
Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 1

Low-latency Hard Real-Time Communication over Switched Ethernet

Jork Loeser
TU Dresden, Germany

jork@os.inf.tu-dresden.de

Hermann Haertig
Dresden, Germany

haertig@os.inf.tu-dresden.de

Abstract

Ethernet, the most widely used commodity network, in-
creasingly moves toward switches as implementation tech-
nology thus replacing busses. This allows to use traf£c
shaping techniques to implement hard real-time distributed
systems on commodity networks. However, because Eth-
ernet switches lack build-in policing features, nodes con-
nected by Switched Ethernet need to be cooperative. Al-
though the theory behind traf£c shaping for real-time com-
munication is known for some time, it has not been consid-
ered for Ethernet so far.

In this paper we present the implementation of traf£c
shaping on Switched Ethernet technology. We make thor-
ough experiments to understand the cost and practical lim-
its of using Fast and Gigabit Ethernet for hard real-time
communication. We do measurements to analyze proper-
ties of switches and delays that we can achieve using these
switches. We further analyze the in¤uences of non real-time
Linux nodes sharing the network.

1. Motivation

Ethernet as de£ned in the IEEE 802.3 standard is the
commodity network since decades, and has undergone a
number of changes in its existence. It is used for hard real-
time communication already, and demanding applications
continue to emerge. A typical example is factory automa-
tion, where Ethernet replaces CAN for performance and
cost reasons. In the context of professional audio master-
ing (audio-LAN) Ethernet is experimented with: multiple
nodes generate samples for hundreds of instruments in par-
allel and send them to a central mixer node. The process is
interactively controlled and delays are expected to be less
than 10ms. The bandwidth requirement for such a scenario
is ten to hundred megabytes a second. Another application
from the audio domain is DMIDI [30], an attempt to use
Ethernet LANs for MIDI control commands. Although the
bandwidth demands are moderate, the delays are expected
to be a few milliseconds too.

CSMA/CD Ethernet Real-time approaches using the
original bus-based Ethernet basically fall in three cate-
gories: token-based medium access control protocols, time
slot-based protocols and statistical approaches. Time slots
and token passing techniques are used by cooperating nodes
for both: to avoid collisions and to obey the limit of band-
width allocated to the participating nodes. Intuition indi-
cates that the use of such techniques to avoid collisions lim-
its the achievable utilization and increases the CPU load of
the nodes much more than using more relaxed forms of co-
operation that only control bandwidth allocation. Related
research supports our intuition on the high cost for collision
avoidance by node cooperation (see Section 5).

Switched Ethernet is a star-based topology providing a
private collision domain to each of the ports of a switch.
Collisions do not occur, thus node cooperation is needed
only for bandwidth control, not any more to avoid colli-
sions. It was our starting assumption that with £ne grained
traf£c shaping as only means of node cooperation, we
should be able to achieve lower guaranteed delays and
higher bandwidth utilization than time-slotted and token-
passing approaches, even though Switched Ethernet does
not support policing in the switches as for example in ATM
switches.

Although we heard rumors on the usage of Switched Eth-
ernet in hard real-time applications that do not rely on pure
time-driven technology (as for example in MARS [12]), we
are not aware of any practical analysis.

In this paper, we make an attempt to close that gap and
to validate our assumption as stated previously. We show
how commodity Switched Ethernet technology can be used
for low-latency hard real-time communication, provided the
right operating system support is available: In Section 2 we
£rst adapt well-established scheduling theory to our needs.
In Section 3 we show how the needed traf£c shaping can be
practically done using the Dresden real-time operating sys-
tem (DROPS) as a basis for experimentation. In Section 4
we present detailed measurements. Section 5 surveys other
work in the area of real-time networking and relates it to our
approach. In Section 6 we summarize the paper and give an
outlook to future work.

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 2

2. Background
Figure 1 shows a typical Ethernet switch. The switch

has N=4 receive ports, control logic, buffer space and N
queued transmit ports1. When a frame arrives at the switch,
the control logic determines the transmit port and tries to
transmit the frame immediately. If the port is busy because
another frame is already being sent, the frame is stored in
the transmit ports queue, which is a £rst-in £rst-out (FIFO)
queue. The memory to store pending frames is obtained
from a shared memory pool. If no more memory is avail-
able, the received frame is dropped.

Switch

pool

shared
memory

switch fabric

transmit queues

rx port

rx port

tx port

rx port

tx port

tx port

rx port

tx port

Figure 1: Buffering inside an output-queueing Switch. If queue-
ing a frame is necessary, memory is allocated from a shared mem-
ory pool and assigned to the corresponding queue.

2.1. De£nitions

For the rest of this paper, we use the following terms to
refer to times related to frame and packet transmission.

switch multiplexing delay (tmux) is a switch-speci£c pa-
rameter describing the maximum delay (without
queueing effects) after which the switch starts to trans-
mit a frame once it is received.

queueing delay (tqueue) is the time a queued frame sits in
the queue of a switch plus the time needed to transmit it
£nally. With £rst-in-£rst-out queues (FIFOs), queuing
delays solely depend on the queue length, and bound-
ing this length results in bounded queueing delays.

switch delay (tswitch) is the time a frame is delayed at a
switch. tswitch = tmux + tqueue.

operating system delay (tos) covers the delays at the
nodes due to interrupt handling and scheduling. It is
the sum of the maximum delay at the sender and the
maximum delay at the receiver.

frame transmission delay (tframe) is the time needed to
transmit a frame over the Ethernet medium. For maxi-

1For reasons given in the related work section we do not consider using
multiple priority queues in switches.

mum sized frames (1514 bytes) t f rame is 121µs for Fast
Ethernet and 12µs for Gigabit Ethernet.

packet transmission delay (ttrans) is the application-to-
application delay of a packet sent over the network.
For two nodes connected by a switch, ttrans = tswitch +
tos + t f rame.

transmission delay bound (tmax) is the upper bound of
the packet transmission delay. This especially requires
knowledge about the maximum queueing delay.

observed transmission delay (tobs) is the measured
application-to-application delay of a packet sent over
the network.

