

Pragmatische nichtblockierende Synchronisation
für Echtzeitsysteme

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakulẗat Informatik

eingereicht von

Diplom-Informatiker Michael Hohmuth
geboren am 3. Februar 1973 in Annahütte

Betreuender Hochschullehrer: Prof. Dr. rer.-nat. Hermann Härtig
Technische Universität Dresden

Gutachter: Prof. Dr. rer.-nat. Hermann Härtig,
Technische Universität Dresden

Prof. Dr. sc. tech. (ETH) Gernot Heiser,
University of New South Wales, Sydney, Australien

Calton Pu, Ph. D., Professor and John P. Imlay, Jr. Chair in Software,
Georgia Institute of Technology, Atlanta, U. S. A.

verteidigt am 17. September 2002 in Dresden

Dresden, 2. Oktober 2002

Pragmatic nonblocking synchronization for
real-time systems

Michael Hohmuth
Dresden University of Technology

October 22, 2002

i

Abstract

In this thesis I present a pragmatic methodology for designing nonblocking real-time
systems. My methodology uses a combination of lock-free and wait-free synchroniza-
tion techniques and clearly states which technique should be applied in which situation.

This thesis reports novel results in various respects: My approach restricts the us-
age of lock-free mechanisms to cases where the widely available atomic single-word
compare-and-swap operation suffices. For more complex synchronized operations,
I introduce a number of wait-free lock designs that work in different environments:
uniprocessor and multiprocessor kernels, and user-mode programs. My multiprocessor
lock implements a novel wait-free resource-access protocol—multiprocessor priority
inheritance.

I show how monitors (such as Java’s synchronized methods) can be implemented
on top of my mechanisms, thereby demonstrating their versatility.

I describe in detail how I used the mechanisms for a full reimplementation
of a popular microkernel interface (L4). My kernel—in contrast to the original
implementation—bounds execution time of all operations. I report on a previous
implementation of my mechanisms in which I used Massalin’s and Pu’s single-
server approach, and on the resulting performance, which lead me to abandon this
well-known scheme.

My microkernel implementation is in daily use with a user-level Linux server run-
ning a large variety of applications. Hence, my system can be considered as more
than just an academic prototype. Still, and despite its implementation in C++, it is
comparable in inter-process–communication speed with the original, highly optimized,
non-real-time, assembly-language implementation, and it provides excellent real-time
capabilities such as low interrupt-response latency.

ii

Acknowledgments

First, I would like to thank my supervisor, Prof. Hermann Härtig. Despite scarce re-
sources, he has grown the operating-systems group at TU Dresden to an internationally
respected research institution and an enjoyable and inspiring place to work at. Without
his continuing support and his wit, this thesis would not exist.

Many members of the operating-systems group at TU Dresden have contributed
work that has helped making this thesis a reality. I am indebted to Jean Wolter, whose
comments have opened my eyes more than once; Michael Peter, who helped improving
Fiasco’s synchronization primitives, worked on the multiprocessor version of Fiasco,
and made Fiasco “really fast”; and Frank Mehnert and Sebastian Schönberg, who have
helped me with performance measurements.

Jochen Liedtke, who passed away in June 2001, has been most influential to my
interest in microkernel-based operating systems. I am grateful to him in many ways.
He was an excellent teacher, mentor, colleague, and friend.

I am thankful to the many people who have read draft versions of this document or
parts of it. Their valuable comments have helped improving the thesis tremendously. I
thank Kevin Elphinstone, Claude-J. Hamann, Hermann Härtig, Gernot Heiser, Calton
Pu, Thomas Roche, Sebastian Schönberg, and Jean Wolter.

Finally, I would like to thank those people that often are forgotten, simply because
it is their job to make us feel them less: Adam Lackorzynski and Sven Rudolph, our
current and former system administrators; and Angela Spehr, our group’s secretary.
Without them, I would not have had the time to write this thesis.

Contents

1 Introduction 1

2 Basics and related work 5
2.1 Synchronization in real-time operating systems 5

2.1.1 Blocking and blocking time 6
2.1.2 Bounding blocking . 7
2.1.3 Other resource-sharing protocols 9

2.2 Nonblocking synchronization . 9
2.2.1 Wait-free and lock-free synchronization 10

2.2.1.1 Overview . 10
2.2.1.2 Atomic memory update 11

2.2.2 Nonblocking synchronization in operating systems: SYNTHE-
SIS and the CACHE kernel 13

2.2.3 Nonblocking synchronization vs. real-time systems 13
2.3 Microkernel-based real-time systems 14

2.3.1 Microkernels: state of the art 14
2.3.1.1 The microkernel promise 14
2.3.1.2 First-generation microkernels 15
2.3.1.3 Second-generation microkernels 15

2.3.2 Microkernels in real-time systems 16

3 Pragmatic nonblocking synchronization 19
3.1 A design methodology for real-time systems 20

3.1.1 Design goals . 20
3.1.2 Design guidelines . 20

3.2 Priority-inversion–free atomic update 22
3.2.1 Atomic update in kernel mode 23
3.2.2 Atomic update in user-mode programs 24

3.3 Wait-free synchronization . 24
3.3.1 Wait-free locking for a uniprocessor kernel 25
3.3.2 Wait-free locking for a multiprocessor kernel 26

3.3.2.1 Multiprocessor execution model 26
3.3.2.2 Lockdown . 28
3.3.2.3 Wakeup . 29
3.3.2.4 Multiprocessor priority-inheritance protocol (MPIP) 29
3.3.2.5 Comparison MPIP–MPCP 31
3.3.2.6 Summary . 32

3.3.3 Wait-free locking in user-mode programs 32

iii

iv CONTENTS

3.3.3.1 Lock with priority inheritance 33
3.3.3.2 Sleep and wakeup with priority inheritance 33
3.3.3.3 Time-slice donation 36
3.3.3.4 Avoiding blocking in user-mode programs 38
3.3.3.5 Summary . 39

3.3.4 Strength of the wait-free locking 42
3.3.5 Real-time serializer . 43

4 The Fiasco microkernel 47
4.1 Requirements . 47

4.1.1 Functional requirements . 48
4.1.2 Design goals . 49

4.1.2.1 Real-time properties 49
4.1.2.2 Speed . 50

4.2 Synchronization in the Fiasco microkernel 50
4.2.1 Overview of kernel objects 51
4.2.2 Synchronization of kernel objects 52
4.2.3 Wait-free locking . 53
4.2.4 Synchronization of the IPC operation 55

4.2.4.1 IPC states . 56
4.2.4.2 IPC walk-through 58
4.2.4.3 Asynchronous state changes 59

5 Performance evaluation 63
5.1 Microbenchmarks . 63

5.1.1 Measurements and results 63
5.1.2 Discussion . 66

5.2 Real-time characteristics . 68
5.2.1 Experimental setup . 68
5.2.2 Measurements . 70

5.2.2.1 What I measured 70
5.2.2.2 Expectations . 70
5.2.2.3 Results and discussion 72

6 Conclusion 77
6.1 Contributions of this work . 77
6.2 Suggestions for future work . 78
6.3 Concluding remarks . 79

References 81

Chapter 1

Introduction

Nonblocking synchronization (with its two representatives, lock-free and wait-free syn-
chronization) is a family of object-sharing protocols that prevent threads from resource-
contention blocking. It provides two properties that are desirable for real-time systems:
full preemptability and avoidance of priority inversion.

In recent years, nonblocking synchronization has caught the attention not only
of the real-time systems community but of theoretical and some practical operating-
systems groups. Many researchers have devised new methods for efficiently synchro-
nizing a number of data structures in a nonblocking fashion. Others have conceived
general methodologies for transforming any algorithm using blocking synchronization
into a nonblocking one; however, these results have a more theoretical nature as the
methodologies often lead to very inefficient implementations. The next chapter briefly
discusses a number of these works.

In contrast to this boom, I know of only a few operating-system implementations
that successfully exploit nonblocking synchronization. The only two operating sys-
tems I am aware of that use exclusively nonblocking synchronization are SYNTHE-
SIS [MP91] and the CACHE kernel [GC96].

The following problems seem to thwart the adoption of nonblocking synchroniza-
tion in practice: First, some related work induces the impression that special algorithms
are needed to synchronize data structures in a nonblocking fashion, requiring abandon-
ment of known programming paradigms such as mutual exclusion. Second, many of
the most efficient algorithms available for lock-free data structures require a primi-
tive for atomically updating two independent memory words (two-word compare-and-
swap, CAS2), and many processors like the popular x86 CPUs do not provide such
an instruction. Significantly, SYNTHESIS and the CACHE kernel originate from the
Motorola 68K architecture, which does have a CAS2 primitive.

In this thesis, I present a pragmatic approach for building nonblocking real-time
systems. This approach is based on two important insights: First, on uniprocessor
systems (and for CPU-local data on multiprocessors) lock-freedom can be achieved
not only through strong atomic primitives such as CAS2, but also by protecting critical
sections from preemption—for example by disabling interrupts. Priority inversion does
not occur as long as critical sections protected using this method arevery short,that
is, shorter than kernel operations thatneedto be atomic, such as context switches or
kernel entries. Second, any implementation of priority inheritance provides wait-free
synchronization as long as critical sections do not block.

1

2 CHAPTER 1. INTRODUCTION

Based on these insights, my methodology is very general and easy to apply. It is
not limited to architectures that provide a CAS2 instruction, and it supports the mutual-
exclusion programming paradigm.

My methodology consists of a set of rules for selecting nonblocking synchro-
nization mechanisms based on usage patters of a program’s objects. Low-overhead
lock-free synchronization using very short critical sections or atomic instructions such
as (single-word) compare-and-swap (CAS) is required only for accesses to global,
performance-critical data. All other object accesses can be protected using locks with
priority inheritance; wait-freedom is maintained by disallowing waiting for events in-
side critical sections.

By preventing sharing of resources using slow synchronization mechanisms be-
tween unrelated threads, my methodology supports both real-time and non-real-time
applications at the same time on one system. Because these two types of applications
are effectively decoupled with respect to the (kernel) objects they use, non-real-time
applications cannot adversely affect the real-time properties guaranteed to real-time
applications.

I present a number of lightweight wait-free lock designs for different system envi-
ronments: uniprocessor kernels, multiprocessor kernels, and user-mode programs. Of
these, the multiprocessor design implements a novel resource-access protocol: mul-
tiprocessor priority inheritance. I also discuss kernel interfaces that allow user-mode
programs to take advantage of wait-free locking.

I describe the application of my approach to build a real system: Using my method-
ology, I developed the Fiasco microkernel, a kernel for the DROPSreal-time operating
system [HBB+98] that runs on x86 CPUs. This kernel is an implementation of the
L4 microkernel interface [Lie95], and it is sufficiently mature to support all the soft-
ware developed for L4, including DROPSservers and L4Linux [HHL+97].1 I evaluate
the effectiveness of my methodology for nonblocking design by examining the Fiasco
microkernel’s real-time properties and synchronization overheads.

I also discuss a number of nonblocking synchronization mechanisms. In their SYN-
THESIS work, Massalin and Pu [MP91] introduced the concept of a “single-server”
thread (also known as the “serializer” pattern [HJT+93]), which serializes complex
object updates that cannot be implemented in a nonblocking fashion. In this thesis, I
present a simple modification to the single-server scheme that makes it truly nonblock-
ing and useful for use in real-time systems. Furthermore, I show that the single-server
mechanism is semantically equivalent to a locking scheme. In particular, the real-time
version can be replaced by a locking scheme with priority inheritance that is easier to
implement and has a smaller performance overhead.

