, in Section 5.2.

For the sake of flexibility, it would be desirable to use both ways in the final font server. But,
on the other hand, the second option has security lacks, making it a doubtful option.

Loading fonts, first of all, requires the availability of fonts. Somehow we have to supply the
server with common font files. For instance, think of a file server providing font files or a buffer
that is handed over to the server (e. g., by a client). The most elegant way is a file server, like
thesimple file serverl will further discuss this in Secticn 4.5.1.

When the server retrieves a load request, be it on startup or later by a client, the server will
be given a buffer that contains the font file. As already mentionzd in 2.2, a font file may contain
more than one font face. The server will create a data structures for these faces in a list of font
faces that consists of the file buffer and the face descriptor, that holds attributes, like the font
family and the style of the font. This generic information has to be extracted out of the file and
afterwards, it is inserted into a globfalce list

Additionally, for the internal font selection it is the best to sort the fonts by families, in a
family listas shown in Figur@?. Thus, a single family list entry can contain more than one face
descriptors. These descriptors can belong to faces out of different files. For example, the entry

Nimbus Roman holds faces of the fileblim_roman.ttf ~ andany_fnt_coll.ttf that
equals in the face’s family name. Furthermore, as you can see in Fgute fileany _fnt_-
coll.ttf contains font faces of different families, oR@manand the other on€ourier.

Because the font server will support more than one font management module (i.e., the
Freetype module will be one of them), the extraction of general information has to be done
by the module that is assigned to the particular font format. For exampleieaTypefile will
be handled by the Freetype module. The modules have to return descriptors that represents the
faces within the font file. Every descriptor will be inserted into the font family list by its own
family.

Assigning of a particular font format to a module will be done by a mapping. At the begin-
ning, when all the font management modules are initialized they will have to register their
supported font formats at the mapper. Different formats will be distinguished by the endings. It
is important that a font loaded into a file server is known with its correct ending. By that, a file
with the ending ".ttf” will be recognized asTaue-Typdile.

The references to the buffers of registered (i. e., loaded fonts) font files are stored in an extra
font-file-structure list. Besides the buffer pointers, Such a file structure contains the name of the

19

3 Design

Family-List Faces
Nimbus R
0 Nimbus Roman e
Style: normal
1 Courier New y
Nim_roman.ttf idx:0
Style: italic

Nim_roman_it.ttf idx:0

Style: bold

any_fnt_coll.ttf idx:1

Courier

Style: normal

MAX

any_fnt_coll.ttf idx:0

|

Figure 3.2: Font family list

file and a format tag, that will be used for the mapping of a font-file (with a certain format) to a
font module.

3.2.5 Font Selection

The font server needs a method to select fonts. We can think of different ways to do that. For
example, the user can choose a font simply by specifying a font family name. Or it can request
a font with a certain style, be it bold or italic.

As explained in Section 3.2.1, the server provides the client with a font configure function.
This function acts as a configuration method and as the font selector.

The following are several attributes the user will be able to hand over to the server (the list is
not complete):

» faceid

file name

font family

font style

font size (width & height)

resolution of the output device

transformation (rotation & translation)

20

3.2 Design Decisions

The client can specify any of these attributes and can leave others unspecified (which will be
mapped to default values). The selection mechanism will use the first, most-fitting font (if there
is no perfect-fitting font). For example, if the client requests a font of the fafmiheswith the
stylebold, but the only available styles for that family arermalanditalic then the first entry
out of the list will be used. However, a not-so-naive approach may chuawseal as a user that
primarily request®old may be more satisfied withormalas the substitute then wittalic.

To not leave the client blind when choosing a font family, it will be able to dget -
file_list call. This function provides the user with a list of the available font families.
Furthermore, the client can be provided with any information that will be useful in the client-
side selection process. The question is, what we will transfer:

1. Just the family name

The server just returns a list of selectable font families. This option has not much transfer
costs, but, too, the client doesn’t get information about the available styles or weights of
the font family. To just transfer the font family names is almost as helpful as not offering
aget_fontlistfunction.

2. A collection of face descriptors

As we already have a collection of the font face descriptors in the server-internal face list,
we could transfer these descriptors to the client (e. g., via shared memory). This approach
implies that we can think of passing the font selection to the client, like itis done in Linux,
with Xfontsel(see Section 2.5.3).

The drawback of this option is the higher amount of data, because we have to transfer all
the face descriptors of all available fonts. But, on the other side, with the face descriptor
collection delivered to the client we have the option to leave the font selection policy to
the client. By that, a client may use a standard client-library selection function or use an
own, more or less sophisticated font selection algorithm.