2.2. Bounding delays

Obtaining the maximum queue lengths (backlog) and the
maximum queueing delay in network switches has been
intensively researched in the past, especially in the con-
text of ATM networks. Cruz [6] was the £rst who de-
veloped a calculus on networking delays, and Boudec [2]
later developed a more elegant calculus. Based on this, nu-
merous work was done to calculate delays, buffer require-
ments and loss probabilities for statistical real-time systems
[1, 13, 14, 19, 26, 27]. As described in detail in [15],
we use the network calculus introduced by Boudec to de-
rive bounds speci£cally for Ethernet and to derive rule-
of-thumb formulae that deliver correct, but not necessarily
tight bounds:

The delay and buffer bounds of a switch transmit port
depend (i) on the traf£c arriving at the switch for that trans-
mit port, described by its arrival curve α and (ii) on the
availability of the switch to send that data, described by the
service curve β. The arrival curve α is the sum of the arrival
curves of the traf£c at the receive ports αk, with k denot-
ing the receive port. All αk have the form of a T-SPEC, a
speci£c form of traf£c description commonly used in the
context of ATM: αk(t) = min(Ct + M,rkt + bk). C spec-
i£es the maximum transmission rate and rk the long term
average rate. M is the maximum packet size and bk ex-
presses the burstiness of the traf£c. The service curve of an
Ethernet switch is described by the rate-latency function:
β(t) = C ∗ (t− tmux)

+, with (t− tmux)
+ de£ned to be 0 for

t < tmux.

Obviously, the sum of the long term average input rates
rk of traf£c for one switch transmit port must not exceed the
maximum rate of the network medium, thus it must hold:

N

∑
k=1

rk ≤C (1)

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 3

[C+r]1

(t)α
β= muxC(t−t)+

t mux

[r +r]1 2

t
M

[2C]

B

tswitch

gmax

Figure 2: Illustration of the arrival curve α(t) (thick line) as the
sum of two ¤ows (C,M,r1,b) and (C,M,r2,b). The slopes of the
3 parts of α(t) are 2C, C + r1 and r1 + r2.

Figure 2 illustrates the arrival curve of a switch with two
receive ports and its service curve. According to [2], the
maximum backlog B is the maximum vertical distance be-
tween the arrival curve α and the service curve β. We de£ne
gk as the time of the in¤exion point of arrival curve αk, thus

gk =
bk−M
C− rk

(2)

and de£ne gmax as the maximum of all gk. It is easy to see
that the maximum vertical distance between α and β is at
gmax. As argued in [15], tmux ≤ gmax in practice. Thus, the
buffer bound is

B =
N

∑
k=1

bk +
N

∑
k=1

rk ∗gmax−C ∗ (gmax− tmux) (3)

B =
N

∑
k=1

bk−gmax ∗ (C−
N

∑
k=1

rk)+C ∗ tmux (4)

If B exceeds the amount of memory the switch can use for
buffering, frame loss may occur. For hard real-time systems
this must be prevented.

According to (1), the second addend in (4) is negative or
zero, and hence a safe rule-of-thumb backlog formula is

Best =
N

∑
k=1

bk +C ∗ tmux. (5)

This means, the memory required in the switch can be esti-
mated by the sum of the bursts in the T-SPECs plus a small
£xed amount (C ∗ tmux).

According to Le Boudec [3], the maximum delay d of a
system that offers a service curve β to a ¤ow that is con-
strained by an arrival curve α and serviced in FIFO order, is
given by the maximum horizontal deviation between α and
β. This is the distance between α and C ∗ (t− tmux) at gmax,
divided by the slope of β, which is C.

Hence, the delay bound is

tswitch =
N

∑
k=1

bk

C
−gmax ∗ (1−

N

∑
k=1

rk

C
)+ tmux (6)

By using equation (1) we £nd a rule-of-thumb bound:

test =
N

∑
k=1

bk

C
+ tmux. (7)

This means, an estimation for the maximum delay of the
switch is given by the time needed to transmit the bursts of
the T-SPECs with the ports maximum bandwidth plus the
delay imposed by the electronics of the switch.

3. Shaping the traf£c

In contrast to other switched network architectures with
real-time properties as an important design aspect (e.g.,
ATM), Ethernet switches typically have no notion of con-
nections and speci£cally do no traf£c policing on their own.
Hence, it must be ensured that traf£c arriving at the switch
already conforms to previously de£ned T-SPECs.

To achieve this, all sending nodes apply token-bucket
traf£c shapers [23] to all transmitted data. Using a token-
bucket traf£c shaper with bucket size b and a £ll rate r to
shape packets of maximum size M before sending them over
a physical link with bandwidth C results in a traf£c stream
conforming to the T-SPEC (C, M, r, b).

3.1. Traf£c shaper implementation aspects

In a real system, a node sends multiple streams, each
with different bandwidth requirements, to different destina-
tion nodes. In other words, there are multiple connections
at each node, with one traf£c shaper per connection.

For £nding bounds for the bucket sizes, let us look at the
performance of a traf£c shaper implementation: When an
ideal token-bucket shaper with parameters (r,b) is ¤ooded
with packets of size s with an accumulated size bigger than
b, it transmits a burst of length≤ b immediately, and further
packets after exact intervals of s/r time units. For example,
a rate of 50MBit/s and a packet size of 1514 Bytes result
in intervals of 242µs. Although this could be executed on
modern CPUs, the resulting timer interrupt load could be
prohibitive, depending on the application.