In this thesis, I do not address two related research areas that are outside the scope
of this work. First, I do not digress into schedulability analysis for the wait-free locks I
design in this thesis. While schedulability-analysis results for uniprocessor implemen-
tations of priority inheritance are widely known, to my knowledge such an analysis
for multiprocessor priority inheritance does not exist yet. Second, I assume that multi-
processor real-time systems with mixed real-time and non-real-time loads are feasible.
Clearly, a way of preventing potentially malicious non-real-time applications from us-
ing up too many of the shared resources in a multiprocessor systems, for example,
of the memory-bus bandwidth, is required. Bounding such effects is a subject that is
completely orthogonal to the topic of this thesis.

1L4Linux is a port of the Linux kernel that runs as a user program on top of L4. Its application binary
interface (ABI) is binary compatible with original Linux’s.

3

I see my contribution in leading the recent interest in nonblocking synchronization
to a practicable result, which the scientific community can verify. The source code
to the Fiasco microkernel is freely available, allowing researchers to further study my
techniques and experiment with them.

Organization of this thesis

This thesis is organized as follows.
In Chapter 2, I consider related work on microkernel-based systems, real-time op-

erating systems, and nonblocking synchronization.
In Chapter 3, I develop my methodology for designing wait-free real-time systems

(Section 3.1). I discuss implementation issues related to my methodology: In Sec-
tion 3.2, I look at lock-free synchronization for kernels and user-mode programs. In
Section 3.3, I propose a number of implementations for wait-free locking that work
in different environments: uniprocessor and multiprocessor kernels, and user-mode
programs. My multiprocessor lock (Section 3.3.2) implements multiprocessor prior-
ity inheritance, which I compare to multiprocessor priority ceiling. Also, I compare
my synchronization primitives’ strength to monitors (Section 3.3.4) and to a real-time–
enhanced serializer (Section 3.3.5).

Chapter 4 shows how I applied my methodology to the development of the Fiasco
microkernel. In Section 4.1, I specify functional and performance requirements that
applied to the kernel, and derive design goals for the kernel. As the kernel is intended
for use in real-time systems, the methodology developed in Chapter 3 can be applied.
In Section 4.2, I showcase the use of my methodology in the context of Fiasco devel-
opment.

In Chapter 5, I present performance values for the Fiasco microkernel. In Section
5.1, I compare the overhead of my in-kernel locking primitives with other forms of
synchronization, including my real-time serializer. In Section 5.2, I evaluate the ker-
nel’s real-time properties. I compare its behavior under worst-case conditions with the
behavior of RTLinux, a kernel that is known for its excellent real-time properties.

I conclude the thesis in Chapter 6 with a summary and suggestions for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Basics and related work

Related work to this thesis can be classified into the following three areas:

Synchronization in real-time systems.My thesis introduces a methodology for
building real-time systems that combines existing work on resource-access
control, including resource-access protocols (such as priority inheritance)
and nonblocking synchronization. In Section 2.1, I discuss the problem of
synchronization in real-time systems in general. I take a brief look at existing
resource-access protocols and relate them to my work.

Nonblocking synchronization. Nonblocking synchronization methods have a num-
ber of properties that make them interesting for real-time systems. In Section
2.2, I review nonblocking synchronization mechanisms, reference existing oper-
ating systems that use this type of synchronization exclusively, and discuss the
use of nonblocking synchronization in real-time systems.

Microkernel-based systems.This thesis is a systems thesis. Using my methodology,
I designed and built a real system, the Fiasco microkernel, which is in daily use
at Dresden University of Technology and elsewhere. In Section 2.3, I describe
the state of the art in microkernel-based systems, and I look at existing work on
real-time microkernels.

2.1 Synchronization in real-time operating systems

Classic real-time scheduling methods such asearliest deadline first(EDF) andrate-
monotonic scheduling(RMS) [LL73] have ignored the issue of resources shared be-
tween multiple threads. These methods only allow sets of independent periodic pro-
cesses that do not require inter-process synchronization. However, shared resources are
clearly required in the design and implementation of nontrivial real-time applications.

In the past decade, researchers have proposed a number of solutions (many of which
I cite later in this section) to allow resource sharing in both uniprocessor and multipro-
cessor real-time systems. These solutions either bound the time a process may block
until it gets exclusive access to a shared resource, or they structure systems such that
blocking cannot occur. In general, resource-sharing methods aim at preventingpriority
inversionwhere a low-priority thread blocking a high-priority thread is preempted by
a mid-priority thread.

5

6 CHAPTER 2. BASICS AND RELATED WORK

In this thesis, I only discuss methods that bound blocking by imposing protocols
for resource access. I do not discuss methods that avoid blocking altogether. (I explain
later in this section that, despite their name, “nonblocking synchronization methods”
do not fall into the latter category.)

My thesis introduces an approach for building real-time systems that combines ex-
isting work on resource-access control, including resource-access protocols and non-
blocking synchronization. I also provide a number of lock designs that—for different
environments—implement one existing access-control protocol (uniprocessor priority
inheritance) and one new protocol (multiprocessor priority inheritance).

In this section, I discuss some existing access-control protocols and relate them to
the protocols I use in this thesis.

This section is organized as follows. Before I elaborate on synchronization proto-
cols, I need to digress into the nature of blocking in Subsection 2.1.1. In Subsection
2.1.2, I discuss priority-based synchronization methods that bound blocking. Subsec-
tion 2.1.3 follows with a discussion of synchronization methods that are not based on
priorities.

I discuss nonblocking synchronization separately in Section 2.2.

2.1.1 Blocking and blocking time

The termblockingrefers to any delay that a released program1 experiences because of
resource contention (more than one program tries to access a resource at the same time)
or resource unavailability. There can be various sources of blocking. For instance, the
CPU on which the program is scheduled to run is used by another program (release
blocking); the program requires exclusive access to a resource (other than the CPU)
that has been locked by another program (resource-contention blocking2); or the pro-
gram synchronizes on a signal from another program or an external device (voluntary
blocking). The time during which a program cannot make progress because of blocking
is calledblocking time.

Real-time scheduling policies bound the total amount of blocking time a program
can experience. Usually, such policies are designed to rule out certain kinds of blocking
and enable system designers to reason about the remaining blocking factors (schedula-
bility analysis). For example, priority-based scheduling policies (such as RMS) avoid
release blocking of high-priority programs by independent lower-priority programs,
and the priority-inheritance–based protocols (detailed in the next subsection) guaran-
tee similar behavior even if the programs are not independent, that is, if the programs
contend for exclusive access to shared (non-CPU) resources.

In this thesis, I consider only priority-based systems (the exception being my con-
sideration of other related work in Section 2.1.3). As I outlined in the preceding para-
graph, in such systems release blocking is easy to control. Therefore, I generally dis-
regard release blocking. When I say that a program (or a thread) blocks, I imply that
the blocking is either voluntary or caused by a synchronization protocol (resource-
contention blocking).

BLOCKED PROGRAM VS . BLOCKED THREAD . Programs are executed by (or run
inside) an execution thread (or justthread). A program is blocked when it makes no
progress. A thread is blocked when it is descheduled from the CPU.

1A program isreleasedif it has been started and is expected to make progress.
2In the literature, resource-contention blocking is also calleddirect blocking.

2.1. SYNCHRONIZATION IN REAL-TIME OPERATING SYSTEMS 7

A blocked thread implies that the program running in the thread is blocked as well.
However, I observe that a program can be blocked even if the thread in which the
program runs is still executing on a CPU. If a thread experiences extra overhead to
synchronize resource accesses, then the program executing in that thread is effectively
blocked for the time of the overhead’s execution. In particular, despite their name, non-
blocking synchronization algorithms do not completely prevent blocking. These algo-
rithms merely avoid blocking the current thread in case of a resource-access conflict.
However, there is additional overhead associated with nonblocking synchronization
(helping3 cost or retry cost) that must be accounted for as resource-contention block-
ing time. In other words, the program is blocked even though the program’s thread is
not blocked. I go into more detail at the outset of Section 2.2.

2.1.2 Bounding blocking

UNIPROCESSOR PROTOCOLS. Of the methods that bound blocking time origi-
nating from shared resource access, thepriority-inheritance protocol(PIP) and the
priority-ceiling protocol (PCP) are most prominent [SRL90]. They are hard-priority
schemes that fit uniprocessor systems with preemption and with potentially changing
priorities. Both schemes are designed for periodic real-time systems in which threads
consist of a periodic sequence ofjobs.

PIP prevents priority inversion by temporarily lending low-priority threads the pri-
ority of high-priority threads that block on accessing a shared resource. PCP works by
assigning resources priority ceilings that are equal to the highest priority of all users of
the resource, and allowing resource access only if a thread’s priority is higher than the
ceilings of all currently locked resources. When an access is denied, the thread blocks
and lends its priority to the thread locking the resource with the highest ceiling.

In both cases, priority inheritance—priority boosting for low-priority threads block-
ing high-priority threads—is used to block mid-priority threads in order to avoid pri-
ority inversion. This special form of release-blocking the mid-priority thread is called
push-through blocking.

In comparison to PIP, PCP automatically prevents deadlocks and avoids extra
worst-case execution time arising from “chained blocking”—nested critical sections
in which a high-priority thread repeatedly needs to “help” low-priority threads by
lending them its priority. Under PCP, a job can be blocked for at most the duration of
one critical section.

However, PCP is more pessimistic in terms of resource access: It sometimes blocks
high-priority threads when they access a resource even if that access would never lead
to a resource conflict or a deadlock. This property can lead to blocking time that is
higher than PIP’s.4 Another disadvantage of the PCP is that changing priorities is
costly as the ceilings of the critical sections have to be recalculated and modified as
well.

Many researchers have proposed refinements of PIP and PCP to work around
these protocols’ limitations. Audslay [Aud91] provides an excellent overview of these
works.

3Helping is a family of mechanisms that implement wait-free synchronization. I explain wait-free syn-
chronization and helping in detail in Section 2.2.1.

4In other words, there exists systems which are schedulable with PIP but not with PCP. The opposite is
also true: As chained blocking cannot occur with PCP, some systems that are schedulable with PCP cannot
be scheduled under PIP.

8 CHAPTER 2. BASICS AND RELATED WORK

M ULTIPROCESSOR PROTOCOLS. Rajkumar and associates [RSL88] proposed an
extension of the PCP for multiprocessor systems, called themultiprocessor priority-
ceiling protocol(MPCP). In that protocol, all resources are bound to fixed processors.
The protocol distinguishes between local resources and global resources. Local re-
sources can be accessed from only one CPU, whereas global resources can be accessed
from any CPU. Threads have fixed priorities and are not allowed to lock more than
one global resource (the latter limitation is not found in uniprocessor PCP). In order to
access a global resource, threads notify a proxy server that runs on the resource’s CPU
(even if that CPU is the same as the thread’s) and executes all critical sections using the
resource. Proxy servers have a higher priority than all application threads. All threads
running on one CPU (including proxy servers) and their accesses to local resources are
scheduled according to the uniprocessor PCP.