3. XLFD-like string representation

| introducedXLFD in Section 2.5.1. With XLFD, we just have to transfer strings that
represents the font's attributes. However, these XLFD-strings have to carry the same
information like the face descriptors contains, which means in fact, that the amount of
data will be equal to the descriptor-transmission approach.

| decided to use the 2nd option, because it enables the client to do the font selection. The XLFD
approach would have required extra efforts in conversion and parsing. Nevertheless, it is an
option to offer a function in the client library that takes care of XLFD, but it is not intended to
implement it in the context of my thesis.

3.2.6 A Session

To make the whole workflow with thie4 Font Servemore understandable, a typical session is
described in the next paragraphs.

First of all, imagine a client that requests glyph bitmaps of a set of strings. A conceivable
candidate iDOpE, which uses character bitmaps for displaying titles or contents of its widgets.

21

3 Design

Such a client may require fonts of a different style, size or even family. He decides to use the
font server

At first, the client has to register at the font server, when it starts a session, and it has to unreg-
ister, at the end. The reason for that is that the server has to instantiate several data structures
to store client specific information (e. g., font property structures, shared memory data-space,
etc.).

During a session, a client has the choice between several calls. If it doesn’t want to use the
default font configuration it may request a list of available fonts. By that, it can select one
of them and make additional choices in style, size, rotation and so on. Having made these
font configuration, the client has obtained a data structure that contains all these properties.
Therewith, it makes &et property idcall and thus receiving aroperty-id The property-id
represents a certain font configuration on the server side.

By the help of that property id, the client is in the position to render strings with the rendering
call. The font server will return rendered glyph bitmaps and additional meta information (more
specified in Chapter 4. These bitmaps can be saved or cached on the client side, for example by
the on-top layer of the client library of the font server.

Furthermore, existing font property configuration will be changeable in most of the attributes.
The user will just has to repeat tlset property idcall with the oldproperty id As already
mentioned, the kerning information has to be handled separately because one kerning tag is
assigned to two glyphs.

3.2.7 Unicode Support

Unicodeis supported byFreetype2 We can use it to support Unicode in the font server, as
well. As | described in Section 2.2, a single font file contains several character maps that map
a character code to a particular glyph image. In most of the font files, there exists a character
map for Unicode mapping.

It is desirable for the font server to work with conventional programs (i. e., clients) that use
classic 8-bit character encoding while, too, being able to cope with Unicode strings. Because
it is comfortable and compatible, the UTF-8 encoding is the method of choice. In the default
mode, the server will recognize strings as UTF-8 strings. By that, normal ASCII-strings will be
interpreted as what they are (see in Section 2.3) because of its compatibility. Internally, these
strings will be converted into a UCS-4 representation, that is accepteeyypefor example.

However, there are other encodings like the ISO 8859 encodings (|Bre97]) that extend the
common ASCII set by use of the 8th bit of a byte (that was is used in 7-bit ASCII), for example
by adding language-specific symbols or control characters. To differentiate from the default
UTF-8 mode, there has to be an option to choose between these encodings that is transmitted
together with the rendering call. Furthermore, by this option, the font server will accept UCS-4,
too.

3.2.8 Example Tools

This section gives an overview about the concepts of example tools using the font server. These
tools are aimed to show the abilities and features of the concrete fonts server implementation.

22

3.2 Design Decisions

The first tool is calleddfontse] which will demonstrate basic features of the font server. A
second example is aimed to test the performance of the font server.

3.2.9 Dfontsel

The basic idea behind the font manager o@dntselis, as already mentioned, feature demon-
stration. It is clear that, during the implementation, | will need a testing tool showing the
provided functionality. So | can see, if the results are the desired ones, or not.

As Dfontsel will be more comfortable with a GUI, it will be realized aB@pE-tool. The
program will use two windows - one for configuration purposes and one for displaying text.

Intended functionalities are font selection and configuration, a text display and transformation
options. However, because of its testing purpose, more features than proposed here will be
implemented.

3.2.10 SPet - Simple Performance Tester

To evaluate the performance of the current font server implementation, | will need a tool for
performance testing. To do this testing, we have to look at the time-critical components of the
font server. For that, the tool will have to do rendering of a longer text. This will be done in
different modes.

One mode will make a naive text rendering, and thus, not caching anything. Another mode
will use caching of the kerning information, but still has no caching of rendered glyph bitmaps
on the client side. Finally, a third mode will, at first, cache all necessary glyph bitmaps and thus

should be the version with the best performance. The question is: How much better it will do
it?

23

4 Implementation

In this chapter, | want to describe some implementation-related aspects in detail. These are
decisions to be made and problems that occurred while implementingtthe®nt_Server

4.1 Porting Freetype?2

TheFreetypedibrary is aimed to be highly portable, making it easy to port it for the use inside
the L4 Font Server As it is independent of the operating system in the background it just
depends on the standard functionality, provided through system-specific libraries (e. g., open-,
read-calls, etc.).FreetypeZoffers font loading via buffer transfer. Because of that it is even
unnecessary to take care of these system library calls.