Therefore, we de£ne the traf£c shaping interval Ts and
allow a traf£c shaper to replenish an empty bucket no more
often than once every Ts time units. Thus, once the bucket
gets empty, the next packet is generated not earlier than Ts

time units later. Note that Ts determines the bucket size, and
hence the burst size of a connection: The bucket must hold
at least the amount of data that can arrive in an interval of
length Ts, which is r ∗Ts.

Summarizing, performance considerations lead to the
de£nition of a traf£c shaping interval Ts. The bucket-size
b of a connection with rate r is at least r ∗Ts. As a result,
the maximum queueing delay at the switch is in¤uenced by
Ts, leading to a trade-off between delay and CPU usage.

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 4

network node
real−time Ethernet

real−time Ethernet
resource manager

network node
real−time Ethernet

network node
real−time Ethernet network node

real−time Ethernet

. . .

network
real−time Ethernet

eth driver

RT−Net API

RT Application DSI

data

tx rxtx rx

data

TCP/UDP/IP

INET

Linux−API

Linux Application

L
4L

in
u

x

R
T

−N
et

 d
ri

ve
r

RT−Net ether stub

app−interface RT−Net lib

Socket−Interface connection ctrl

resource lib

resource ctrl

Figure 3: The network architecture and the application model.

3.2. Implementation in a real-time OS

We implemented the described network access model in
our own network stack to provide application-to-application
real-time data transfer.

Our system is built on the Dresden real-time operat-
ing system DROPS [11]. DROPS runs real-time applica-
tions that reserve the resources they need for proper oper-
ation. Remaining resources, including CPU cycles, mem-
ory, and network bandwidth, can be consumed by non real-
time applications. A speci£c non-real-time application is
L4Linux[10], a variant of the Linux kernel that runs encap-
sulated in its own address space in user mode.

Application model The application model of our ap-
proach is shown in Figure 3. An RT-Net driver directly in-
teracts with the network interface card (NIC). The RT-Net
driver shapes the outgoing traf£c and polices incoming traf-
£c to avoid CPU overload situations. It offers connection-
oriented packet-based interfaces to its clients. This allows
accounting of transmitted traf£c and early demultiplexing
of received traf£c, both for real-time and best-effort traf£c.

Each connection has its own token bucket parameter set
including the current state of the bucket. The granularity
of bandwidth reservation is 1 byte/ms. Subject to the traf£c
shaping process is the overall length of a frame, including
its MAC header and higher-level protocol headers such as
IP and UDP. The minimum bandwidth that can be reserved
corresponds to one minimal-sized packet per millisecond,
which is about 100KByte/s.

Real-time traf£c is transferred to and from real-time
clients using real-time connections. Real-time connections
are unidirectional UDP/IP connections, so real-time ap-
plications can built there own protocol atop UDP/IP. The

UDP/IP protocol handling is done at the RT-Net driver.
Therefore, the source and destination addresses and ports
of a connection are set at connection establishment.

Best-effort traf£c is transferred to and from best-effort
clients using best-effort connections. The best-effort clients
are allowed to send any desired frame to the network and
they receive most of the frames coming from the network.
Typically, best-effort clients implement IP-stacks.

For L4Linux we implemented a stub-driver emulating an
Ethernet device. This allows L4Linux to access the RT-Net
driver.

For data transfer between the RT-Net driver and its
clients, the DROPS Streaming Protocol (DSI) [17] is used.
It allows a fast zero-copy, asynchronous interprocess com-
munication for real-time and best-effort traf£c. In cases of
overload it signals resulting data omission, which happens
when incoming traf£c must be dropped.

Admission process An admission and reservation pro-
cess prior to establishing a send connection at the RT-Net
driver ensures that enough resources are available and given
delay-guarantees are met. Therefore, each connection has
its own parameter set containing its source and destination
addresses, its bandwidth and its maximum acceptable de-
lay. After local admission, a management instance at a ded-
icated node at the network is contacted. The management
instance keeps track of all established connections. Upon
admission, it veri£es that the parameters of the new con-
nection can be met. It also veri£es that the increased switch
delays resulting from the new connection are within the de-
lay bounds of already established connections.

Best-effort send traf£c Best-effort traf£c should utilize
all remaining bandwidth, which is not used by real-time
traf£c. Multiple best-effort senders in a network should be
able to share the free bandwidth. Therefore, we considered
reserving a suf£ciently high and £xed bandwidth for each
best-effort connection not as an option.

Instead, we reserve only a small amount of bandwidth for
every best-effort send connection. If the best-effort sender
realizes its need for a higher bandwidth, it requests an ad-
ditional one-shot reservation. This one-shot reservation is
valid only for a few hundred milliseconds immediately after
the reservation. During this time, the sender can transmit its
data. If the time is over, and the sender still has to send data,
it has to request another reservation.

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 5

256 MByte RAM)

Node C
(AMD Duron 800MHz,

256 MByte RAM)

Node E
(Intel Celeron 900MHz,

Node B
(Intel Celeron 1.7GHz,

256 MByte RAM)

Node A

128 MByte RAM)
(Intel Celeron 900MHz,

Node D
(Intel Celeron 1.7Ghz,

256 MByte RAM)

"black cable"

Switch

Figure 4: Our general measuring setup: £ve nodes connected to a
switch. Nodes A and B are additionally connected by the “black
cable” for precise time synchronization.

4. Measurements
The objectives of our measurements were:
• to reliably identify characteristics of Ethernet switches

to be used for shaping decisions (Section 4.2)
• to £nd out the limits for utilization and delay guaran-

tees that can be practically achieved (Section 4.3)
• to £nd the trade-off between CPU load and shaping

granularity, which in¤uences the transmission delays
(Sections 4.3.1 and 4.3.2)

• and to £nd whether the network can be shared between
non real-time nodes and nodes doing real-time com-
munication (Section 4.3.3)

4.1. Measurement setup

Figure 4 depicts our general measuring setup: a switch in
the middle is connected to £ve nodes. Node A periodically
generates test packets and sends them to node B. Nodes C,
D and E send traf£c of different shapes to node B. We mea-
sure the maximum packet transmission delay from node A
to node B and test for packet loss. An additional “black
cable” connects the nodes A and B for a precise clock syn-
chronization.

