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Abstract

Previous results on traf£c shaping on Switched Ethernet
technology demonstrate its practicability and effectiveness
for hard real-time communication [8]. The application-to-
application delays on a 5-node network were reported to be
less than a millisecond with both Fast Ethernet and Gigabit
Ethernet technology with a link utilization of 93% and 49%.

In this paper we describe directions of research to extend
this work, targeting performance bottlenecks we identi£ed in
the current design. We present ideas on of¤oading the traf-
£c shaping process and the receive process into the £rmware
of a network interface card (NIC) and we re£ne the one-shot
reservation protocol for best-effort traf£c.
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1. Motivation

Ethernet as de£ned in the IEEE 802.3 standard is the com-
modity network since decades, and has undergone a number
of changes in its existence. It is used for hard real-time com-
munication already, and demanding applications continue to
emerge. A typical example is factory automation, where Eth-
ernet replaces CAN for performance and cost reasons. Other
applications can be found in the context of professional audio
mastering (audio-LAN) or DMIDI [10], where multiple inter-
actively controlled nodes generate audio data. The bandwidth
requirements in these scenarios are ten to hundred megabytes
a second and delays are expected to be a few milliseconds.

Switched Ethernet is a star-based topology, which in con-
trast to traditional, bus-based CSMA/CD Ethernet entirely
avoids collisions. Thus for real-time communication, node
cooperation is needed only for bandwidth control, but not to
avoid collisions. It was our starting assumption that with
£ne grained traf£c shaping as only means of node coopera-
tion, we should be able to achieve lower guaranteed delays
and higher bandwidth utilization than real-time approaches for
CSMA/CD Ethernet such as time-slotted and token-passing
approaches.

We validated this assumption in [8]. We demonstrated
that commodity Switched Ethernet technology can be used for
low-latency hard real-time communication.
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Figure 1: Buffering inside an output-queueing Switch. If queueing a
frame is necessary, memory is allocated from a shared memory pool
and assigned to the corresponding queue.

In this paper we target performance bottlenecks we identi-
£ed in our host-only based implementation. Therefore, we dis-
cuss ideas on of¤oading the traf£c shaping process and the re-
ceive process into an intelligent network interface card (NIC).
Further, we re£ne the one-shot reservation protocol for best-
effort traf£c.

2. Established Results

In this section we describe brie¤y the results we obtained
so far, introducing the reader the traf£c shaping approach. We
provide performance measurements to both show the effec-
tiveness of the traf£c shaping approach and to motivate the
of¤oading into the NIC.

2.1 Background

Figure 1 shows a typical Ethernet switch. The switch has
N=4 receive ports, control logic, buffer and N queued transmit
ports. When a frame arrives at the switch, the control logic de-
termines the transmit port and tries to transmit the frame im-
mediately. If the port is busy because another frame is already
being sent, the frame is stored in the transmit ports queue,
which is a £rst-in £rst-out (FIFO) queue. If no more mem-
ory is available for storing, the received frame is dropped.
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Bounding delays

Obtaining the maximum queue lengths (backlog) and the max-
imum queueing delay in network switches has been researched
in the past [3, 2]. In [6] we used the network calculus intro-
duced by Boudec to derive bounds speci£cally for Ethernet.
The results are the following:

For calculating the bounds for a speci£c output port, we
describe the traf£c arriving at a speci£c switch input port k
to be forwarded to this output port by a so-called T-SPEC
(C,M,rk,bk). C is the network capacity, this is 100MBit/s for
Fast Ethernet and 1000Mbit/s for Gigabit Ethernet. M is the
maximum frame size, 1514 bytes for Ethernet. rk describes
the average bandwidth and bk allows for some burstiness. The
T-SPEC means that in any time interval of length t not more
than min(C ∗ t + M,rk ∗ t + bk) bytes arrive at input port k for
the considered output port.

For later reference we de£ne gk for all k = 1 . . .N as
gk = bk−M

C−rk
and gmax as the maximum of all gk. tmux denotes

a switch-speci£c parameter describing the maximum delay
(without queueing effects) after which the switch starts to
transmit a frame once it is received.