In the L4 environmentireetypeds an integrated part of the font server and is not intended
to be used directly by other clients or servers (Although it is possible).

4.2 Glyph Bitmap Transfer

When doing a render call, the client has to send a string to the font server. This is done by deliv-
ering a direct string IPC to the server. This implies, that the maximum length of a transmittable
string is 256, as it is the length supported by a direct string IPC.

Afterwards, the server renders the glyphs and returns them to the client. The glyph bitmap
transfer is a bottleneck in the client-server system. For example, when dealing with a longer
string or, say, a string with a huge character point size, a large amount of data has to be delivered
to the client. So how to deal with that? When | implemented the server, | had two basic
alternatives for solving that problem:

» a shared memory approach

« the use of IPC transferring

4.2.1 IPC vs. Dataspace

One way to transfer the bitmaps is via [®Eor such huge amount of data, the L4 interface
supports so-callethdirect stringIPC'’s, by which we can send areas of memory by specifying
a reference to it. For that, the sender defines:

» send addresand

» send size

! Interprocess communication [L4€03]

25

4 Implementation

Render (,ONCE UPON A TIME ...%,0

Client ~ »Server
12 characters left
Shared Memory
(0) N C E U P OI

\

bitmap_info

Figure 4.1: Shared memory scheme

of the buffer, while the receiver defines:
* receive addresand
* receive size

While the kernel is delivering the IPC, the buffer is copied from the sender’s memory into
the receiver’s one. String IPC’s can transmit up to 4 megabytes of memory. However, there is a
drawback, that convinced me to not use this approach. Imagine a render request arriving at the
server. The render function has to allocate a buffer to keep the glyph bitmaps before returning
them to the client. And finally, during the transfer process, the allocated buffer has to be copied
into the client's memory. By the help of another way, we can economize the whole transmission.

The solution is an approach with shared memory. Therefore, the sharing is realized through
dataspacesData-spaces are unstructured data containers that are handietblspace man-
agersand can be used for sharing memory. Such a shared memory space is depicted in figure
4.1. When a client starts a session with a font server, he first creates such a dataspace by calling
a dataspace manager. You can think of a dataspace as memory that is attached to regions of the
address space. The dataspace manager acts as a pager for that memory region.

By doing the stagession_call , the font server is supplied with the client’s dataspace
(that is created within the client library, transparent to the client) information and is then in the
position to attach it to its own address space. By doing this, both the server and the client, are
supplied with the same memory region, establishing a space of shared memory. Both sides can
write and read data within that memory region.

In this solution, the server doesn’'t have to allocate an extra buffer, as the other alternative
would have to. He just writes the glyph into the shared memory. When returning to the client,

26

4.2 Glyph Bitmap Transfer

only the offsets of the data in the shared dataspace has to be copied from server to client. As a
result, we have less costs caused by copying.

4.2.2 Glyph Buffer Structure

A rendered glyph bitmap does not only consist of the pixel data that will be used for drawing. It
also contains associated meta-information. First, the client needs information about the content
of the buffer for correct interpretation, like thgétch (i. e., the number of bytes taken by one
row) or the height and the width in pixel. Moreover, he needs to know several glyph-specific
attributes, for instance, an advance value for the pen position and bearing values in x and y
direction. They are used for the type-setting on the screen or any other output medium.

For a particular glyph, both the bitmap and the corresponding meta-information have to be
transferred to the client, as you can see in Figure 4.1, where the data of the "O" consists of the
bitmap and ditmap_info -structure. The previous section has showed that | chose a shared
dataspace as tttwmmmunication channeMy solution writes the glyphs as a sequencglgph
data packagemto the buffer. Every package holds the data for one glyph.

By that, a client receives a continuous buffer containing these packages. Furthermore, the
related offsets to the particular data packages within the buffer are transmitted, too. The client
can now use these packages by interpreting them and drawing the contained bitmaps or he
copies the data into his own memory space, thus, storing them.

4.2.3 Larger Strings

The shared dataspace, which is used for glyph bitmap transfer has a fixed size. It should fit for
strings of average length and size. But what is “average”? Most fixed-size solutions come along
with the problem that there may be a situation where the fixed size is not enough. So, in the
case of the font server, it is possible that a client wants to render a string of a length or size that
would result in a necessary amount of memory that is higher than the offered shared dataspace
size. This has to be cushioned somehow.

My solution was to split such requests into more than one, so a client has to do more than
one call in order do retrieve all glyph bitmaps. The first attempt, | started to implement, was to
completely cover the splitting within the client library. The aim of this was to make the whole
rendering process transparent to the client. In this approach, a client would make one render
call and the result would be a buffer, containing the bitmaps.

Within the library’s rendering function was a loop that repeatedly would call the server until
all glyph bitmaps had been transmitted. In the first call of that loop, the server would have
rendered the glyphs and stored them in an appropriate temporary buffer within its own memory.
When returning to the client, the shared memaory will be filled until it is full would be passed
back, together with the count of bytes that haven't been transferred yet.