We analyzed three different 8-port Ethernet switches:
a Fast Ethernet Level-One “FSW-2108TX” switch, a Fast
Ethernet 3Com “Of£ceConnect Dual Speed Switch 8”
switch and a Gigabit Ethernet Intel “Netstructure 470F” op-
tical switch.

For Fast Ethernet measurements, all nodes are equipped
with Intel EEPro/100 Fast Ethernet network cards. For Gi-
gabit measurements, all nodes use 3Com 3C985B-SX type
optical network cards (AceNIC II).

In some experiments we determine the CPU load, that is
how many CPU cycles are consumed compared to the CPU
cycles available during some time interval. Therefore we
use a low-priority looper that consumes and counts all idle
CPU cycles.

Achieving worst-case delays Oechslin encountered in
[18] the dif£culties of reliably reproducing the worst-case
with traf£c that is shaped according to a given set of

Pause

Burst

time

rate

C

r

Figure 5: One period of a symmetric burst.

Node B

Node A timestamp 2

timestamp 1 timestamp 3

(IRQ)

gostart

ready time (A)

time (B)

done

Figure 6: Resynchronization process

T-SPECs. He found periodic traf£c patterns, symmetric
bursts, that lead to maximum queue lengths with a high
probability. Figure 5 shows the general pattern of symmet-
ric bursts. Unless otherwise noted, we use these symmetric
bursts in our experiments.

Measuring µ-second delays To measure transmission de-
lays, we use test packets carrying timestamps and sequence
numbers. A send application at node A generates the test
packets. At node B, a receiving application compares the
timestamps with its local clock and calculates the transmis-
sion delay (observed transmission delay).

We expect delays in the order of microseconds to mil-
liseconds, and thus nodes A and B must be synchronized
with an accuracy of a few microseconds. Therefore we con-
nect the nodes by a parallel cable (the “black cable” in Fig-
ure 4) and applied a procedure similar to that of NTP as
de£ned in RFC 1305 (Figure 6). A detailed description of
the synchronization process as well as the derivation of its
accuracy can be found in [16]. We achieve a clock accu-
racy ≤10µs. The resynchronization is required to run not
more often than once every second, and less often in most
cases. A resynchronization procedure takes not more than
20µs each.

Unless otherwise noted we generate the test packets
from node A to node B the same way in all experiments.
Node A uses the RT-Net driver to generate UDP-packets
in minimum-sized Ethernet frames (64 bytes including all
headers, 22 bytes UDP payload) every millisecond. At node
B the RT-Net driver dispatches the test packets based on
their UDP port and hands them over to the test application.
Due to the regularity of the test traf£c and its small band-
width the results of the experiments are mainly in¤uenced
by the traf£c generated additionally at the other hosts.

4.2. Switch characteristics
For later interpretation of message delays or loss with

respect to queueing, we £rst did basic measurements with

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 6

the switch and the network stacks.

Measuring switch multiplexing delays The equations
in Section 2.2 for calculating switching delay and buffer
bounds require a parameter tmux. tmux expresses the time it
takes for a switch to start sending a packet after it received
it, given the packet is not enqueued. To measure this time
we compared the maximum observed transmission delay of
a maximum sized Ethernet frame from nodes A to B, once
directly connected and once connected by a switch. The
three other nodes (C, D, E) mutually exchanged traf£c to
put load on the switching fabric, but prevented queueing in
the switch.

We collected one million samples for each test. We
found that the Fast Ethernet switches add 45µs to the trans-
mission delay. The Gigabit switch adds 25µs.

Test packet transmission delays Next we measured the
maximum packet transmission delays of the 64-byte test
packets between node A and B under the condition that the
switch had not to queue any packets. As in the previous
section, we loaded the switching fabric with parallel load.
Table 1 shows the maximum transmission delays we ob-
served.

100MBit, 3Com Of£ceConnect 65µs
100MBit, Level-One “FSW-2108TX” 80µs
1000MBit, AceNIC interrupt coalescing disabled 175µs
1000MBit, AceNIC interrupt coalescing enabled 238µs

Table 1: Maximum application-to-application packet transmis-
sion delays with different switches and driver features.

The AceNIC Gigabit Ethernet cards provide a sophisti-
cated interrupt coalescing feature that reduces the interrupt
load, although it possibly increases the delay on packet re-
ception. For later comparison, the table contains the values
for both con£gurations.

Measuring switch buffer capacities To use the traf£c
shaping approach for real-time transfer, the switches must
have enough buffer capacity for queueing packets. We ana-
lyzed whether the switches can be used by determining their
buffer capacities available for queueing. Based on the gen-
eral setup of Figure 4, nodes C and D sent two bursty traf£c
streams to node B. The streams had a rate slightly under the
half of the maximum medium bandwidth (100MBit/s and
1000MBit/s, respectively) each. They were shaped in an
on-off form, thus a burst of an adjustable length b was fol-
lowed by a pause. The maximum switch backlog required
by these two streams is b [15].

We started with small burst lengths and increased the
burst lengths until packet loss occurred. Table 2 shows the
maximum burst lengths where no packet loss occurred.

The 3Com switch reliably buffers only 20KByte, thus
it is ineligible for the traf£c-shaping approach. From the

Switch (in 1514Byte-frames) (in KByte)

100MBit, 3Com 14 20.5KByte
100MBit, Level-One 87 127.4KByte
1000MBit Intel 200 293KByte

Table 2: Maximum burst lengths without packet loss.

documentation of the Intel Gigabit switch we know that it
can store up to 2MByte of data, and it turned out that it was
node B that could not receive bursts of this size with Gigabit
bandwidth.