Several authors have developed extensions to MPCP. Chen [Che95] and Rhee and
Martin [RM95] proposed resource-access protocols that allow nested critical sections.
Chen’s protocols additionally allow dynamic thread priorities. Both works’ authors
show that their protocols lead to better schedulability than the original MPCP.

Unlike the resource-access protocols I have discussed so far, Jun Sun’s end-to-end
scheduling approach for multiprocessors [Sun97] uses a global view on the system. It
allows tasks to have subtasks on multiple CPUs and computes schedulability for the
system as a whole instead of separately for each CPU. End-to-end scheduling is not
based on priority inheritance (it uses fixed priorities). However, it supports MPCP’s
synchronization model. Sun provided a mapping from MPCP systems’ threads, pri-
orities, and resources to end-to-end–scheduled systems. He developed a methodology
for comparing the results of schedulability analysis for different resource-scheduling
techniques. Using his methodology, Sun compared MPCP and his own approach and
concluded that end-to-end scheduling provides better schedulability except for systems
with a high number of short critical sections in each thread.

TECHNIQUES USED IN THIS THESIS . In later chapters, I use wait-free synchro-
nization as one nonblocking synchronization mechanism. Because priority inheritance
is an implementation of wait-free synchronization, I will consider only the priority-
inheritance protocol (and an extension of it for multiprocessors). In Section 3.3 I
will propose easy-to-implement lock designs with priority inheritance for a number
of different environments: uniprocessor and multiprocessor kernels, and user-mode
programs.

However, there is nothing in my methodology that precludes the use of other
priority-inheritance–based resource-access protocols as long as they fit my methodol-
ogy’s design guidelines (defined in Section 3.1.2).

To my knowledge, my implementation of multiprocessor priority inheritance
(MPIP; presented in Section 3.3.2) is the first such implementation. So far, approaches
to the real-time multiprocessor resource-contention problem have focused on MPCP.
Unlike MPCP and similar protocols, MPIP does not bind resources to fixed CPUs.
Instead, it allows critical sections to be moved between processors. In consequence,
MPIP works best for tightly-coupled multiprocessors. Another property of MPIP is
that threads never need to wait for remote processors, guaranteeing steady progress
independent of scheduling on remote processors.

In this thesis, I will not digress into the scheduling properties of MPIP or schedu-
lability analysis. Such an analysis would be outside the scope of this thesis, where I
use MPIP as one possible implementation of wait-free synchronization in multiproces-

2.2. NONBLOCKING SYNCHRONIZATION 9

sor systems. However, as MPIP is a wait-free resource-access protocol, schedulability
analysis for wait-free synchronization schemes can be applied.

2.1.3 Other resource-sharing protocols

In my thesis I concentrate on resource-access protocols for systems using preemptive
priority-based scheduling. In this section, I briefly look at two resource-access proto-
cols that work without priorities, and I explain why I focus on priority-based systems.
(I do not give specific references for the techniques I review in this section. Please refer
to Audslay [Aud91] for a detailed overview.)

Reservation protocolsavoid resource contention by having each task reserve the
periodic interval in which it can lock a resource. The reservation protocol prevents
reservations from overlapping according to some policy. For example, a policy can be
based on fixed priorities: A task gets access to a resource only if it will release it before
any task with higher priority requests that resource. However, it is also possible to use
policies that do not use priorities, allowing this protocol to be applied to task systems
without a clear priority order, for example interrupt-based systems.

Static schedulinguses a predetermined static schedule that completely avoids re-
source contention and blocking.

These resource-sharing protocols have in common that scheduling decisions are
made in advance (pre-runtime), timing the execution of jobs such that resource-access
conflicts are avoided. Priority-based systems, on the other hand, schedule in response to
events. Event-based scheduling is more flexible than timing-based scheduling because
it can change the schedule dynamically to react to changes in the execution environ-
ment. For example, when real-time application have not consumed their guaranteed
worst-case share of CPU time, it is possible to increase resource utilization by run-
ning soft–real-time extensions or non-real-time applications (with a different set of
resources), as we do in the DROPSsystem [HLR+01,HBB+98].

To summarize, priority-based scheduling lends itself to a wider range of applica-
tions, which is why I focus on such systems in this thesis.

2.2 Nonblocking synchronization

Nonblocking synchronization is a family of resource-sharing protocols that prevent
threads from blocking because of resource-access conflicts. Nonblocking synchroniza-
tion strategies have two important properties: First, they provide full preemptability
and allow for multi-CPU parallelism. Second, priority inversion is avoided; lower-
priority threads cannot block higher-priority threads because there is no blocking at all.
These characteristics make nonblocking synchronization very interesting for real-time
systems.

As I already remarked in Section 2.1.1, nonblocking synchronization protocols,
despite their name, have synchronization overhead that needs to be accounted for as
resource-contention blocking time. In other words, even though threads never block
because of resource contention, the programs running in these threads do. Fortunately,
synchronization overhead usually is very low, allowing nonblocking synchronization
mechanisms to scale much better than blocking mechanisms [MS96]. Please refer to
Section 5.1 to find detailed performance overheads for selected nonblocking synchro-
nization primitives.

10 CHAPTER 2. BASICS AND RELATED WORK

Nonblocking synchronization comes in two flavors: wait-free and lock-free syn-
chronization. Both flavors have in common that they bound resource-contention block-
ing time at least for the highest-priority thread. Wait-free synchronization additionally
bounds resource-contention blocking time for all other threads, whereas for lock-free
synchronization this is true only under certain conditions (see Section 2.2.3).

This section is organized as follows. In Subsection 2.2.1, I describe the two fla-
vors of nonblocking synchronization. I describe the nature and overhead of resource-
contention blocking that is to be expected in these flavors, and I give an overview of
techniques for atomic memory update, the availability of which is a precondition to
implementing lock-free synchronization. In Subsection 2.2.2, I discuss existing oper-
ating systems that exclusively use nonblocking synchronization. Finally, in Subsection
2.2.3 I cite recent research that allows bounding resource-contention blocking time for
all threads even for lock-free synchronization.

2.2.1 Wait-free and lock-free synchronization

2.2.1.1 Overview

Nonblocking synchronization comes in two flavors: wait-free and lock-free synchro-
nization.

Wait-free synchronization can be thought of as locking, withhelping replacing
blocking. When a higher-priority threadA’s critical section detects an interference
with a lower-priority threadB, A helpsB to finish its critical section first, effectively
lending its own CPU time toB. During helping,A also lendsB its priority to ensure
that no other, lower-prioritized activities can interfere. WhenB has finished,A executes
its own critical section.

In wait-free synchronization, all shared-object updates are bounded in time (be-
cause helping ensures that each operation in a critical section is executed exactly once;
there is no need for retries). However, all programs (including the highest-priority one)
may experience some resource-contention blocking because they might need to help
lower-priority programs to finish their critical section.

Wait-free synchronization mechanisms satisfy a stronger form of freedom from
blocking than lock-free synchronization (discussed in the next paragraph) as they
guarantee freedom from starvation. Therefore, some authors (e. g., Anderson et
al. [ARJ97b]) point out that wait-free synchronization is a special case of lock-free
synchronization. However, wait-free synchronization can also be implemented using
locks, albeit with a nonblocking helping scheme. For example, a locking scheme with
priority inheritance can be considered a wait-free synchronization scheme as long as
critical sections never block.5

Lock-free synchronizationworks completely without locks. Critical code sections
are designed such that they prepare their results out of line and then try to commit them
to the pool of shared data using an atomic memory update instruction like compare-
and-swap (CAS). Thecomparepart of CAS is used to detect conflicts between two
threads that simultaneously try to update the data; if it fails, the whole operation is
restarted. To avoid retry contention on multiprocessor systems, retries can be delayed
with a randomized exponential back-off. (Back-off is never needed on single-CPU
systems.)

5When helping is implemented by priority inheritance, resource-contention blocking is replaced by re-
lease blocking. Depending on the implementation of priority inheritance, the system may temporarily switch
to a different thread, but the total amount of blocking stays the same.

2.2. NONBLOCKING SYNCHRONIZATION 11

This synchronization mechanism has some nice properties: Because there are no
locks, it avoids deadlocks (but not live-lock); it provides better insulation from crashed
threads than locking schemes, resulting in higher robustness and fault tolerance,
because operations do not hold locks on critical data; moreover, it is automatically
multiprocessing-safe.

In lock-free synchronization on uniprocessors, the highest-priority thread always
completes in one step and experiences no synchronization overhead. However, if it
interferes with lower-priority threads (or with a thread running on another CPU), then
these threads suffer from resource-contention blocking because they need to retry their
operation in aretry loop. The number of retries is normally not limited; however, it is
possible to construct systems in a way that such a limit exists—see Section 2.2.3.

Preconditions for using lock-free synchronization are that primitives for atomic
memory modifications are available, and data is stored in type-stable memory.
Type-stable memory is memory that cannot change type while a lock-free update
is in progress. I do not digress into type-stable memory management in this thesis
(see [GC96] for a discussion of operating-systems–related issues); the rest of this
subsection discusses atomic memory modification.

2.2.1.2 Atomic memory update

CPU SUPPORT. Virtually all CPUs support a (multiprocessor-safe) primitive for
atomic memory update. For example, x86 CPUs have three kinds of atomic memory-
modification operations: a test-and-set instruction, a swap instruction, and a CAS in-
struction. Newer models (Intel Pentium and newer) also have a double-size–word (8
bytes) compare-and-swap instruction (CASW).6 However, these CPUs do not support
atomically updating two independent memory words (two-word compare-and-swap,
CAS2).

CPUs with more modern instruction-set architectures, such as Alpha and MIPS
CPUs, often do not provide atomic primitives that read and update a memory loca-
tion in one step, because it is much more complex than a typical RISC operation and
thus difficult to pipeline. Such CPUs provide an alternative mechanism based on two
instructions, load-locked (LL) and store-conditional (SC). LL can be used to load a
memory word into a register and “lock” the word’s cache line. SC writes a word to
memory only if its cache line is still locked. A cache-line lock is revoked when any
CPU executes a normal load or store operation on that cache line.

LL and SC can be used to implement a slightly weaker version of CAS. This
CAS operation can only succeed if its comparison succeedsand if no CPU accesses
the affected cache line between the LL and SC instructions. This condition is slightly
more general than that of a hardware-provided CAS instruction, for which a successful
comparison is sufficient.

However, for all practical purposes, the CAS and LL–SC primitives are of similar
power. Also, in practice one would restructure algorithms based on CAS to use LL and
SC directly instead of a CAS emulation. Therefore, without any loss of generality, in
my thesis I can concentrate on algorithms based on CAS; whenever I mention CAS, a
construction based on LL and SC can be substituted.

A notable example of an architecture that does not provide CAS or a similar mech-
anism are SPARC CPUs older than the SPARC-V9; these CPUs only have an atomic
(unconditional) swap instruction.

6The x86 assembly-language mnemonics for the CAS and CASW operations actually arecmpxchg and
cmpxchg8b, but I will stick with the abbreviations CAS and CASW throughout this thesis.