In the following loop runs, the server would just copy memory from the saved buffer into
the shared dataspace, as long as there is memory left. Afterwards the buffer in the server’s
memory would be erased. But, as | already indicated, it was my first attempt. In fact, there was
a non-negligible count of drawbacks, especially in efficiency.

The main problem were the number of necessary copies to be made. On server side, all
glyph bitmaps were pre-rendered into a buffer and from there, they were copied to the shared

27

4 Implementation

memory. After that, on the client side, again, the content of the shared memory was copied into
a buffer (that would be returned to the client). What the whole problem made even worse was
that the concrete size that would be necessary for the buffer is not quantifiable. It was because
the rendered bitmaps have different sizes, especially in proportional fonts, where an “I” needs a
thinnerbitmap than a “W”, for example. So the library only could guess. In the case of a wrong
guess, the library had to reallocate a larger buffer and thus we had to do another copy.

The other, more efficient attempt that is now implemented, is comparable to a common read
call for files. The server only renders the amount of characters that will fit into the shared
memory and returns it together with a number of characters that has been rendered and delivered.
Unlike the other approach, the client library won't run a loop, internally, until all glyphs have
been returned. Instead, the client will be supplied with the count of glyphs already rendered
and by that, it knows the count of characters it has still to render by a repeated call. As a
consequence, the client himself is now in charge to do the loop.

The decisive advantage is the significant reduction of necessary copies. Look at the server,
for example. Instead of rendering the glyphs and putting them into a temporary buffer, they will
be put into the shared memory, directly. The client library simply hands out the shared memory
to the client. The client has to decide whether he just uses that buffer, drawing the glyph out of
it, or, on the other hand, copies the bitmaps from the shared memory into another buffer (e. g.,
a cache). By that, the costs of the rendering process have been reduced and more responsibility
is left to the client. That fits well with the design goal to construct a low-level rendering library,
with the option to build a high-level library on top of it.

4.3 Handling Clients

As a server, the font management system has to cope with several clients, which will request
diverse services. As already indicated in Section 3.2.6, a client that wants to work with the
server has to startsessionat first. Within such a session, the server handles information about
the client:

* thread id of the client
 dataspace (shared memory)

* list of property id’s and the assigned font properties

To start a session, a client call thents_start_session() function, which thereupon

leads to the creation offants_client structure. A server can handiéAX CLIENTSof

clients (e. g., currently, the number is set to 30). As depicted in the preceding section, the client
instantiates a dataspace in his own address space and forwards the dataspace to the server, which
stores the dataspace information in the accorétmgs_client element.

One important aspect is that the dataspace is created on client side and is afterwards just
attached to the server’s address space. The reason for that is, if the server has to provide own
memory everytime a client starts a session, it would be possible to overload the server's memory
by registering a high amount of clients and thus compromising the security of the server by a
Denial-Of-Servicattack, which is not desirable, of course.

28

4.4 Supporting Font Modules

Finally, afonts_client object carries a list of font properties. That is because every
client can configure font properties. Every created font property is identifiedpoypeerty-id
(i.e.,fonts_propid) and contains information like size, style or a pointer to the configured
font face.

The client structure is intended to be extendable for further extensions in the future. All
client-specific session information shall be stored within it.

4.4 Supporting Font Modules

As indicated earlier, in Section 3.2.1, the font server supports modules. When | started with
programming, | planned to only useeetype2 At that point of time, this was the most convinc-

ing alternative to me. The point is theteetypezhas already a module structure implemented,
which supports new, self-created modules. Thatis why the plan was to use it as a fixed integrated
part of the font server.

But, while implementing the internal of the fixed version it started to get an unclean look
to me. It is because such a font server would depenBreatype2 That means, if somebody
wants to use another font renderer (e.g,. because of better performance) the internal code has
to be altered in order to support the new font library. That is why, later, | changed the internal
structure of the server for module support.

The task of a module is to serve font specific functionality. This means, all tasks that deal
with information of font files are handed over to these modules. All other tasks should be
performed in a global, generic manner. For instance, the list of available fonts is global, making
font selection easier, which is a global task indeed.

In my implementation the modules are initialized at start-up of the font server. In fact, there
is only one module up to now. Namely tireeetype2module. But there are other modules
possible. One may wish to have a thin, minimal renderer that just supports bitmap font files and
thus maybe getting a higher performance in comparisémeetype2

The interface provides the following functions:

* module initialization it)
* set property attributexénfig_font)
« render string as glyph bitmapseder)

 get kerning information for a given character pgje(_kerning)

get a font descriptorget_descr)

All these functions need information out of the font file. BecauseRfeetype2module is a
wrapper for the library’s functions, it implies that the functions behind the interface will just
make library calls, as the library will handle the font files and the faces.