4.3. Measuring of traf£c-shaping effects

Knowing the parameters of the switches, we analyzed
the effects of different traf£c shaping intervals to worst-case
packet transmission delays and to CPU usage.

4.3.1. Fast Ethernet with DROPS

We began the measurements with the Fast Ethernet
Level-One switch. All connected nodes executed the
DROPS real-time system.

We performed three different experiments where nodes
C, D and E sent data to node B. We varied the traf£c shap-
ing intervals Ts at the senders, but kept the bandwidth reser-
vation constant. Table 3 lists the reserved gross bandwidths
and bucket sizes. The bucket size of a node is calculated as
b = r ∗Ts + M with r being the reserved bandwidth of that
node and M the length of a maximum-sized Ethernet frame,
which is 1514Bytes.

Node C D E
(40MBit/s) (32MBit/s) (20MBit/s)

Ts=10ms 51514 bytes 41514 bytes 26514 bytes
Ts=1ms 6515 bytes 5514 bytes 4014 bytes

Ts=100µs 2014 bytes 1914 bytes 1764 bytes

Table 3: Bucket sizes depending on the traf£c shaping interval Ts.

Buffer bounds and worst-case delays Table 4 shows the
resulting buffer bounds and delays of the three con£gura-
tions. The buffer bound is calculated from Equation (4).
tmax is calculated from Equation (6), increased by the 80µs
from Table 1. For calculating test the delay estimator (7) is
used. tobs is the maximum transmission delay we have ob-
served in our experiments. In each experiment we collected
350,000 samples. No packets were lost.

buffer bound tmax test tobs ≤

Ts=10ms 111.8KByte 9357µs 9731µs 8759µs
Ts=1ms 15.7KByte 1380µs 1345µs 1300µs

Ts=100µs 6.1KByte 582µs 506µs 438µs

Table 4: Buffer bounds in the switch and delay bounds for packet
transmission from node A to node B depending on the traf£c shap-
ing interval Ts.

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 7

The observed transmission delays are actually smaller
than the theoretical bounds. This can be explained by
the observation that the maximum queue length is only
achieved in extremely rare situations at the switch, and these
situations just did not happen during our experiments.

CPU usage To measure the CPU requirement of traf£c
shaping, we repeated the experiments but modi£ed the send
applications to generate traf£c as fast as possible. The sym-
metric burst generation required £ne and therefore expen-
sive timers that would have falsi£ed our CPU measure-
ments. Table 5 shows the CPU usage at nodes C, D and
E with the modi£ed send applications.

Node C D E
(40MBit/s) (32MBit/s) (20MBit/s)

Ts=10ms 4.1% 2.9% 2.3%
Ts=1ms 11% 9% 7.2%

Ts=100µs 21.2% 17.2% 11.9%

Table 5: CPU load depending on the traf£c shaping interval.

The delay/CPU trade-off is demonstrated in Figure 7.
Clearly, you can see the in¤uence of the decreased shaping
intervals to the CPU usage. Thus, there is another trade-off
between traf£c shaping accuracy, and hence transmission
delay bounds, and CPU usage in the nodes connected to the
network.

 1000

 10000

de
la

y
in

 m
ic

ro
se

co
nd

s

delay bound
estimated delay bound

observed maximum delay

2.9

9

17.2

0.1ms 1ms 10ms

C
P

U
 lo

ad
 in

 %

traffic shaping interval

CPU load at node D

Figure 7: Delay/CPU trade-off with different traf£c shaping inter-
vals. The depicted CPU load is obtained from node D.

Interpretation of results With maximum sized frames of
1514 bytes on Fast Ethernet the achievable bandwidth is
limited to 98.6MBit/s due to framing overhead and inter-
packet gaps (corresponding to 8 + 12.5 Bytes). We actually
sent slightly over 92MBit/s to node B, thus utilized its link
to 93%. With this utilization, we can guarantee network de-
lays of 9.4ms, 1.4ms and 0.582µs, respectively, depending
on the amount of CPU cycles one is willing to spend.

The error by the delay estimator (7) in our experiments
was less than 16%.

With a traf£c shaping interval of 10ms, nearly all the
buffer capacity of the switch is needed for that one output
port. In another experiment we tried to send two additional
30MBit-streams from node C and node E to node D, which
immediately resulted in lost packets. With a traf£c shaping
interval of 1ms no packet loss occurred.

4.3.2. Gigabit Ethernet with DROPS

For Gigabit Ethernet measurements we used the Intel
Netstructure optical Switch. The AceNIC network cards
had the interrupt coalescing feature enabled. We used a
traf£c shaping interval of Ts=1ms. All nodes had the same
bandwidth reservation of 160MBit/s each. Table 6 shows
the bucket sizes and the CPU load at the sending nodes.
According to Equation (4) 64KByte of switch buffer were
needed. The delay bound of this con£guration was expected
to be 687 µs: the switch delay according to Equation (6)
plus the 238µs maximum transmission delay at the non-
queued switch from Table 1. We actually observed a max-
imum packet transmission delay of 906µs with no packet
loss.

Node C D E

bucket size 21514 bytes 21514 bytes 21514 bytes
CPU load 48 % 30 % 39 %

Table 6: Bucket sizes and CPU load for the Gigabit Ethernet ex-
periment with a traf£c shaping interval Ts=1ms.

We did another experiment with 100µs shaping intervals.
To measure the expected small transmission delays with a
better accuracy we disabled the interrupt coalescing features
of the AceNIC network cards. This resulted in lower delays
on packet transmission and reception, but it increased the
interrupt load at all nodes. We had to reduce the bandwidth
reservations to 80MBit/s each, and the CPU load increased
signi£cantly. The bucket size in all nodes was selected to
2114 Bytes. The resulting delay bound was 247 µs (72µs
switch delay and 175µs according to Table 1). We actually
observed a maximum packet transmission delay of 341µs
with no packet loss.