Then the maximum delay tswitch of a frame for the consid-
ered output port at the switch is

tswitch ≤

N

∑
k=1

bk

C
−gmax ∗ (1−

N

∑
k=1

rk

C
)+ tmux. (1)

The maximum queue length, this is the amount of memory
needed to store the queued frames, is given by tswitch ∗C, or

B≤
N

∑
k=1

b−gmax ∗ (C−
N

∑
k=1

r)+C ∗ tmux. (2)

If B exceeds the amount of memory the switch can use for
buffering, frame loss may occur. For hard real-time systems
this must be prevented.

2.2 Shaping the traf£c

With Ethernet, it must be ensured that traf£c leaving a node
already conforms to previously de£ned T-SPECs. To achieve
this, all sending nodes apply token-bucket traf£c shapers to
all transmitted data. A bucket size b and a £ll rate r result in
traf£c conforming to the T-SPEC (C, M, r, b).

Practicability considerations suggest to have multiple con-
nections at each node, with one traf£c shaper per connection.
Considering the execution-time of these traf£c shapers makes
clear that a minimum traf£c shaping interval Ts must be de-
£ned: Once the bucket gets empty, the next packet is gener-
ated not earlier than Ts time units later. Note that Ts determines
the bucket size, and hence the burst size of a connection: The
bucket must hold at least the amount of data that can arrive in
an interval of length Ts, which is r ∗Ts. As a result, the maxi-
mum queueing delay at the switch is in¤uenced by Ts, leading
to a trade-off between delay and CPU usage.
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Figure 2: The network architecture and the application model.

Implementation in a real-time OS

We implemented the described network access model in our
own network stack to provide application-to-application real-
time data transfer.

The application model of our approach is shown in Fig-
ure 2. An RT-Net driver directly interacts with the network
interface card (NIC). The RT-Net driver shapes the outgoing
traf£c and polices incoming traf£c to avoid CPU overload sit-
uations. It offers connection-oriented packet-based interfaces
to its clients. This allows accounting of transmitted traf£c and
early demultiplexing of received traf£c, both for real-time and
best-effort traf£c.

Each connection has its own token bucket parameter set
including the current state of the bucket. The granularity of
bandwidth reservation is 1 byte/ms. Subject to the traf£c shap-
ing process is the overall length of a frame, including its MAC
header and higher-level protocol headers such as IP and UDP.
The minimum bandwidth that can be reserved corresponds
to one minimal-sized packet per millisecond, which is about
100KByte/s.

Real-time traf£c is transferred to and from real-time clients
using real-time connections. Real-time connections are uni-
directional UDP/IP connections, so real-time applications can
built there own protocol atop UDP/IP. The UDP/IP protocol
handling is done at the RT-Net driver. Therefore, the source
and destination addresses and ports of a connection are set at
connection establishment.

Best-effort traf£c is transferred to and from best-effort
clients using best-effort connections. The best-effort clients
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are allowed to send any desired frame to the network and they
receive most of the frames coming from the network. Typi-
cally, best-effort clients implement IP-stacks.

To allow L4Linux [5] to access the RT-Net driver, we imple-
mented a L4Linux stub-driver emulating an Ethernet device.

Best-effort send traf£c Best-effort traf£c should utilize all
remaining bandwidth, which is not used by real-time traf£c.
Multiple best-effort senders in a network should be able to
share the free bandwidth. Therefore, we considered reserv-
ing a suf£ciently high and £xed bandwidth for each best-effort
send connection not as an option.

Instead, we reserve only a small amount of bandwidth for
every best-effort send connection. If the best-effort sender re-
alizes its need for a higher bandwidth, it requests an additional
one-shot reservation. This one-shot reservation is valid only
for a few hundred milliseconds immediately after the reser-
vation. During this time, the sender can transmit its data. If
the time is over, and the sender still has to send data, it has to
request another reservation.

2.3 Measurements

In [8] we did a number of measurements both with Fast
Ethernet an Gigabit Ethernet to analyze (i) to what extend the
theory behind real-time transfer trough traf£c shaping can be
applied to existing hardware, (ii) what the costs are, especially
for the host CPU, and (iii) whether host running a non real-
time operating system can share the network. Especially we
wanted to know if additional overheads in¤uencing the achiev-
able delays are moderate and hence if the theory is applicable.

We found that traf£c shaping is a practical and effective
method for hard real-time communication. We found also that
in software-based implementations there is a trade-off between
CPU usage and achievable delays at the network. The rest of
this section contains the results of our Fast Ethernet measure-
ments.