Theinit function initializes the module. For example, in theetype2module an instance
of the Freetype library (used for memory management) is created.

The functionsrender and get_kerning hand over their parameters to the Freetype
library.

29

4 Implementation

config_font uses Freetype to create a face (described in Section 2.4) of the font with the
given parameters of size, rotation or resolution. The face that has been created will be saved
as a generic face into the associgpedp_entry structure. The face represents a loaded and
configured font, which will be used in the rendering process.

Finally, get_descr is used to get general information about a certain font managed by a
specific module. This function is basically used at the font server initialization. At that point, the
available fonts are inserted into the font-list and therefore font descriptors with basic information
about the fonts are needed (i. e., family or style). See Section 3.2.4 for further information about
the concept.

4.5 Serial vs. Parallel

By reason that the server has to handle more than one client simultaneously, we have to think
about parallelization of the server internals. The problem appeared to me during the process of
implementation. What if two or more clients asking for rendered glyphs at the same time?

In the sequential case, which means that there is only one thread, the first client who makes a
request will be served first (i.e., a FIFQueue). That means that a client with an time-intensive
call (e.g., hundreds of glyphs at once) can block a server and thus perhaps other clients with
“short” calls. What is even worse, a client with such a short call may be a process with a higher
priority than the other one, think of real-time applications, for instance.

However, | have to admit that the current implementation of the font server uses this naive
way. It is because the other option | had in mind at the begin of planning was a multi-thread
variant, which has also a tremendous drawback: a big critical section.

In the case of parallel threads, every session (i. e., every client) will use an extra thread. Now,
more clients can request services of the server and will be served in parallel order. Therewith,
a client won't have to wait for long, time consuming client calls. But there is a rub in it. Think
of two client sessions making requests in parallel. Mostly, both of them will use client specific
data structures (e.g., own shared memory, own font properties, etc.) and thus, not violating
any critical sections. One critical section is the session start. While doing this, it is possible
that another client does the same at this time and thus they are both in the client management
structures. However, this critical section is avoidable through the use of semaphores.

Now, let us have a look at threetype2library, which is like a monolith within the font
server. If we have only one instance of the library, then this instance, which has to be used for
all render requests, resembles a big critical section, because the FreeType?2 library is not thread-
safe. That is why, all library calls has to be made in sequential order. Moreover, it is the place
of the server, where the time-intensive computations are done. In other words, if we are limited
to these sequential (expensive) calls into the library, the parallelization is virtually neutralized.

Another option we can think about, is the use of eXraetype2instances for each client
(see Section 2.4. Such a library instanceT-_Library - is responsible for the memory
management. In the freetype library, there are no global variables used. That means, that we
can use extr&T_Library instances in the freetype module for each client. Obviously, it is
the same with other non-freetype font modules. In future work, it has to be analyzed how much
it will cost, especially focusing memory.

2FIFO - First In First Out

30

4.6 Font Selection

Simple Mode Distance Mode

client's set_property

distance-match-call

* Family

* Mono/Variable
compare face-id * Style

1
|
|
1
or filename : ...
|
1
|

L]

face_list

Figure 4.2: Font selection modes

45.1 Load Fonts

In Linux you can easily initialize a font server by defining a directory of the file-system, be it
ext3 for example. In the L4 environment, it is desirable to have a somehow similar way for
retrieving font files. One way to achieve that is a virtual file-system. Therefore, | decided to use
the simple file serveof thelL4 Virtual File Systento load font files. At startup, the simple file
server can be supplied with dataHfsco UXis used, then the files can be loaded directly from
the Linux file system by defining these files together with the simple file server call within the
Fiasco UX startup script. Otherwise, if L4 is started directly, boot modules can be defined and
thus will be loaded into the file server.

A second way to get the font file data into the font server is to define the font files as boot
modules of the font server, which can be made in the start-up script. Currently, the font server
checks both places for font files.

The loaded font files are read and each of the contained faces is inserteddioo kst
Thefamily_list holds references to the corresponding faces of a family and is also updated.
The data structures are needed for the selection of fonts.

4.6 Font Selection

When the user configures a font, he uses the funa@npropid() (see in Section 3.2.5).
He provides the server with the attributes the font should have.
Internally, the server has two modes of font selection, depending on what the client specifies:

31

4 Implementation

dient Server
client library
Cache faces(prop_id)
(face_0face_1...face_n
get_kerning i [} font nodul e
“Abc”, prop-id) |

lookup(A,b,face-id)

look up
kerning pairs

insert pairs

Figure 4.3: Principle ofget_kerning

Simple Selection If the client specifies either thidlenameor the face-idthat is returned
included in the face descriptors that are returned bgtafontlist() -call, the server uses
the simple selection mode. Look at figure 4.2. In the simple mode the face-id or the filename of
the client'sset_property is used to access tliace_list

In that case, no check for them most-matching face has to be done, since there is definite
selection. If the client specifies the face-id, the server can access the corresponding face by
using that id as the index of the server-internal face_list. Otherwise, if the font-filename is
given, the server iterates over the face-list, in order to find the face.