Interpretation of results With Gigabit Ethernet we mea-
sured longer delays than we expected. In other experiments
it turned out that the receiving node B was just overloaded
and it deferred the packet delivery to the test application.

This shows a general problem at the receiver: the de-
multiplexer has to spend CPU cycles for demultiplexing
each packet, sometimes just to £nd out that no application
is waiting for them. A solution to this was already given
by Dannowski [7]. He applied early demultiplexing at the
£rmware level of an ATM card, and successfully removed
load from the CPU.

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 8

Node C D E tmax ≤ tobs ≤

(40MBit/s) (32MBit/s) (20MBit/s)

Linux 2.4.22, HTB, 10ms 54022 bytes 43536 bytes 27810 bytes 9807µs 6928µs
Linux 2.6.0-test9, TBF, 1ms 6450 bytes 5495 bytes 4000 bytes 1372µs 995µs

Table 7: Bucket sizes (in bytes), delay bound and observed delays for the Linux experiments.

With a maximum delay of 906µs we can utilize the out-
put port to 49%. The limitation are the attached nodes, not
the network switch. The buffer requirement of the one out-
put port would allow for higher bandwidths on more output
ports.

This result compares favorable to time-slotted ap-
proaches, which are very sensitive to the network jitter and
delays inherent to switches. Schwarz reports in [22] about
an implementation of the time triggered TTP/C protocol on
Gigabit Ethernet. The delay and jitter of the network he an-
alyzed result in a maximum overall utilization of 37MBit/s,
corresponding to a 3.7% utilization.

4.3.3. Sharing a Fast Ethernet network with Linux

We analyzed whether the network can be shared between
non real-time nodes and nodes doing real-time communica-
tion. Of course, the non real-time nodes must provide some
sort of traf£c shaping, otherwise they could easily ¤ood the
buffers in the switch. Beginning with kernel version 2.4
Linux includes an QoS subsystem and provides a number
of queueing disciplines for this [28]. Among them are a
token-bucket traf£c shaper and a hierarchical token-bucket
traf£c shaper.

We looked at two Linux versions, the stable Linux-2.4.22
and the new Linux-2.6.0-test9. For traf£c shaping both ver-
sions use the periodic clock interrupt. Linux-2.4 kernels on
the x86 architecture generate the clock interrupt with a fre-
quency of 100Hz. With Linux-2.6 the frequency is 1kHz.
Thus with Linux-2.4.22 we expect a shaping interval of
10ms resulting in switching delays in the order of 10ms.
For Linux-2.6.0-test9 we expect a 1ms traf£c shaping inter-
val and delays in the order of 1ms.

For traf£c shaping, we £rst looked at the hierarchical
token-bucket traf£c shaper HTB [29]. It is often used in con-
junction with DSL- and cable modems to minimize queue-
ing delays inside the modems. When we £rst analyzed the
results of HTB from the standard kernel, we found that it
shapes the traf£c in intervals of 20ms, not in intervals of
10ms. After contacting the HTB author and tuning the ker-
nel2, it £nally shaped the traf£c periodically with an interval
of 10ms, for both kernel versions 2.4 and 2.6.

Linux-2.4.22 with HTB traf£c shaper On nodes C, D
and E we replaced DROPS with Linux-2.4.22 and used
its HTB traf£c shaper. We con£gured HTB with the

2changing de£nes: net/sched/sch htb.c: HTB HYSTERESIS=0, and
include/net/pkt sched.h: PSCHED CLOCK SOURCE=PSCHED CPU

same bandwidths as in the previous experiments: 40MBit/s,
32MBit/s and 20MBit/s. HTB determined the buffer sizes
for itself, they are displayed in Table 7. The table also
contains the transmission delay bound according to Equa-
tion (6), increased by the 80µs from Table 1 for packet trans-
mission delay without queueing.

We tried to generate symmetric bursts as we did with
the DROPS setup. But for reasons we did not £nd out this
did not work – the HTB traf£c shaper sooner or later de-
layed the traf£c for 10ms preventing any useful results. This
should not happen, as the traf£c was generated conforming
to the reservation. Thus, we randomly generated bursts with
lengths according to the bucket size and breaks in between.

During the experiment node A sent 3 million test packets
to node B. No packets were lost. The maximum observed
packet transmission delay for the test packets was 7ms (last
column in Table 7). The bigger difference to the theoreti-
cal bound compared to the DROPS experiments can be ex-
plained by the on-off shape of the bursts used.

Linux 2.6.0-test9 with TBF traf£c shaper In the sec-
ond experiment we used Linux-2.6.0-test9 with its 1kHz
timer. The traf£c was shaped by the token-bucket traf£c
shaper TBF. We con£gured TBF with the same bandwidths
as in the previous experiments. In contrast to HTB the TBF
traf£c shaper requires the user to additionally specify the
bucket sizes. We £gured out by experiments what bucket
sizes are needed to achieve the desired bandwidth, details
are given in the second row of Table 7. We had to generate
random bursts as with the Linux 2.4 kernel.

During the experiment node A sent half a million test
packets to node B. Again we observed no packet loss, and
the maximum packet transmission delay was slightly under
1ms.

Robustness of a shared network We repeated both ex-
periments and tried to distort the traf£c shaping process that
at some point in time it starts to generate a higher network
load than allowed. The idea was to use high interrupt load
to force the system into a state where the shaper cannot send
packets for a while. We expected that the shaper will catch
up this lag later on by generating larger bursts. We observed
however, that the traf£c shaper cannot be in¤uenced to gen-
erate a higher traf£c than expected.