Setup

Figure 3 depicts our measuring setup: a switch (Level-One
“FSW-2108TX”, capable of buffering 86 1514-byte frames)
in the middle is connected to £ve nodes. Node A generates
a enumerated and timestamped test packet every millisecond
and sends it to node B. Nodes C, D and E send traf£c of dif-
ferent shapes to node B. We measure the maximum packet
transmission delay from node A to node B and test for packet
loss. An additional “black cable” connects the nodes A and B
for a precise clock synchronization [7] with a clock accuracy
of ≤ 10µs.

We performed three experiments with different traf£c shap-
ing intervals Ts at the senders (10ms, 1ms and 100µs). The
bandwidths for nodes C, D and E were 30MBit/s, 32MBit/s
and 20MBit/s in all experiments.
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Figure 3: Our general measuring setup: £ve nodes connected to a
switch. Nodes A and B are additionally connected by the “black
cable” for precise time synchronization.
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Figure 4: Delay/CPU trade-off with different traf£c shaping inter-
vals. The depicted CPU load is obtained from node D.

Achieved Throughput and Delays

Due to framing overhead, the achievable bandwidth is limited
to 98.6MBit/s with Fast Ethernet. We actually sent slightly
over 92MBit/s to node B, thus utilized its link to 93%. With
this utilization, we achieved maximum delays from A to B of
9.4ms, 1.4ms and 0.582µs, depending on Ts.

CPU utilization

We also measured the CPU requirement of traf£c shaping on
nodes C, D and E. With our real-time system executing, the
nodes need between 2% and 21% of their CPU time, depend-
ing on Ts, their speed and send bandwidth. The delay/CPU
trade-off is demonstrated in Figure 4. Clearly, you can see the
in¤uence of the decreased shaping intervals to the CPU usage.
Thus, there is a trade-off between traf£c shaping accuracy, and
hence transmission delay bounds, and CPU usage in the nodes
connected to the network.
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Figure 5: Of¤oaded transmission architecture. The TX-Rings and
the memory areas are shared between the NIC and the clients.

3. Planned work

Figure 4 in Section 2.3 demonstrated that the CPU utiliza-
tion increases substantially when a low network latency is re-
quired. This motivates a technology that has been applied suc-
cessfully to lower the CPU utilization of network processes,
this is £rmware of¤oading [1, 4, 9]. The idea is to instruct an
intelligent network interface card (NIC) to perform some of
the resource critical tasks, disburdening the host CPU.

While the U-Net project [1] and the Myrinet GM protocol
[9] used £rmware of¤oading for performance reasons, Dan-
nowski implemented the policing of incoming network traf£c
at an ATM NIC [4] to bound the CPU utilization in a real-
time system. A side-effect of the of¤oaded policing was an
of¤oaded demultiplexing of received traf£c, allowing a real
zero-copy receive process. As copying of network data is
known to seriously impact the performance of network pro-
cessing, zero-copy implementations should be favored when-
ever possible.

Regarding traf£c shaping on Switched Ethernet, £rmware
of¤oading can be used for early demultiplexing in the receive
path and for accelerating the traf£c shaping process in the
transmit path. Furthermore, an interaction with the NIC driver
for normal transmit operations might even be circumvented at
all, meaning that no context switch to the driver is needed for
sending data.

3.1 Data transmission

Our planned architecture is described in Figure 5. The NIC
has a notion of a connection per client, and periodically polls
the established connections for data to send. Assigned to each
send connection is a set of parameters. This set contains

i) the memory area the client is allowed to send data from

ii) the send ring with references into the memory area
iii) the reserved bandwidth
iv) the current token bucket status.

The memory area describes a contiguous region of the
physical memory. Together with the send ring it is mapped
into the clients address space, and is thus shared between the
NIC and the client. To isolate the clients from each other, dif-
ferent clients use different memory areas and send rings.

The transmission of data is similar to that of a normal send
ring-based NIC: If a client wants to transmit data, it puts a ref-
erence into the contiguous region into the send ring. The NIC
discovers this, veri£es the memory reference, checks whether
the client can send traf£c (traf£c shaping), sends the data and
optionally raises an interrupt to signals the successful send op-
eration. In the case a client is not allowed to send traf£c as its
token bucket is empty, the send request is silently ignored in
this round, and the NIC continues with the next client. After
some time and some iterations, the bucket will contain enough
tokens to send the packet.