The simple selection may be used, if the client does the font selection, as described in Section
6.2.1.

Distance Selection If the other case, the client makes a fuzzier selection. For example he
just defines the style and size of the font he wants. Which font shall be returned in that case? A
mono-spaced font? Anti-aliased or monochrome bitmaps? For that, preferences have to be set,
S0, the selector can choose a best-fitting font.

As you can see in Figure 4.2, there is a list of attributes that have to be matched between the
requested attribute-pattern and each available font face. To do the matching, the server uses a
distance function that compares the attributes ordered in a certain priority. For example, the font
family is more important, than a style match.

The choice between both modes is made implicitly and depends on what the client defines. If
the face-id or the filename is specified the other attributes are ignored aSdripke Selection
is preferred.

32

4.7 Kerning

4.7 Kerning

Kerning has a special position in the meta-information of glyph (see in Section 2.2.3). This is
because it doesn't depend on one glyph, but on a pair and thus, cannot be attached to the rest of
meta-data that is transferred together with the glyph bitmaps, after a render call. To solve that
task, an extra interface methget_kerning() is provided. This function accepts strings

and returns a collection of glyph kerning-pairs for that string.

A client may cache rendered glyph bitmaps of a certain font face. By that, he can construct
strings out of these bitmaps without calling the server, everytime he needs kerning information.
As already indicated in Section 3.2.3, thibrary Layers Approacluses more than one library
layer. The kerning can be included in a higher layer of the client library, or, on the other hand,
can be completely left to the client.

33

5 Evaluation

The section gives an evaluation of thé Font_ServerHowever, since up to now, there don’t
exist more sophisticated tools, but only example tools, the font server will have to prove its real
usability in future practice (See in Section 6.2).

5.1 Performance

To evaluate the performance, we have to look, where the time-critical and memory intensive
components of the4_Font_Serveare:

The font handler/renderer (e.g., FreeType2)

 The communication costs between client and server

The font selection costs

* The server-internal data structures

In the server-internal font face selection (see Section 4.6) with distance matching, the server
additionally has to do the font selection by matching the faces in the server’s face-list with the
attributes requested by the client. This matching costs time, in particular with the one-threaded
approach, currently implemented.

If the internal simple mode is used, that means the client set a face by specifying the face-id,
the server can directly access the font face descriptor and by that, avoiding the costs of font-
server-internal selection. Of course, the clients may select a font by an own algorithm (see
6.2.1).

The costs of client-server communication are especially high when returning rendered glyphs
back to the client. Since the render call uses the shared dataspace, the most-intensive costs come
along with the copies into the shared memory and maybe out of the buffer, if the client wants to
store the bitmaps, instead of directly using them.

Moreover, we have to consider the computation time of the font rendering and handling
libraries. Depending on the complexity of a font face (bitmap fonts, scalable, complex out-
lines, etc.), the rendering time varies.

The communication and rendering costs can be reduced by caching by the client, or in a
higher layer of the client library (see Section 3.2.3) Thus, if bitmaps or other information (e.g.,
kerning pairs) are needed repeatedly then the client, at first, can look up within its cache.

To have a look at the memory aspects, we have to analyze the data structures of the server.
For every client, the server holds:

e The client’s thread id

35

5 Evaluation

» The list of configured font properties

» The dataspace object and the address of the shared dataspace

Thus, the amount of memory needed for a client depends on the count of configured font
properties. There is a maximum of definable properties defined. If the client reaches this maxi-
mum has to unregister an older property in order to register a new one.

5.2 Security

To look at the security of the font server, we have to analyze the interaction with clients. What
are the policies in dealing with that, which communication channels are available and where
possible attack points are.

The font server uses an open policy, which means that every client will be able to register
himself at the server and render strings, regardless of any rights. To get a useful rights handling,
the font server has to be embedded into a system-wide rights management. But this is an aspect
that has to be considered in future work.

Given that policy, it has to be checked, if a malicious client may

* block the server,
+ overload (denial of service)

« or exploit covert channels to get unauthorized information.

Block the server The current version implements one-threaded serving. With that, an
attacker may get to the idea bbock the server with a long, time-consuming render request,

for example with a long string and a font property with a big point size, which leads to a big
bitmap size to render. However, the font server can’t be blocked by such a request, because, at
first, the server only renders to a maximum length of strings (e. g., 512) and only renders glyphs
until the shared memory buffer is filled. After that, a client has to redo the render-call, if the
string hasn’t been finished. Thus, a single request can’t block the server for a significant time.