12 CHAPTER 2. BASICS AND RELATED WORK

SOFTWARE -IMPLEMENTED CAS AND CAS2. Bershad [Ber93] has proposed to
implement CAS in software using an implementation and lock known to the operating
system. When preempting a thread, the operating system consults the lock, and if it
is set, it rolls back the thread and releases the lock. Greenwald and Cheriton [GC96]
discuss a generalization of this technique to implement CAS2 or general multi-word
compare-and-swap (MWCAS; a primitive that atomically exchanges multiple noncon-
tiguous memory words, provided comparisons to “old” values succeed for each word).
This method has the disadvantage of incurring overhead for maintaining the lock. Also,
on multiprocessors, the lock must be set even when reading from shared data structures
because otherwise readers can see intermediate states.

In Section 3.2 I will describe additional workarounds for providing (multi-word)
atomic update in software.

SIMPLE DATA STRUCTURES . A number of data structures can be implemented and
synchronized without locks directly on top of CAS and CASW (i. e., without the over-
head of a software-implemented multi-word CAS): counters and bit fields with widths
up to 8 bytes, stacks, and FIFO queues [Tre86,MS96].

Valois introduced a lock-free singly-linked list design supporting insertions and
deletions anywhere in a list, as well as several other data structures [Val95a, Val95b].
These designs also work with just CAS. However, Greenwald [Gre99] has criticized
them for being quite complex, difficult to get right, and computationally expensive.

Most of the algorithms for lock-free data-structure synchronization that have been
developed recently assume availability of a stronger atomic primitive like CAS2. These
data structures include general singly-linked and doubly-linked lists [Gre99].

A number of techniques exist for implementing lock-free and wait-free MWCAS
on top of CAS and CAS2, enabling nonblocking synchronization for arbitrarily com-
plex data structures [Her93, Moi97, ARJ97a, Gre99]. These techniques have consid-
erable overhead in both space and runtime complexity, especially when compared to
common lock-based operations, making them less interesting for kernel design.

M ORE COMPLEX OBJECTS . For data structures more complex than those men-
tioned in preceding paragraphs, or when CAS or CAS2 are not available, atomic mem-
ory update must rely on other techniques.

Preventing preemption. The most common technique to implement atomic
multi-word updates on uniprocessors is to prevent preemption during the update. This
is usually done by disabling interrupt delivery in the CPU.

Where disabling interrupts is not possible (e. g., in user-mode programs), preemp-
tion can be prevented or delayed using operating-system support. This method works
as follows: When entering a critical section, threads signal this condition using a flag
shared with the operating system. Before the operating system preempts a thread’s exe-
cution, it checks the flag; if it is set, the preemption is delayed by a fixed time quantum
(preemption is unconditional after the quantum has been used up). When a preemption
has been delayed, the operating system sets another flag, signaling that a preemption
is about to occur, and allows the thread to continue. The thread now can finish its crit-
ical section. Upon leaving the critical section, it checks the second flag and, if is set,
voluntarily yields the CPU to prevent a forced preemption in its next critical section.

2.2. NONBLOCKING SYNCHRONIZATION 13

An extension of this mechanism is an operating-system feature that prevents de-
scheduling only when it is in favor of a thread sharing data with the current thread. An
operating-system–supported preemption-safe lock is an example of such a mechanism.

All of these methods work well when critical sections are known to be short. The
maximum overhead of these methods is known and small, allowing them to be used in
real-time systems.

The disadvantage of the first two methods is that they do not work on multiproces-
sors for global data. In this case, they must be extended, for example using a spin lock.
Preemption-safe locks can support multiprocessors without extra measures.

Serializer approach. Another technique to facilitate complex object updates is
the “serializer” or “single-server” approach [HJT+93]. It uses a single server thread
to serialize operations. Other threads enqueue messages into the server thread’s work
queue to request execution of operations on their behalf. If the server thread runs at a
high priority, it does not block the requesting thread any more than if it had executed
the operation directly.

2.2.2 Nonblocking synchronization in operating systems: SYN-
THESIS and the CACHE kernel

Besides Fiasco, two other operating system projects have explored nonblocking syn-
chronization in the kernel: the CACHE kernel [GC96] and SYNTHESIS [MP91].

Both systems run on architectures with a CAS2 primitive (the Motorola 68K CPU),
and their authors found CAS2 to be sufficient to synchronize accesses to all of their
kernel data structures. The authors report that lock-free implementation is a viable
alternative for synchronization in operating-system kernels.

Massalin and Pu [MP91] originally also implemented a single-server mechanism
for use in their lock-free SYNTHESIS kernel, but later they found no need to use it; the
same was true for Greenwald and Cheriton [GC96] in their CACHE kernel. I will revisit
the single-server approach in Section 3.3.5.

Greenwald and Cheriton [GC96] report that they found a powerful synergy between
nonblocking synchronization and good structuring techniques for operating systems.
They assert that nonblocking synchronization can reduce the complexity and improves
the performance, reliability, and modularity of software especially when there is a lot
of communication in the system.

However, they also warn that their results may not be applicable if the CPU does not
support a CAS2 primitive. In this thesis, I will investigate how nonblocking systems
can be implemented in such an environment.

2.2.3 Nonblocking synchronization vs. real-time systems

Nonblocking synchronization mechanisms are of interest for real-time systems because
they provide preemptability and avoid priority inversion. It is well-known that wait-
free method implementations are bounded in time (there is only a fixed number of
threads and critical sections that potentially require help; no retry loop). However, it
is not immediately apparent that this also applies to lock-free synchronization. On the
surface, lock-free methods (like the ones in Figure 4.1 in Section 4.2.3) look dangerous
because of their potentially unlimited number of retries.

14 CHAPTER 2. BASICS AND RELATED WORK

Fortunately, Anderson and colleagues [ARJ97b] recently determined upper bounds
for the number of retries that occur in priority-based systems. They derived scheduling
conditions for hard–real-time, periodic tasks that share lock-free objects, and reported
that lock-free shared objects often incur less overhead than object implementations
based on wait-free or lock-based synchronization schemes.

2.3 Microkernel-based real-time systems

2.3.1 Microkernels: state of the art

2.3.1.1 The microkernel promise

As implied by their name, microkernels are small operating-system kernels. They came
into being as the alternative to “fat,” monolithic operating-system kernels that included
all operating-system services such as scheduling, memory management, file systems,
device drivers and more. In contrast to such monolithic designs, the microkernel idea
is to allow replaceable user-level components, orservers,to provide operating system
services. These servers run in separate address spaces and communicate using an inter-
process communication (IPC) mechanism built into the kernel. This idea promised
to enable a number of software-technological advantages: flexibility, modular system
structure, uniform interface between components, better fault tolerance, smaller trusted
computing base, multiple operating-system personalities [Lie96b].

Today, monolithic systems have evolved, and several of these advantages are
not any more limited to the domain of microkernel-based systems. For exam-
ple, many monolithic systems have a modular system structure, emulate multiple
operating-system interfaces, and can be reconfigured flexibly at run time.

However, some of the advantages still hold and have specific applications:

• Microkernels isolate operating-system components from each other by running
them in separate address spaces and providing them with separate resources.
The main application of this feature is to run multiple applications with different
requirements on one system:

– It is possible to isolate real-time applications from time-sharing applica-
tions. For example, the DROPSsystem [HBB+98] (which is the main user
of the Fiasco microkernel) runs real-time applications with resource guar-
antees side-by-side with L4Linux, a complete time-sharing operating sys-
tem [HHL+97].

– Applications with security requirements can be isolated from notoriously
buggy, easy-to-exploit time-sharing operating systems with potentially ma-
licious applications. Therefore, it is possible to run security-sensitive appli-
cations on the same machine as the latest, Internet-downloaded games and
viruses. Perseus [PRS+01] is one project that exploits this architecture.

• Microkernels are small. This property is of use in two contexts:

– Microkernels can be used as a secure operating-system platform for cus-
tom, application-specific operating systems for small embedded devices.

– The trusted computing base (TCB; the portion of system software that has
to be trusted by security-sensitive applications) is potentially smaller than

2.3. MICROKERNEL-BASED REAL-TIME SYSTEMS 15

with monolithic operating systems. This makes it easier to verify (or cer-
tify) security properties of the TCB.

In this thesis, I describe the Fiasco microkernel. Fiasco is mainly intended as a
real-time kernel, but it has been used in all of the contexts I mentioned.

2.3.1.2 First-generation microkernels

First-generation microkernels unfortunately did not substantiate the hope for better-
structured systems. Mach [GDFR90], the best-known first-generation microkernel,
provides a good example of what went wrong with these kernels. Mach was designed
to exploit modern hardware such as multiprocessors and enable new applications such
as real-time applications while at the same time retaining compatibility with Unix.
As a consequence, Mach was constructed by refactoring a Unix kernel, moving all
Unix-specific functions to user-level servers and introducing new kernel interfaces that
allowed both Unix and non-Unix operating-system servers to run as application pro-
grams.

While the Mach development resulted in numerous innovations such as external
pagers, the result was a large kernel with hundreds of APIs that led critical researchers
to ridicule Mach as the microkernel that is not micro. The major problem induced by
Mach’s size and functional richness, though, was that Mach’s IPC was slow. As IPC is
one of the most-often used services of a microkernel, Mach had a severe performance
problem.

2.3.1.3 Second-generation microkernels

Learning from the problems of first-generation microkernels, designers came up with
a set of design principles for new microkernels [Lie96b]:

• Only allow a minimal set of abstractions in the microkernel: address spaces,
threads, and IPC.

• The microkernel should only provide mechanisms to multiplex the hardware se-
curely. It should not implement itself policies for page replacement, message
queueing, or device handling; it should allow these policies to be implemented
at user level.

These principles led to a number of new microkernels that provide excellent
performance both for system-level software and user applications. For example,
in [HHL+97] we showed that the L4 microkernel not only shows excellent mi-
crobenchmark performance, but incurs only minimal overhead in multiuser Unix
application benchmarks—L4Linux has an overhead of only 2 to 3 percent compared to
monolithic Linux.7

Fiasco is an implementation of the L4 microkernel interface. In Section 4.1.1 I give
an overview of the L4 interface.

7In [HHL+97], we mention overheads of 5 to 10 percent. However, we later applied a number of further
optimizations which reduced the overhead to 2 to 3 percent.

16 CHAPTER 2. BASICS AND RELATED WORK

2.3.2 Microkernels in real-time systems

OTHER REAL -TIME MICROKERNELS . Real-time Mach [TNR90] is a real-time ex-
tension for the Mach microkernel. Real-time Mach includes real-time scheduling, syn-
chronization, and IPC. It allows specifying policies governing the use of all resources
managed by Mach, and offers a uniform resource model to describe the resource needs
of applications to provide quality of service. In second-generation microkernels such
as Fiasco, a resource description and reservation normally occurs in user-mode appli-
cations. For example, the DROPSsystem (which runs in user mode on top of Fiasco)
includes a uniform resource model similar to Real-time Mach’s [HBB+98]. Being a
much higher-level, more monolithic kernel than Fiasco, Real-time Mach has been less
concerned with low-latency event-handler activation, one of the real-time properties
that my approach seeks to achieve.

There are a number of commercial real-time microkernels, including QNX [Hil92]
and LynxOS [SB96]. The companies selling these microkernels publish interrupt laten-
cies for their systems; however, little is known about the methods they used to achieve
these results.

The Emeralds microkernel [ZPS99] is a real-time kernel intended for embedded
applications. For IPC and synchronization performance, instead of relying on code
optimization, Emerald’s authors exploited the properties of embedded applications,
such as small, memory-resident program code and up-front knowledge about task-
communication patterns. Emeralds is unusual in that it does provide memory pro-
tection for user threads, but not virtual address spaces—a feature that is generally not
required in embedded applications with a fixed task set. In contrast, L4 and Fiasco, are
general-purpose microkernels.