Interpretation of results We conclude that Linux nodes
can share a network with real-time nodes, although the dif-
ferent Linux kernel versions lead to different transmission

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 9

delays and switch buffer requirements. With the 2.4 series
Linux, the 127KByte buffer need in the switch do not allow
for more than one fully utilized switch output port. With the
2.6 series Linux, there is no such limitation.

5. Related work
Various real-time transfer solutions exist for the original

CSMA/CD Ethernet, all of them ensure an exclusive access
to the network medium. They often use a token-based ap-
proach, where a circulating token represents the permission
to transmit data. The advantage of token-based solutions is
their ¤exibility, as they can be used with almost any network
architecture. The downside is that only one station owns
the transmit right at a given time. This unnecessarily limits
the performance on modern switched networks. Also, time
and network bandwidth for the token management affects
the overall performance. In [25] Venkatramani and Chiueh
present results from the “RETHER” project. They simu-
lated a 10MBit/s CSMA/CD Ethernet with a maximum to-
ken rotation time of 33ms (thus delays bounds are ≥33ms)
and achieve a network utilization of 60%. With 100MBit/s
Ethernet they gain only a small throughput increase, which
they attribute to the dominance of software overheads.

Another method for controlling access to the network is
the time-slotted approach. Examples can be found in [12,
22]. There are several problems with this approach: the
longer the time-slots, the higher is the worst-case delay of
messages transferred. Therefore, time-slots should be as
short as possible. On the other side, time-slots must be long
enough to prevent overlapping of messages due to delays
and jitter imposed by the network. This may lead to a severe
performance cut, as the 4% overall network utilization for
Switched Gigabit Ethernet reported by Schwarz in [22].

A mixed approach is presented by Pedreiras and Almeida
in FTT-Ethernet [20], where a central master periodically
distributes tokens that allow to send data for a speci£c
amount of time.

Kweon and Shin describe in [13] a method to achieve
statistical real-time guarantees. By keeping the overall
network traf£c below a certain limit, the probability of net-
work collisions is bounded. Hence, a statistical guaran-
tee for the transmission time and bandwidth can be given.
Besides the probabilistic behavior of their approach, the
overall network utilization decreases with stronger statis-
tical guarantees. They report an experiment of 10 nodes
connected by a 10MBit/s CSMA/CD Ethernet, exchanging
real-time traf£c with a total bandwidth of 53KBit/s and non
real-time traf£c with a total bandwidth of 4.4MBit/s. The
deadline-miss ratio was 10−4 with a deadline of 129msec.

Lo Bello and others extended the statistical approach by
fuzzy traf£c smoothing [4]. They use the overall through-
put together with the number of collisions as network load
indicators and feed them into fuzzy traf£c smoothers. This

allows them to handle sporadic traf£c more ¤exible.

Schedulability conditions for different packet schedul-
ing methods in network switches are given in [14]. The
schedulability conditions allow to guarantee delay bounds
depending on the input traf£c characteristics and the se-
lected scheduling method in the switch. They apply their
theory to single token-bucket shaped traf£c, and their result
for FIFO scheduling coincides with Equation (7).

In [27], Watson and others apply the theory of Boudec
[2] to switched Ethernet and discuss multiple switches in a
line topology. In contrast to our traf£c model, they use the
simpler model of single leaky-bucket shaped streams, and
further neglect the processing time in the switch. For one
switch, their results coincide with our estimators in Equa-
tions (7) and (5). Watson provides analytical and simu-
lation results of a 100MBit/s switched Ethernet. With 50
nodes connected in a line topology and producing bursts of
15KByte with a high (≥90%) network utilization, the delay
bounds for message transfer are in the order of 400ms.

Several projects aim at building QoS-enabled switches
or routers from scratch [5, 9]. In [24] Chiueh and Varadara-
jan present EtheReal, a switch that allows connection es-
tablishment with policing. In an experiment they con£gure
an Intel PPro/200-based PC as a 4-port 100MBit/s Ethernet
switch. They report switch delays of 10-60µs for a 50MBit/s
non real-time connection with a parallel 100MBit/s real-
time connection. The overall bandwidth through the switch
is limited to 40.25MByte/s.

Guérin and others present in [8] a mechanism for provid-
ing quality of service (QoS) through buffer management.
The idea is to limit explicitly the amount of buffer space
the switch provides for a speci£c connection. With their
approach bandwidth allocations can easily being managed,
and free bandwidth is distributed fairly among best-effort
traf£c. In contrast to our approach, this proposal requires
installation of a £ltering instance inside the switch, thus it
does not work with off-the-shelf hardware. They report a
simulation of a 48MBit/s switched network. With a switch
buffer size of 500KByte and FIFO scheduling, they achieve
a network utilization of 85% without loosing data. For a
99% utilization, 5MByte switch buffer are needed.

The IEEE 802.3 extension 802.1p allows to assign pri-
orities to individual network frames, which are used by
a priority-based scheduler inside a switch. However, the
prioritized traf£c still must be shaped to prevent overload
situations and mutual interactions. Further, Pedreiras and
others report in [21] that lower prioritized traf£c may lock
switch memory that cannot be used for higher prioritized
traf£c then. Thus, there is no real isolation between the dif-
ferent priorities.

Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 04), Catania, Italy June 2004 10

6. Summary
We have shown, both theoretically and in experiments

that traf£c shaping can be used to achieve reliable packet
transmission with bounded transmission delay. Besides
exact delay and buffer bounds, we also provided rule-of-
thumb formulae for a quick estimation. In experiments with
both Fast and Gigabit Ethernet, we were able to guarantee
sub-millisecond delays for a network utilization of 93% and
49%, respectively.

The achievable maximum transmission delay mainly de-
pends on the granularity of the traf£c shaping, that is
how often the traf£c shapers are run. This results in an
CPU/delay bound trade-off.