Thus, the following features must be added to a standard
NIC implementation:

• support of multiple clients,
• shaping of the send traf£c.

Network driver tasks

Setting up a new connection at the NIC requires a prior band-
width reservation and the reservation of the shared ring and
the shared memory area. Obviously, these tasks should be ex-
ecuted by a trusted instance, which is the network driver. As
the NIC typically does only has one interrupt line, dispatching
of the sent-interrupt to the clients must be done by the driver
too. Note that the clients typically do not request an interrupt
for each send packet, instead interrupts are typically coalesced.
Moreover, real-time connections typically generate traf£c ac-
cording to their reservation, and thus should not observe a full
send ring. Consequently, they may not need the signalling at
all.

Summary To transmit data the clients directly interact with
the NIC without switching the context to the network driver.
Copying of data is not necessary. Best-effort connections need
to interact with the driver for signalling of sent data. Com-
pared to the current software implementation, this safes the
client-driver interaction for sending data, and moves the traf£c
shaping from the host CPU to the NIC.

3.2 Data Reception

The planned receive path architecture is depicted in Figure
6. As in the send path, the NIC has a notion of a connection for
each client. The parameter set for each connection contains

i) the memory area the client is allowed to receive data into
ii) the receive ring with references into the memory area
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Figure 6: Of¤oaded receive architecture. The RX-Rings and the
memory areas are shared between the NIC and the clients.

iii) MAC address
iv) real-time connections: IP address and UDP port number

The receive process is similar to that of a normal ring-based
NIC: A client puts references into its memory area into the
receive ring. When the NIC receives a packet, it identi£es
the correct connection using the parameter sets, copies the
data to the memory reference the client provided in its receive
ring, and optionally raises an interrupt for signalling. To £nd
the correct connection for a received UDP/IP packet, the NIC
checks the packet against the real-time connections, which are
UDP/IP connections. If this fails, or the packet was no UDP/IP
packet, the NIC uses the MAC addresses to differentiate be-
tween the best-effort connections.

Thus, a standard NIC implementation must be extended to
support multiple clients and to perform the demultiplexing.

Summary Compared to the current software implementa-
tion, the demultiplexing of data is done at the NIC before
copying the data into the main memory. Thus, the data copy
needed with the software implementation is avoided.

3.3 One-shot reservations

As stated in Section 2.2, we use one-shot reservations to
dynamically adapt to the bandwidth need of best-effort send
connections. The one-shot reservations are triggered by the
clients of a connection (typically IP-stacks), as only the clients
know whether they have a demand for a higher bandwidth.

Our current implementation uses TCP/IP connections to
communicate with the resource manager at the network. With
L4Linux as client, this communication is sent over the same
connection as the application traf£c of L4Linux. Thus, once
L4Linux connection is congested, the one-shot reservations
are delayed too. In experiments we found that L4Linux with

the current implementation utilizes the available bandwidth to
50%, with one-shot reservation times of 100ms.

Instead of using TCP/IP as the transport protocol for the
reservation, we plan to switch to UDP/IP at a separate real-
time connection. From the use if a lightweight protocol, com-
bined with the £rmware of¤oading, we expect the average de-
lays of the one-shot reservation messages to drop signi£cantly,
resulting in a higher bandwidth utilization.

4. Conclusion

Firmware of¤oading has been successfully used by early
adopters to place products with new features at the market
before their competitors (Fore PCA-200E ATM card, 3Com
3C985 Gigabit Ethernet). Due to the high production costs
of programmable cards, manufacturers often discontinued
their production after a while and replaced them by nonpro-
grammable cards, once standards has been established and
mass-production justi£ed the development of new hardware.
However, in the £rst place they were used to explore new fea-
tures.

We think, that the addition of traf£c shapers to Ether-
net cards requires only moderate changes to current Ethernet
chips, resulting in production costs comparable to those of nor-
mal Ethernet cards. After showing its practicability in a soft-
ware implementation, the veri£cation of its effectiveness with
£rmware of¤oading should be the next step to establish traf£c
shaping on Switched Ethernet for low-latency hard real-time
communication.
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