CONSTRUCTION OF REAL -TIME MICROKERNELS . Elphinstone [Elp01] recently
proposed a number of refinements of the L4-microkernel specification that enable the
construction of an interesting, large class of real-time systems on top of L4. In par-
ticular, he specifies precedence and priority of a number of kernel services such as
message-copying IPC to avoid priority inversion. Elphinstone does not prescribe a
specific implementation for L4 interfaces, so his proposals are complementary to the
content of my thesis.

The microkernel community recently discussed the “correct” way of implementing
real-time microkernels.8 Some community members speculated that complete ker-
nel preemptability (as my approach provides, and as is implemented in Fiasco) is not
required for short and predictable interrupt-response times. Microkernel operations
are all short and “fast,” so most kernel operations could run with disabled interrupts.
This would not be a problem on multiprocessor machines, as most microkernel data
structures are local to one CPU; where another CPU’s data has to be manipulated, an
inter-processor interrupt (IPI) would be used. For the longer operations that do occur
in microkernels, strategic preemption points could be inserted in the kernel.

This proposal is justified; it is tempting because it avoids the need for a priority-
inheritance mechanism. The proposal could be regarded as one extreme of the design
space my approach opens up: As disabling interrupts is a valid lock-free synchroniza-
tion technique, this approach uses only lock-free synchronization. In fact, the upcom-
ing version of the L4 microkernel specification, dubbed “version 4,” has been carefully
engineered to include only very short critical sections. For example, in version 4, only

8Personal communication with Kevin Elphinstone, Volkmar Uhlig, and others at the Second Workshop
on Microkernel-based Systems, Lake Louise, Banff, Canada, 2001

2.3. MICROKERNEL-BASED REAL-TIME SYSTEMS 17

one task at a time can be deleted, whereas the specification implemented by Fiasco
(version 2) requires that the task-delete operation also recursively deletes all tasks cre-
ated by the task in question.

I believe that my approach is more general, because it is not limited to microkernels
where most operations are very short (and, on multiprocessors, most operations use
only CPU-local data structures). My methodology allows longer (preemptible) critical
sections, freeing the programmer to structure complex algorithms such that safe pre-
emption points can be introduced. Instead, existing code can be reused and wrapped
into a critical section.

In practice, the cost of synchronization primitives, the frequency of cross-CPU
communication, the expected level of data contention, and the length of critical sections
determine which approach is to be preferred. In Section 5.1 I present performance
overheads for a number of lock-free and wait-free synchronization primitives, and a
more detailed discussion of this problem.

18 CHAPTER 2. BASICS AND RELATED WORK

Chapter 3

Pragmatic nonblocking
synchronization for real-time
systems

In this chapter, I present a pragmatic approach for developing real-time systems using
only nonblocking synchronization. My goal was to develop a methodology that leads to
real-time systems with excellent real-time performance (i. e., low worst-case activation
latency for real-time threads) and a low synchronization overhead.

The methodology I present is applicable to both kernels and user-mode programs on
uniprocessors as well as multiprocessors. It is very easy to use; it uses a programming
paradigm similar to mutual exclusion and uses only simple lock-free data structures.

This chapter is organized as follows.

In Section 3.1, I define the problem that my approach is intended to solve, and I
develop the guidelines that comprise my methodology. From these guidelines, I derive
further requirements, which I will discuss in the remaining sections of this chapter.

Section 3.2 discusses lock-free synchronization (and priority-inversion–free atomic
update in general), one of the two nonblocking methods I recommend in my method-
ology. I look at ways to provide the required atomic primitives for both kernels and
user-mode programs.

Section 3.3 discusses wait-free synchronization, the other nonblocking method I
recommend in my methodology. In this section, I propose using locks with priority
inheritance as the wait-free synchronization primitive. I present a number of different
lock designs for use in different environments: uniprocessor and multiprocessor ker-
nels, and multithreaded user-mode programs. I explain multiprocessor priority inheri-
tance, the resource-access protocol my multiprocessor lock implements, and compare
it to multiprocessor priority ceiling. Also, I compare my synchronization primitives’
strength to monitors and to a real-time–enhanced serializer.

19

20 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

3.1 A design methodology for real-time systems

3.1.1 Design goals

My main design goal was to allow operating systems to have good real-time properties.
Specifically:

• The operating system needs to provide static, “hard” thread priorities. Priority
inversion must be avoided.

• Higher-priority threads must be able to preempt lower-priority threads (indepen-
dent of whether they execute in user mode or kernel mode) at virtually any time,
as soon as they are ready to run—thus allowing for good schedulability of event
handlers. This should be true for sets of threads that depend on common re-
sources, but even more so for threads that do not.

Secondary goals are:

• Short critical sections working on global state must induce essentially no over-
head for synchronization.

• The design must be applicable to modern CPUs, that is, it must be implementable
without CAS2.

• The synchronization schemes should work for both uniprocessor and multipro-
cessor architectures.

• The design must allow real-time and non-real-time tasks on the same CPU, with-
out impeding the real-time properties guaranteed for real-time applications.

I have derived these goals from the specification of the Fiasco microkernel (see
Section 4.1 and [Hoh98]). Many hard–real-time systems have similar requirements.

3.1.2 Design guidelines

The primary design goals rule out any synchronization scheme that suffers from pri-
ority inversion. This requirement led me to look into nonblocking synchronization
schemes: lock-free and wait-free synchronization.

The secondary goals strongly favor lock-free synchronization schemes: Locks in-
duce overhead, and in the multi-CPU case, the CPUs would compete for the locks. I
therefore generally disallow lock-based schemes for frequently-used global state, ex-
cept where completely lock-free synchronization is not possible on multiprocessor sys-
tems.

In particular, my design methodology comprises the following guidelines:

1. Arrange a system’s threadsinto groups of threads that cooperate on a given
job or assignment. I call threads that belong to the same grouprelated,whereas
threads belonging to disjoint groups areunrelated.

2. Classify a system’s objectsas follows: Local stateconsists of objects used
only by related threads.Global stateconsists of the objects shared by unrelated
threads.

3.1. A DESIGN METHODOLOGY FOR REAL-TIME SYSTEMS 21

3. Frequently-accessed global statemust be implemented with data structures that
can easily be accessed usinglock-free synchronizationor another low-overhead
priority-inversion–free mechanism for atomic update.

In Section 2.2.1, I mentioned a number of data structures that can be synchro-
nized in this fashion using only CAS: Counters, bit fields, stacks, and FIFO
queues.

On uniprocessors (and for CPU-local data on multiprocessors), preventing pre-
emption (e. g., by disabling and enabling interrupts in the CPU) for very short
critical sections is a valid lock-free technique.Very shorthere means that criti-
cal sections do not use more CPU cycles than the most expensive atomic CPU
instruction.

On multiprocessors, with many CPUs lacking any lock-free synchronization
mechanism better than single-word CAS, I discourage the use of global data
structures that cannot be synchronized using CAS. However, when such data
cannot be avoided, I propose it is also implemented in a lock-free fashion, based
on a software implementation of MWCAS, or synchronized using very short,
lock-based critical sections.

4. Global state not relevant for real-time computing, and local datacan be ac-
cessed usingwait-free synchronization.This kind of synchronization has some
overhead. Therefore, it should be avoided for objects that otherwise unrelated
threads must access.

I propose using a locking mechanism that provides priority inheritance. Waiting
for events (i. e., voluntary blocking) inside critical sections is not allowed. This
restriction ensures wait-freedom.

Once a designer has decided which object should be synchronized with which
scheme, this methodology becomes very straightforward to use. It approximates the
ease of use of programming with mutual exclusion using monitors while still providing
the desired real-time properties.

The set of rules I just determined ensures that the design goals of Section 3.1.1 are
addressed:

No priority inversion; preemptability. By using hard priorities and only nonblock-
ing synchronization (and very short critical sections), the system is preemptible,
and priority inversion is avoided.

Low overhead; real-time and non-real-time applications.By disallowing expen-
sive, lock-based synchronization schemes for data shared by all threads (i. e.,
by both real-time and non-real-time threads), manipulating global state induces
only low overhead.

Independence from CAS2.Allowing preemption prevention as a lock-free technique
allows the methodology to be used for uniprocessor systems with CPUs that do
not provide CAS2, such as the x86.

On multiprocessors, where preventing preemption does not suffice, global data
that cannot be accessed using only CAS must be synchronized using another
low-overhead technique, such as a spin lock or a software implementation of
MWCAS.

22 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

Uniprocessors and multiprocessors.All synchronization primitives can be provided
for both uniprocessors and multiprocessors (see next two sections).

User mode and kernel mode.The techniques work for both kernels and for user-level
programs.

The methodology imposes the following further requirements on systems, for
which I will propose solution in subsequent sections:

• Efficient mechanisms for priority-inversion–free atomic update of global state:
preventing preemption (for data accessed on only one CPU), and a software im-
plementation of MWCAS or very short lock-based critical sections (for data ac-
cessed on multiple CPUs).

I discuss atomic update for kernel mode and user mode in Sections 3.2.

• An implementation of priority inheritance in the kernel. I propose a wait-free
priority-inheritance locking mechanism that can be characterized as “locking
with helping,” explained in more detail in Section 3.3.1.

In Section 3.3.2, I extend my locking mechanism to multiprocessors. This lock
design implements a novel resource-access protocol, multiprocessor priority in-
heritance (MPIP), which I also explain in this section.

• The priority-inversion–free locking mechanism must be available from user
space. Section 3.3.3 discusses possible interfaces.

• Wait-free synchronization requires that critical sections protected by priority-
inversion–safe locks must not block.

I will show in Section 3.3.4 that this restriction does not limit the synchronization
mechanism’s power or ease of use.

For user-mode programs, guaranteeing absence of blocking can be challenging.
I discuss this problem in Section 3.3.3.4.

Using these guidelines, I have developed a real system—the Fiasco microkernel.
Chapter 4 discusses Fiasco as an extensive example of the application of my method-
ology.

3.2 Priority-inversion–free atomic update

Previous section’s methodology required an efficient implementation of low-overhead
priority-inversion–free atomic update for global data. It strongly favored lock-free syn-
chronization, but called for alternative mechanisms where lock-free synchronization is
not applicable. In this section, I review atomic-update mechanisms that can be applied
with my methodology.

As I detailed in Section 2.2.1.2, most CPUs offer atomic CAS instructions (or LL–
SC instructions, which are of similar power).1 (On x86 CPUs, these instructions also
work across CPU boundaries in multiprocessors, i. e., maintain cache and memory
consistency, when preceded by alock prefix.) Using CAS, it is possible to implement

1On CPUs that do not provide CAS or LL–SC (or a primitive of similar power), one of the workarounds
I provide in the following subsections can be used even for single-word atomic update.

3.2. PRIORITY-INVERSION–FREE ATOMIC UPDATE 23

in a lock-free fashion many simple data structures such as counters, FIFO queues, and
stacks.

However, more complex data structures, such as doubly-linked lists, need stronger
atomic-update primitives that allow changing multiple memory words at once. I dis-
cuss multi-word atomic update in the following two subsections. In Section 3.2.1, I
consider kernel-mode atomic-update implementations for both uniprocessors and mul-
tiprocessors. I will consider user-mode implementations in Section 3.2.2.