Overload But now, think of a bad client that does repeated calls, no matter what kind of
function, and thusverloadghe server. Unfortunately, such a client is not really distinguishable
from a good-natured client to the server, which just has to do a high count of server calls (e.g., a
WSISWYG text editor). The result will be a server overload. It is hard to differentiate between
both a normal client and one with bad intentions with just the render information. A possible
but impractical method would be to analyze the semantics of the calls and look, whether the
content of the request makes sense or not. The problem that has to be analyzed is to differentiate
betweerusualandsuspiciousemantics.

Covertchannels Covert channelsan occur, when a client gets information about the server
internals or other client, although neither that was intended, nor the client has been authorized
for that. For instance, imagine a global collection that holds all the font properties. When

36

5.2 Security

clients set properties, the font server will supply them with property id’s that will be allocated in
increasing order. By that, a client may register font id’s and deregister them. As a consequence,
the client can influence the property that another client will receive, if he dees aropid_-

-call. | have to admit that it is slightly hypothetical, but it is a way to pass information via the
font server indeed.

To avoid this, every client has its own structure with own property id's - the cannot transfer
information via property id’s.

Another point of probable communication channels would be the option to enable clients to
load fonts by specifying references or transmitting buffers, as explained in Section 3.2.4. With
such an option clients may communicate via the font server by loading fonts that are artificially
constructed for communication. Clients could use the filenames or internal attribute fields for
encoding information. This resembles a direct communication channel and that is the reason,
why this approach will not be implemented.

The implementation use only one thread for handling requests of all clients. That means,
that a client with a time-intensive call can block other clients. Such clients have to wait for
the blocking request. This wait time can be observed and there is a timing channel ([VV90]).
However, to avoid this in the future, we have to look at a multi-threaded alternative, discussed
in Sectiorn 4.5.

37

6 Conclusion and Outlook

6.1 Conclusion

The basic goal of the4 font serverimplementation was to provide a secure font management
service. Therefore fonts has to be loaded and handled. Since rendering is a non-trivial task,
the server was planned to use an existing library to solve that problem. Furthermore, due to
the higher count of fonts that will be loaded by such a server, an efficient way to do the font
selection and configuration had to be found.

Internationalization was another aim of the design. That means, that the server can cope
with different character sets of as much languages as possible. Programs may require 1-bit
monochrome glyph bitmaps or gray-scaled (8-bit) bitmaps. Further color modifications like
color gradients or textures are left to the user, although it is possible to include extended render-
ers.

Up to now, the server can render bitmaps to corresponding letters in a selected and configured
font. For that, the client starts a session and calls a function to set the properties. By that, a font
will be selected by one of two modes, depending on what the client defines. If he directly
requests a font with a certain filename or face-id, the assigned font face will be used. If he left
these fields undefined, in the configuration structure, then the other fields that he has specified
will be used by a distance function to find the most-matching font.

To help the client with font selection, the server may deliver a list of font descriptors of
available fonts after get_fontlist -call by the client. Because kerning is related to a pair
of glyphs, there is an extra call to request these information for a string. By that, a program can
request kerning information for strings of glyphs that are already cached in the client's memory.
On the client side, the kerning information will be stored in a client-library-internal cache.

The render call will render a requested string, according to the given property-id. Rendered
glyph, consisting of meta-information and the bitmap, will be returned via shared memory. This
shared dataspace will be filled with glyphs until it is full. If not all characters has been rendered,
the client has to repeat the call with the proper string offset.

The performance and security of the font server has to be proven in a further, in particular
long-term tests. By that, drawbacks may become clear, that has not occurred, until now.

6.2 Future Work

Further development will affect both the server’s internal structure (e. g., new services and func-
tionality) and the client side. Of course, more sophisticated clients have to be written to use the
server, because there are only example application available, up to now. | will describe what |
have in mind for those two branches of development.

39

6 Conclusion and Outlook

6.2.1 Internal Challenges

40

1. Add Modules

The point that thd.4 Font Servercan handle different font modules implies that there
exist modules. For the moment, there is only the freetype module. Other modules are
imaginable, which, for example, support other fonts or do a special rendering.

Such a module could render glyphs in colors or with other fillings. Nonetheless, such
changes may imply some slight changes to the server’s interface. But in most cases, the
current interface will meet the demands of special modules.

Moreover, a module may use another module, for example as the renderer and the module
itself does only post-rendering work, like applying bitmaps the glyphs.

. Font Selection

The font selection may be extended, for example to support the XLFD, which | explained
in Section 2.5.1. A user may define a XLFD-string and use it for configuring a font

property structure . Since XLFD is just another way for describing fonts and there
already exists an internal representation, XLFD-strings may be handled by additional
client library functions, which parse or generate XLFD's.