It is worth to note that every node connected to the net-
work must shape its traf£c accordingly, but otherwise can
send its traf£c whenever it wants. This allows the network
to be shared with non real-time nodes, although there traf-
£c shaping capabilities affect the delay bounds. We suc-
cessfully shared the network with Linux nodes of different
kernel versions resulting in different delay bounds.

The small sensitivity of traf£c shaping to jitter also re-
sults in a signi£cant throughput bene£t compared to the
time triggered approach, which was reported to achieve a
4% utilization for a TTP/C implementation on Gigabit Eth-
ernet [22].
Acknowledgements We would like to thank Gerhard
Fohler for his guidance, our anonymous reviewers for
their comments and our colleges, especially Ronald Aigner,
Adam Lackorzynski, Frank Mehnert and Lars Reuther for
their supporting work on DROPS.

References
[1] J.-Y. L. Boudec and G. Hebuterne. Comment on a determin-

istic approach to the end-to-end analysis of packet ¤ows in
connection oriented network. . IEEE/ACM transactions on
networking, Feb. 2000.

[2] J.-Y. L. Boudec and P. Thiran. Network Calculus. Springer
Verlag, LNCS volume 2050, July 2001.

[3] J.-Y. L. Boudec and P. Thiran. Network Calculus. Springer
Verlag Lecture Notes in Computer Science volume 2050,
July 2001.

[4] R. Caponetto, L. L. Bello, and O. Mirabella. Fuzzy Traf£c
Smoothing: Another Step towards Real-Time Communica-
tion over Ethernet Networks. In 1st RTLIA, Vienna, Austria,
June 2002.

[5] N. Christin and J. Liebeherr. The QoSbox: A PC-Router
for Quantitative Service Differentiation. Technical Report
CS-2001-28, University of Virginia, Nov. 2001.

[6] R. L. Cruz. A calculus for network delay, part i: Network
elements in isolation. IEEE Transactions on Information
Theory, 37(1):114–131, Jan. 1991.

[7] U. Dannowski and H. Härtig. Policing of¤oaded. In Pro-
ceedings of IEEE RTAS, Washington D.C., May 2000.

[8] R. Guérin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS
Provision Trough Buffer Management. In Proceedings of
ACM SIGCOMM98, Vancouver, Canada, Aug. 1998.

[9] R. Guerin, L. Li, S. Nadas, P. Pan, and V. Peris. The Cost of
QoS Support in Edge Devices: An Experimental Study. In
Proceedings of the IEEE Infocom, New York, Mar. 1999.

[10] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux. In
Proceedings of PART’98, Adelaide, Australia, Sept. 1998.

[11] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul.
Cooperating resource managers. In RTAS, June 1999.

[12] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-
time systems: the Mars approach. IEEE Micro, 9(1):25–40,
Feb. 1989.

[13] S.-K. Kweon and K. G. Shin. Achieving Real-Time Com-
munication over Ethernet with Adaptive Traf£c Smoothing .
In RTAS, Washington D.C., May 2000.

[14] J. Liebeherr, D. E. Wrege, and F. D. Exact Admis-
sion Control for Networks with a Bounded Delay Service.
IEEE/ACM Transactions on Networking, 4(6), Nov. 1996.

[15] J. Loeser. Buffer Bounds of a FIFO Multiplexer . Technical
Report TUD-FI03-15, Technische Universität Dresden, Nov.
2003.

[16] J. Loeser. Measuring Microsecond Delays . Technical Re-
port TUD-FI03-16, Technische Universität Dresden, Nov.
2003.

[17] J. Löser, L. Reuther, and H. Härtig. Position summary: A
streaming interface for real-time interprocess communica-
tion. In HotOS, Elmau, Germany, May 2001.

[18] P. Oechslin. Worst Case Arrivals of Leaky Bucket Con-
strained Sources: The Myth of the On-Off source . In
IWQoS, New York, May 1997.

[19] S. D. Patek and J. Liebeherr. Position Paper on Networs with
Aggregate Qualitiy-of-Service . In Proceedings of the SPIE
Conference #4526, Oct. 2001.

[20] P. Pedreiras, L. Almeida, and P. Gai. The ftt-ethernet pro-
tocol: Merging ¤exibility, timeliness and ef£ciency. In Eu-
romicro ECRTS’02. IEEE Press, June 2002.

[21] P. Pedreiras, R. Leite, and L. Almeida. Characterizing the
Real-Time Behavior of Prioritized Switched-Ethernet . In
2nd RTLIA, Porto, Portugal, June 2003.

[22] M. Schwarz. Implementation of a ttp/c cluster based on
commercial gigabit ethernet components. Master’s thesis,
Technische Universität Wien, 2002.

[23] J. S. Turner. New Directions in Communications (or Which
Way to the Information Age?). IEEE Comm. Magazine,
24(10):pp. 8–15, Oct. 1986.

[24] S. Varadarajan and T. Chiueh. EtheReal: A Host-
Transparent Real-Time Fast Ethernet Switch. In Proceed-
ings of ICNP, Austin, TX, Oct. 1998.

[25] C. Venkatramani and T. Chiueh. Supporting real-time traf£c
on ethernet. In Proceedings of IEEE RTSS, Dec. 1994.

[26] S. Wang, D. Xuang, R. Bettati, and W. Zhao. Providing Ab-
solute Differentiated Services for Real-Time Applications in
Static-Priority Scheduling Networks . In Infocom, 2001.

[27] K. Watson and J. Jasperneite. Determining end-to-end de-
lays using network calculus. In Proceedings of IFAC FET,
Aveiro, Portugal, 2003.

[28] http://www.lartc.org.
[29] http://www.luxik.cdi.cz/˜devik/qos/htb.
[30] MIDI over Ethernet. http://www.plus24.com/

ieee1639/software.php.