3.2.1 Atomic update in kernel mode

On a uniprocessor, multi-word atomic update (such as very short critical sections, or a
software implementation of MWCAS) can be protected by disabling interrupts in the
CPU as I mentioned in Section 2.2.1.2. This technique has very low overhead because
of two reasons: First, it does not need significantly more CPU cycles than what an
atomic instruction updating the same number of memory words would require. Second,
the technique does not need main memory for synchronization, reducing cache load.

Note that disabling interrupts in the CPU also works on multiprocessors for CPU-
local data. However, it does not help for global data shared between multiple CPUs
because it only affects the current CPU, not all CPUs, and because all other CPUs can
still read the modified data and see intermediate states.

On some hardware architectures, disabling interrupts in an external interrupt con-
troller is an alternative for synchronizing accesses to global data. For example, x86
multiprocessor systems can disable external interrupt sources using the IO-APIC chip
or the old-fashioned PIC chip; in both cases, it is not possible to globally disable in-
terrupts generated within CPUs, such as timer interrupts generated by a CPU’s Local
APIC unit. Unfortunately, this method has much higher overhead than a spin lock (both
in the contented and uncontented case), making this synchronization scheme unpracti-
cal on this architecture.

Other possible options for multiprocessors are (all but the first recalled from Section
2.2.1.2):

1. Use spin locks to protect very short critical sections; these critical sections can
contain an MWCAS implementation or object-specific code. Additionally, pre-
emption of threads holding locks must be avoided. In a kernel, the simplest way
to prevent descheduling is to additionally disable interrupts in the local CPU
during critical sections.

2. Use Greenwald’s and Cheriton’s globally-locked software CAS2 or MWCAS
with roll-back [GC96].

3. Use Anderson’s and colleagues’ wait-free MWCAS implementation [ARJ97a].

The first two methods use a lock to protect critical regions. In both cases, read
operations as well as write operations have to be protected using a lock to prevent reads
from seeing intermediate states. For both methods it is possible to reduce the number
of data objects per lock, thereby reducing lock contention and improve scaling [Gre99].

Solution 3 is more complex and suffers from contention for a shared version vari-
able. It has the advantage over Solution 2 that it does not need rollback in case of
preemption. However, my methodology mandates lock-free synchronization—and
thereby, the potential for rollback—on the level of MWCAS users, which makes wait-
freedom on the MWCAS-primitive level a moot point.

24 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

I have not looked into solutions that are even more complex or have higher overhead
than wait-free MWCAS.

Solution 1 (spin locks, critical sections with disabled interrupts) is the easiest to
use and implement: It has the lowest potential for contention (because there can be as
many spin locks as protected objects), it is not complex, and it is well-understood. All
in all, I have not found a compelling reason to prefer a software-emulated MWCAS
operation over using spin locks for very short critical sections. Therefore, I propose
that it be used on multiprocessors.

3.2.2 Atomic update in user-mode programs

Multi-word atomic update can be emulated in software only if it is possible to dis-
able concurrent access to the shared data. The interrupt-disabling method to prevent
preemptions does not work at user level. Therefore, disabling concurrent access im-
plies some kind of locking. However, the selected locking mechanism must not lead to
priority inversion.

In general, the locking mechanism depends on the underlying operating system. As
critical sections accessing data that is updated using lock-free synchronization are typi-
cally very short, it is important that a locking mechanism induces very little overhead—
at best, the kernel should not need to help. I know of the following locks that fit this
constraint:

1. Spin locks can be used on multiprocessor systems that always gang-schedule all
of the program’s threads.

2. The operating-system–assisted MWCAS implementation and the delayed-
preemption mechanism (both of which I discussed in Section 2.2.1.2) are
applicable on uniprocessors.

3. Operating-system–assisted preemption-safe locks are locks that prevent unipro-
cessorea lock-holding thread in favor of a thread that shares the lock-protected
data structure. These work well on both uniprocessors and multiprocessors.

3.3 Wait-free synchronization

In Section 3.1, my methodology recommended using wait-free synchronization for lo-
cal data and global state not relevant for real-time computing. In this section, I look at
ways of implementing wait-free synchronization in different environments: uniproces-
sor and multiprocessor kernels, and user-mode programs.

In related work (see Section 2.2.1), wait-free synchronization often is implemented
using complex and difficult-to-use MWCAS primitives. However, many authors over-
look that mutual exclusion with priority inheritance is a valid wait-free synchronization
scheme as long as critical sections never block. As mutual-exclusion–based interfaces
are considerably easier to use, I concentrate on locking with priority inheritance in this
thesis.

In this section, I propose a number of wait-free synchronization primitives for dif-
ferent environments. These primitives implement priority inheritance using a mech-
anism calledhelping. I call the primitive mechanismlocking with helpingor, inter-
changeably,wait-free locking, and I call the locks designed in this chapterhelping
locksor wait-free locks.

3.3. WAIT-FREE SYNCHRONIZATION 25

This section is organized as follows.
In Subsection 3.3.1, I describe a basic uniprocessor kernel mechanism that imple-

ments helping.
In Subsection 3.3.2, I extend the helping mechanism for multiprocessor kernels.

I explain the execution model for multiprocessor helping; the problem of locking
and waking up remote threads, and its solution; and the resource-access protocol
implemented by multi-CPU helping, the multiprocessor priority-inheritance proto-
col (MPIP). I also compare MPIP to Rajkumar’s and colleagues’ multiprocessor
priority-ceiling protocol.

Subsection 3.3.3 discusses wait-free locking in multithreaded user-mode programs.
I propose wait-free lock designs for three different kernel interfaces. Also, as block-
ing must not occur for nonblocking synchronization to word, I discuss ways to avoid
blocking in user-mode programs.

In Subsection 3.3.4, I discuss wait-free locking’s restriction of disallowing volun-
tary blocking inside critical sections. I compare the expressive power of wait-free lock-
ing primitives to monitors, and I provide evidence that the restriction does not appear
to be a limitation.

Finally, Subsection 3.3.5 reconsiders the serializer (or single-server) idiom that
Massalin and Pu recommended for synchronizing accesses to complex data structures
in lock-free operating systems [MP91]. I describe a simple modification of the serial-
izer pattern to make it applicable in real-time systems, and I compare it to the wait-free
lock designs developed in this chapter.

3.3.1 Wait-free locking for a uniprocessor kernel

I propose a wait-free locking-with-helping scheme. Each object to be synchronized in
this fashion is protected by a lock with a “wait” stack, or more correctly, with a helper
stack.

A lock knows which thread holds it upon entering a critical section protected by this
lock. When a thread,A, wants to acquire a lock that is in use by a different thread,B, it
puts itself on top of the lock’s helper stack. Then, instead of blocking and waiting for
B to finish, it helpsB by passing the CPU toB, thereby effectively lending its priority
to B and pushingB out of its critical section. Every timeA is reactivated2, it checks
whether it now owns the lock; if it does not, it continues to helpB until it does. When
B finishes its critical section, it will find a helping thread on top of the lock’s stack—in
this case, threadA—and passes the lock (and the CPU) to that thread.

Using a stack instead of a FIFO wait queue has an important advantage: Given
that threads are scheduled according to hard priorities, it follows that the thread with
the highest priority lands on top of the helper stack. There is no way for a lower-
priority thread to get in front of a higher-priority thread: As the thread running with
high priority does not go to sleep after enqueuing in the helper stack, it cannot be
preempted by a lower-priority thread and remains on top of the stack.3 This property

2Reactivations ofA can occur because the previous time slice has been consumed; a higher-priority
thread became unrunnable; or a higher-priority thread started to helpA to finish another critical sectionA
had entered before.

3This is generally true only for uniprocessors. For multiprocessors, the priority ordering of the helper list
could be ensured by using a different data structure—a priority queue—or by first migrating the helper to the
CPU of the lock owner to force it into that CPU’s priority-based execution order. There are subtle arguments
for both designs, which I discuss in the next section (Section 3.3.2).

26 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

ensures that the highest-priority threads get their critical sections through first. It makes
my locking mechanism an implementation of priority inheritance.

When A helpsB, B inherits A’s current priority. If B wants to acquire another
resource that is locked, it needs to enqueue in that resource’s helper stack. It follows
that threads in a helper stack are always ordered bycurrent priority—independent of
whether the threads actually own or have inherited that priority. As long asA keeps
helpingB (that is, untilB releases the resource desired byA), B runs withA’s current
priority. Therefore, the priority ordering is never violated (as long as critical sections
are properly nested). Also, threads in a lock’s helping stack always have a priority
higher or equal to that of the lock owner.

Of course, execution of critical sections may be preempted by higher-priority
threads that become ready to run in the meantime. However, to ensure wait-freedom,
threads executing a critical section must not sleep or wait.

Instead, threads first must leave critical sections they have entered before they go
to sleep. This requirement raises the question of how to deal with producer–consumer–
like situations without race conditions. There are a number of textbook solutions for
this problem. I describe my solution in Section 4.2.3.

3.3.2 Wait-free locking for a multiprocessor kernel

In this section, I extend the wait-free locking scheme of Section 3.3.1 to multiprocessor
architectures. I present a resource-access protocol for tightly-coupled multiprocessors,
which I call the multiprocessor priority-inheritance protocol (MPIP).

The design I present in this section has two desirable properties. First, it mini-
mizes the number of inter-processor interrupts (IPIs) in the system. Second, for the
normal (uncontented) case, it avoids synchronous inter-processor notifications (where
one CPU needs to wait for the result of an IPI it sent to another CPU), thereby remov-
ing the effect of IPI latency on CPU-local execution—even when manipulating remote
threads.

This section is organized as follows.
In Subsection 3.3.2.1, I give an overview over basic architectural assumptions and

derive design principles for a multiprocessor kernel. In the following subsections, I
use these design principles to develop a wait-free lock for multiprocessor systems. I
explore design alternatives and explain the choices I have made for my lock.

In a kernel, one of the resources that need to be locked are threads running on re-
mote CPUs. Locking remote threads raises the questions of dealing with those remote
threads that currently execute on another CPU (lockdown) and with wakeups. I dis-
cuss these issues in Subsections 3.3.2.2 and 3.3.2.3. In Subsection 3.3.2.4, I discuss
cross-CPU helping—the mechanism that implements MPIP and provides system-wide
priority inheritance. Subsection 3.3.2.5 compares MPIP to MPCP.

I conclude this section in Subsection 3.3.2.6 with a summary.

3.3.2.1 Multiprocessor execution model

To benefit maximally from having multiple CPUs available, it is important to structure
a system such that CPUs interact infrequently. I have designed Fiasco to minimize
synchronization between CPUs using the following three design principles, which I
discuss in turn:

• Prefer CPU-local data structures where possible.

3.3. WAIT-FREE SYNCHRONIZATION 27

• Run user threads only on their “home CPU,” that is, statically bind threads to one
CPU.

• Manipulate remote threads locally.

CPU-LOCAL DATA STRUCTURES . Data structures that must only be accessed on a
specific CPU are preferable in many cases because they do not cause cache contention
and are very easy to synchronize.

One example for an important data structure to keep local are the ready queues.
These queues keep track of all runnable threads in the system and are consulted when-
ever the kernel has to make a scheduling decision. In an IPC-intensive system such as a
microkernel-based one, there are many context switches, and potentially many ready-
queue accesses and updates. Context switches need to be very fast because of their
frequency, and the efficiency of ready-queue accesses has a very direct influence on the
efficiency of context switches.