Furthermore, in the future, we have to add miotelligenceto the selection process. The

font selection’s principle, with it's attribute-distance based matching, is already oriented
on Fontconfig (see in Section 2.5.4). But, the distance function can be made better. For
example, if we grougansandsans-seriffont families , like in Fontconfig.

Last but not least, with the possibility to supply the client with face descriptors (See
Section 3.2.5) by theget flistcall, it is a logical consequence to enable the client to do
the font selection. A client may request the whole descriptor list of available fonts, select
a font face and then request the corresponding face by transferring the face-id with the
set propid -call to the server (See Section 4.6). We may include the client-side font
selection in an additional client-library layer, as described in Section 3.2.3.

Besides the point, that a potential time-consuming task is passed to the client side, this
approach has the advantage that clients can implement differing selection policies, if they
want. Such a policy may aim to get a matching font in a short time, another one may be

to get the most matching font. Of course, for the client-side selection, we have to provide

the client with enough information to solve this task.

. Multi-Threaded

As already mentioned in Section 4.5, an alternative structure intends the usage of a multi-
threaded font server. To keep the amount of critical sections low in such a structure, each
registered client needs an own memory instance of the particular font module renderers
(e.g., an instance of the FreeType library).

Such a multi-threaded variant would provide a fair client-serving. A long time-consuming
client would not block high-priority clients, which is an important aspect in a real-time
environment indeed.

6.2 Future Work

6.2.2 Client-Side Challenges

On this side we can differ between enhancements within the client library of font server and the
client programs that use the library.

1. Client Library Extensions

As described in Section 3.2.3 it is aimed to integrate a glyph bitmap caching into an extra
layer of the client library. The goal is to provide client with a method to improve rendering
performance through the caching. By that, not every specific client has to implement the
caching.

The most probable first client will HBOpE, which uses an own caching functionality for
glyphs. It will render all the glyphs, it will need, at initialization and will keep them in a
buffer. Because of that, the glyph cache implementation doesn’t have the highest priority.

2. Client programs

Of course, usable client programs have to be written. Think of WYSIWYG tools, like a
text-writer. The first and most important client will REOpE As it is the central window
manager of the L4 environment, m&OpE clients will use the font server only through
the window manager’s widgets.

41

Bibliography

[Bre97] BREWER, KEVIN J.:1SO 8859 http://www.bbsinc.com/iso8859.html, 1997. | 22

[Chr03] CHROBOCZEK, JuLlusz: Fonts in X11R6.8.2
http://xorg.freedesktop.org/X11R6.8.2/doc/fonts.html, 03 2003. 11

[Fon05] Fonts (Wikipedia) http://en.wikipedia.org/wiki/Fonts, 2005. 3
[FTyO5a] The Freetype Projecthttp://www.freetype.org, 2005. | 4

[FTy05b] Freetype Documentatiohttp://freetype.sourceforge.net/freetype2/documentation.html,
2005. 110

[Kuh99] KUHN, MARKUS: UTF-8 and Unicode FAQ for Unix/Linux
http://www.cl.cam.ac.uk/~mgk25/unicode.html, 06 1999. 10

[L4e01] The L4 Environmenthttp://os.inf.tu-dresden.de/l4env, 2001. 1

[L4e03] L4Env - An Environment for L4 Applications http://os.inf.tu-
dresden.de/l4env/doc/l4env-concept/l4env.pdf, 2003. 25

[Moh02] MOHR, JAMES: The X Windowing System http://www.linux-
tutorial.info/modules.php?name=Tutorial&pageid=104, 2002. 11

[MSTO5] Microsoft Typographyhttp://www.microsoft.com/typography/, 2005. 4

[Pac05] PAackARD, KEITH: Fontconfig user manuahttp://http://www.fontconfig.org, 2005.
12

[VV90] VAN VLECK, ToM: Timing Channels http://www.multicians.org/timing-chn.html,
1990. ' 37

43

	Introduction
	Overview
	Layout

	State of the art
	History of fonts
	Font Terminology
	Outlines and geometric aspects
	Glyph metrics
	Kerning

	Unicode
	FreeType2
	Fonts in Linux
	XLFD
	Font Systems
	Xfontsel
	Fontconfig

	Design
	Design Goals
	Library-based design
	Server-based design

	Design Decisions
	Internal Server Structure
	Interface
	Client Library
	Font Loading
	Font Selection
	A Session
	Unicode Support
	Example Tools
	Dfontsel
	SPet - Simple Performance Tester

	Implementation
	Porting Freetype2
	Glyph Bitmap Transfer
	IPC vs. Dataspace
	Glyph Buffer Structure
	Larger Strings

	Handling Clients
	Supporting Font Modules
	Serial vs. Parallel
	Load Fonts

	Font Selection
	Kerning

	Evaluation
	Performance
	Security

	Conclusion and Outlook
	Conclusion
	Future Work
	Internal Challenges
	Client-Side Challenges

	Bibliography