STATIC CPU BINDING . Systems that dynamically schedule user-mode threads on
multiple CPUs run danger of cache pollution: Cache working sets continuously have to
be exchanged between CPUs, slowing down applications and increasing the likelihood
of cache misses. That’s why the L4 philosophy is to bind threads to a specific CPU and
let a (user-level) scheduler decide when to migrate a thread between CPUs.

I follow this belief in my wait-free lock design. I assume that threads are bound to
a “home CPU,” and that migration only occurs on user request.

However, the lock implementation needs support for temporary remote execution
of a thread’s in-kernel part. This feature facilitates helping, which I explain in Section
3.3.2.4. It does not induce more cache pollution than strict static binding because of two
reasons: First, the kernel’s code runs on all CPUs and repeatedly reloads its working
set into each CPU’s cache, that is, it always “pollutes” the cache. Second, this feature
is used only when two threads interact, that is, when one thread locks another thread,
which indicates that the locked thread’s kernel data is required on both threads’ CPUs.

M ANIPULATING REMOTE THREADS LOCALLY . One of the resources that a kernel
needs to manipulate are threads. When a threadA wants to lock down and manipulate
another threadB running on a different CPU, there are two basic ways to implement
their interaction:

Remote execution (i. e., local locking): ThreadA runs the operation onB’s CPU.
ThreadB is locked on its own CPU.

Local execution (i. e., remote locking): ThreadA runs the operation locally on its own
CPU. ThreadB is locked onA’s CPU.

Remote execution simplifies synchronization as all accesses to threadB are serial-
ized onB’s CPU. However, it implies that threadB’s CPU needs to be notified using an
expensive inter-processor interrupt (IPI) each time threadB is manipulated. Depending
on the synchronous nature of the manipulation, another IPI may be necessary at the end
of the operation. In addition to expensive notification, this solution is quite complex
because it needs to deal with the following situation: WhenA’s IPI arrives onB’s CPU,
threadB might have migrated to another CPU, so the IPI needs to be resent to that
CPU.

28 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

Local execution, on the other hand, saves the costly notification if threadB is not
runnable at the time it is locked—which is true in the majority of cases (synchronous
IPC). Also, it avoids the thread-migration problem because threads can be locked on
any CPU. However, a precondition for using this option is the availability of an inex-
pensive remote-locking primitive that prevents the thread from being scheduled.

Besides IPIs, one must also take into account caching effects. Remote execution
ensures that only one particular CPU ever touches a thread’s attributes, whereas local
execution implies that critical sections on all CPUs can touch thread data, leading to
cache-line invalidations and cache-line transfers between CPUs. However, consider
that these transfers occur only when a threadA updates a remote threadB’s state. The
updated data has to be transferred toB’s CPU’s cache at some point regardless of which
synchronization scheme is used. It follows that about the same number of cache-line
transfers occur for both options, allowing me to exclude caching effects from further
consideration.

My lock design assumes the second variant, local execution. Critical sections usu-
ally execute on the locker’s CPU (i. e., except if helping occurs—see Section 3.3.2.4).
In the uncontented case, remote locking can be implemented using a single compare-
and-swap (CAS) operation. If the CAS fails (because the thread is currently running
or because another thread owns the lock), the lock falls back to remote notification (to
lock down a running thread) or helping (in case the thread is already locked). I explain
these mechanisms in detail in Sections 3.3.2.2 and 3.3.2.4.

In my lock design, the locking primitives never need tosynchronouslynotify the
locked thread’s CPU. Critical sections do not access CPU-local data structures directly
(only unlocked code—code not executed in a critical section—does). Therefore, locked
operations can run without notification overhead on any CPU. The only IPI that locked
operations sometimes do generate is anasynchronousready-queue–update notification
when a locked thread becomes runnable. I describe the wakeup mechanism in detail in
Section 3.3.2.3.

3.3.2.2 Lockdown

When a threadA wants to manipulate another threadB that is currently executing on an-
other CPU, it must first causeB to stop running before it can proceed with its operation
(“lockdown”).

As I detailed in the previous subsection, I assume local execution of locked opera-
tions. That implies that locking of a remotely running threadB occurs on the locker’s
(A’s) CPU.

In the uncontented case (B is neither locked nor running),A can acquireB’s thread
lock using a single atomic CAS operation. In that case, no IPI, spinning, or helping is
necessary.

I propose thatA locks downB after it has acquiredB’s thread lock. OnceB is
locked, it cannot be activated on any CPU, nor can it migrate to any other CPU. How-
ever, it might still be running. WhenA detects that this is the case, it sends an IPI toB’s
current execution CPU (which might not beB’s home CPU ifB is being helped4; see
Section 3.3.2.4). This IPI causes an immediate reschedule onB’s CPU. Meanwhile,A
pollsB’s status, waiting forB to be deactivated.

4For example,B has lockedD; C also wants to lockD and helpsB by lending it CPU time onC’s CPU.

3.3. WAIT-FREE SYNCHRONIZATION 29

Please note that whileA is polling, waiting forB to stop running,A can still be
preempted. This does not limit the throughput of operations that lockB, as another
thread that wishes to lockB can helpA to finish its critical section.

The lockdown operation requires additional synchronization to prevent deadlock
when two threads try to lock down each other. I propose to secure the thread-lock
operation using one simple (test-and-set) lock per thread. ThreadA tries to acquire
both its own andB’s lock before proceeding with the IPI. If sequentially acquiring
both locks fails, a thread releases the locks and idles for a short amount of time, using
a randomized exponential backoff, before it retries the operation.

3.3.2.3 Wakeup

When a locked operation wakes up the locked thread, the kernel must make a schedul-
ing decision once the locked operation finishes: Should it run the previously locked
thread immediately, or should it put the thread into the ready queue? On which CPU
should the thread run, and on which CPU should the kernel carry out the enqueue
operation?

In the uniprocessor case, the solution is very straightforward: In the thread-unlock
operation, check whether the locked thread is runnable, and if so, switch to it if it has a
higher priority; otherwise, enqueue it in the ready queue.

My multiprocessor solution is based on the CPU-local data structures and static
CPU binding principles: I propose that the kernel never runs kernel code not executing
a critical section (or user code) on a CPU other than a thread’s home CPU. Instead,
the thread-unlock operation queues the thread in its home CPU’s wakeup queue and
asynchronously notifies that CPU using an IPI. When a CPU receives this notification,
it enqueues the thread in its ready queue, or—if the thread has the highest priority—
directly switches to the thread.

3.3.2.4 Multiprocessor priority-inheritance protocol (MPIP)

As the uniprocessor lock I have described in Section 3.3.1, the multiprocessor lock
implements priority inheritance using helping.

Priority inheritance is desirable even across CPU boundaries to avoid situations in
which a thread on one CPU prevents the highest-priority thread on another CPU from
making progress. Therefore, I explored ways to provide a helping mechanism that
works in a multiprocessor environment.

Cross-CPU helping occurs when a threadA on one CPU wants to acquire a lock
held by a threadB on another CPU. There are two basic variants for implementing
helping:

Remote helping: Helping occurs on threadB’s CPU. ThreadA migrates toB’s CPU.
If its priority is higher than that of a currently running thread on that CPU, it can
lend the priority toB.

Local helping: Helping occurs on threadA’s CPU. ThreadB temporarily runs onA’s
CPU (thehelper CPU) for the duration of its critical section.

These two variants have slightly different semantics: With local helping, it is pos-
sible that threadA helps a threadB that has ahigherpriority, but is blocked on its home
CPU by a thread with an even higher priority. With remote helping, threadA would

30 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

be put to sleep in this case, and no helping at all would occur. In consequence, remote
helping requires a global, “end-to-end” priority scheme to prevent priority inversion.

Local helping has the drawback that it slightly softens the strict processor binding
of threads. However, this is true only for kernel code, because only the kernel’s critical
sections temporarily run on a helper CPU; the effect is not visible on user level. The
advantage of local helping is that it allows the system to remain wait-free: It ensures
thaton each CPUthe highest-priority thread can make progress; that thread cannot be
blocked by remote threads. Therefore, I prefer local helping’s behavior.

Apart from semantics, remote helping is less preferable also because it is more
complex to implement and has a higher run-time cost: Like remote locking (see Section
3.3.2.1), it must deal with the thread-migration problem: At the time threadA arrives at
B’s CPU, threadB might have migrated elsewhere. Also, in caseA in not the highest-
priority thread onB’s CPU, it must be added to that CPU’s ready queue.

On the other hand, local helping is a low-overhead operation. During helping,
no cross-CPU synchronization is needed; the helping thread just passes the CPU to
the current lock owner. Also, this operation does not require a remote ready-queue
update: The remote, lock-holding thread is runnable per definition (lock owners are
not allowed to sleep, as that would violate the nonblocking predicate), but not running.
It follows that it is already enqueued in its home CPU’s ready queue. The helping
thread executes only locally on its home CPU, so the normal CPU-local lazy-queueing
discipline applies.

For these reasons, I propose local helping.
In the remainder of this section, I will discuss two design issues that arise with local

helping: Behavior when the current lock owner actually executes on some CPU, and
scheduling after helping.

“H ELPING ” A RUNNING THREAD . What happens if a threadA, intending to help
another threadB, finds thatB is already running on another CPU? I considered two
alternatives:

Sleep and callback.ThreadA registers a callback IPI with threadB’s current CPU
and goes to sleep, allowing other threads to run. As soon asB finishes its critical
section or stops running,B sends an IPI toA’s CPU (and all other helpers’ CPUs),
wakingA (and all other helpers) up again.

Polling. ThreadA does nothing except pollingB’s thread state and the lock’s state,
waiting forB to stop running or leaving the critical section.

Synchronization cost and latency are higher with the callback method: It requires
extra checks in the unlock and thread-deactivation code paths and an IPI to wake up
helpers. However, the callback method can result in higher CPU utilization as other
threads can run while a threadA is waiting for threadB to finish, whereas the polling
method potentially burns a whole time slice doing nothing. Yet, this danger does not
contradict real-time principles (the critical section delaying the high-priority thread
doesexecute), nor is it very probable given that critical sections usually only execute
for a fraction of a time slice.

Therefore, I propose to use the polling method.
There is a fixed order in which helping (or polling) threads acquire a lock: As

with the uniprocessor version of helping, helpers enqueue in the lock’s “helper queue,”

3.3. WAIT-FREE SYNCHRONIZATION 31

which is sorted by global priority5, and a thread that releases the lock transfers lock
ownership to the highest-priority helper. Consequently, low-priority threads cannot
starve high-priority threads from accessing the lock.

SCHEDULING AFTER HELPING . When a threadBhas been helped and has executed
its critical section on a helper CPU, which thread should run on that CPU onceB leaves
its critical section?

If threadB was helped, there is at least one other thread that wants to acquire the
lock (the helper). This implies that there always is a new lock owner afterB leaves its
critical section. This is the highest-priority thread that was waiting for the lock. It can
be equivalent with threadB’s helper, but this need not be the case if there is a higher-
priority thread waiting for the lock on another CPU, polling. It follows thatB cannot
unconditionally switch to the new lock owner—provided this was desirable—as that
thread might already run on another CPU.

The static CPU binding principle mandates that unlocked code and user code only
run on a thread’s home CPU. In other words, staying on its helper CPU is also not an
option for threadB.

ThreadB could switch to its helper, but that would require keeping track of the
current helper, and is ambiguous if more than one thread helpedB.

The only option is for threadB to call the scheduler. The scheduler will select the
highest-priority thread whose home CPU isB’s current helper CPU. It will never select
threadB again, independent ofB’s priority, becauseB has a different home CPU.

Once threadB has been descheduled from its helper CPU, it becomes runnable on
its home CPU again. No special notification is necessary:B was enqueued in its home
CPU’s ready queue already before it was helped (because at that time, it was runnable,
but not executing), which means that the scheduler can consider it automatically. Also,
if B now is the highest-priority thread of its home CPU, that CPU’s scheduler can poll,
waiting forB being removed from helper CPUs, and run it immediately.

3.3.2.5 Comparison MPIP–MPCP

In comparison to MPCP, MPIP uses a radically different multiprocessor execution
model.

• In MPCP, resources (and critical sections accessing resources) are bound to fixed
CPUs. In MPIP, critical sections can execute on all CPUs. In the common (un-
contented) case, threads never migrate under MPIP.

• While MPCP disallows nested critical sections (i. e., it disallows locking more
than one resource), there is no such restriction in MPIP.

• There are no priority ceilings for resources in MPIP. Therefore, MPIP does not
prevent deadlocks or chained blocking.

• In MPIP, all threads finish their critical sections in a finite number of steps.
Resource-contention blocking is bounded for blocking induced by both local
and remote threads. Therefore, MPIP is a wait-free synchronization protocol.

5On multiprocessor systems, the “helper stack” of Section 3.3.1 cannot be used, because the stack entries
would not be automatically ordered by priority as on uniprocessors. Therefore, an explicitly priority-sorted
queue is needed.

32 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

In this work, I do not look into schedulability analysis for MPIP—such analysis
is outside the scope of this thesis. However, as MPIP is wait-free, existing analysis
methods for wait-free synchronization protocols can be applied.

3.3.2.6 Summary

In this section, I developed a wait-free lock with helping for multiprocessor systems.
My lock design implements a novel resource-access protocol, multiprocessor priority
inheritance.

I started from three design principles: CPU-local data structures, static CPU bind-
ing, and manipulating (locking) remote threads locally.

From these principles, I derived a remote-locking design with the following prop-
erties: In the uncontented case, remote-thread lockdown does not require an IPI. It
is never necessary to access the ready queue of a remote CPU. Kernel code running
within a thread context always runs on the CPU to which the thread is bound, except
in the case of helping: When a thread helps another thread to finish a critical section,
the helped thread can execute on the helper’s CPU for the duration of its critical sec-
tion. After a thread was helped on a remote CPU, it always releases that CPU, waiting
for its home CPU’s scheduler to pick it up again. Helping does not occur when the
thread blocking a critical section is currently executing on another CPU; in that case,
the thread that wishes to enter its critical section simply waits, polling the lock’s state.

In combination, these properties minimize the number of IPIs. For the normal
(uncontented) case, they completely eliminate the need for synchronous notifications
where one CPU needs to wait for the result of an IPI it sent to another CPU; in that
case, IPI latency therefore has no effect on CPU-local execution, even for remote-
thread manipulation.

3.3.3 Wait-free locking in user-mode programs

If a kernel provides static priorities or an implementation of priority inheritance, it is
possible to implement the wait-free locking synchronization scheme of Section 3.3.1
in user mode. In this section, I consider three different kernel interfaces that allow
multithreaded applications to take advantage of priority inheritance, and I show how to
implement a wait-free lock without race conditions on top of them in user mode.

Lock with priority inheritance is an interface to a lock implementation with priority
inheritance in the kernel.

Sleep and wakeup with priority inheritance is an interface to a sleep–wakeup
mechanism or another IPC mechanism that implements priority inheritance.
If a kernel offers such an interface, it is possible to construct a user-level
implementation of a lock with priority inheritance.

Time-slice donation is a means of temporarily yielding the CPU to a different
runnable thread. When a kernel offers a time-slice–donation interface together
with hard priorities, but not a direct interface to an implementation of priority
inheritance, it is possible to emulate priority inheritance at user level.

In the following three subsections, I describe possible implementations (for both the
kernel-space and the user-space parts) for locking with priority inheritance based on the

3.3. WAIT-FREE SYNCHRONIZATION 33

preceding kernel interfaces. These implementations are meant for multithreaded appli-
cations in which threads share state in common memory. Likewise, my lock designs
also store their state used for synchronization in shared memory—with the exception
of the first design, which keeps all state in the kernel.

In Subsection 3.3.3.4, I discuss the problem of avoiding blocking in user-space
programs—a precondition to implementing wait-free synchronization.

In a final subsection (Section 3.3.3.5), I summarize and compare the interface op-
tions, and, based on my analysis, I propose a modification of the L4 microkernel inter-
face.

3.3.3.1 Lock with priority inheritance

In this case, the kernel exports an interface like this:

Lock_handle new_prio_inherit_lock ();
void prio_inherit_lock (Lock_handle l);
void prio_inherit_unlock (Lock_handle l);

If a kernel implements a wait-free lock with priority inheritance such as the one I
described in Section 3.3.1, it is trivial to export it to user space. The kernel must be able
to dynamically instantiate wait-free locks, and it needs to export the lock’s operations
to user space using a lock handle.

With locks implemented as kernel objects, there is the issue of access control. Han-
dles are capabilities the kernel must protect by some means in order to prevent ma-
licious or buggy programs from manipulating locks they should not have access to.
There are a number of textbook solutions to this problem, including the following so-
lutions:

Additional level of indirection. Each thread has its own handle name space, and there
are additional system calls to transfer access rights between threads. This is the
way Unix protects file handles.

Cryptographic capabilities. Locks are shared by passing around the handle’s ID di-
rectly. Anyone who knows a handle can access the lock. However, it is difficult
to guess handles because they are encoded in a large number.

One problem with the kernel-object approach is its cost. User programs must use
system calls to lock and unlock objects, independent of whether there is or is not con-
tention. The solutions I develop in the next two subsections do not require entering the
kernel when there is no contention.

3.3.3.2 Sleep and wakeup with priority inheritance

In this case, the kernel exports an interface like this:

void thread_sleep (Threadid wait_for);
void thread_wakeup (Threadid sleeping);
void thread_wakeup_any ();

Thethread sleep() operation puts the thread to sleep, waiting for a wakeup from a
specific other thread. This call also implements priority inheritance: The thread named

34 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

in thewait for argument inherits the priority of the sleeping thread. Thethread -
wakeup() operation wakes up a specific thread, andthread wakeup any() unblocks
exactly one thread waiting for the current thread—the one with the highest priority.6

This interface is equivalent to a synchronous IPC interface such as the one in
the L4 API: Thethread sleep() primitive is equivalent to an IPC-send operation,
thread wakeup() is equivalent to a IPC-receive operation and unblocks the named
sender, andthread wakeup any() is equivalent to an “open” IPC-wait.

A variation of this interface uses a kernel-implemented wait queue named with a
handle.

K ERNEL SUPPORT. I assume that both the sleep (or IPC-send) and specific wakeup
(or IPC-receive) operations implement priority inheritance and put sleepers to an inter-
nal wait queue in priority order. I further assume that these operations are synchronous,
that is, wakeup blocks until there is a thread to wake up.

To implement priority inheritance using sleep and wakeup, a kernel needs to keep
track of wakeup dependencies. A threadA depends on a wakeup from another thread
B if A is suspended in athread sleep(), waiting for a wakeup fromB. I see two
different ways of storing these dependencies: in memory local to sleeping threads, and
in global memory accessible by the scheduler.

In both designs, the kernel does not remove threads that calledthread sleep()
from the ready queue. In the local-data design, whenever a sleeping thread is scheduled
or activated, it immediately switches to the thread it depends on for its wakeup. In the
global-data design, the thread-switching code consults a thread’s dependencies before
switching to it. The latter variant avoids unnecessary context switches, but adds some
overhead to the thread-switching code.

In any case, keeping track of wakeup dependencies raises the problem of cycle
detection. If two or more threads depend on each other in a cycle, the kernel needs a
way to detect that it has traversed a thread already in the current dependency-resolution
pass; otherwise dependency resolution does not terminate. A simple solution is to
use a global version number that the kernel increases on every scheduling decision.
When the kernel passes a thread during dependency traversal, it updates that thread’s
local version number. If the thread’s version is already equivalent to the global version
number, dependency resolution has failed, and the traversed threads need to be removed
from the kernel’s ready queue.

USER-MODE LOCK IMPLEMENTATION . The basic problem with this set of inter-
faces is that a thread waiting for the lock does not know in advance which other thread
will wake it up. On the other hand, the kernel needs to know exactly which thread is
expected to send the wakeup notification.

I propose two different solution to this problem, each with its own performance–
resource usage tradeoff. Both solutions are cooperative solutions, that is, they require
the cooperation of all participating threads.

Figure 3.1 shows pseudocode for my first solution. This design uses an extra thread
for access mediation. Threads that want to acquire a lock indicate this in a counter
variable and then go to sleep waiting for the mediator (usingthread sleep()). The
mediator only runs when it inherits a priority—otherwise it is suspended (in L4 terms:
it has a priority of 0). Once a thread waits for it, it starts up and goes to sleep itself

6Contrary to the wakeup operation known from condition variables,thread wakeup() andthread -

wakeup any() are synchronous and block, waiting for a thread to wake up.

3.3. WAIT-FREE SYNCHRONIZATION 35

class User_mutex1
{
Threadid d_mediator;
Threadid d_owner;
int d_waiting;

public:
void lock ()
{

while (! CAS (&d_owner, 0, current ()))
{

++d_waiting;
thread_sleep (d_mediator);

}
}

void unlock ()
{
if (d_waiting)
thread_wakeup (d_mediator);

else
d_owner = 0;

}

void mediator_thread ()
{
for (;;)
{
// We woke up -- we inherited someone’s priority.
// Pass on priority to current lock owner.
Threadid owner = d_owner;
if (owner)
{
thread_sleep (owner);
--d_waiting;
d_owner = 0;

}
else
--d_waiting;

thread_wakeup_any ();
// Highest-priority waiter starts up, grabs lock.
// We go to sleep again
// (unless there is waiter of equal priority).

}
}

};

Figure 3.1: User-mode lock with priority inheritance using sleep–wakeup interface,
using a mediator thread

36 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

waiting for the current lock owner. The lock owner checks the counter variable before
releasing the lock. If the counter is nonzero, the lock owner wakes up the mediator
usingthread wakeup(). The mediator wakes up the highest-priority waiting thread
usingthread wakeup any().

Provided that it is possible to ensure that the kernel never schedules the mediator
thread unless that thread inherits some other thread’s priority, this implementation is
race free.

Figure 3.2 illustrates my second solution, which is especially suited for uniproces-
sors. Here, there is no mediator thread, and waiting threads lend their priority directly
to the current lock holder. However, when a lock holder releases the lock, it needs to
explicitly wake upall waiters. This is necessary because the waiting threads need to
update their priority-inheritance relationship. My implementation in Figure 3.2 uses a
counter to keep track of the number of waiters to wake up. The thread doing the wakeup
in unlock() only knows the number of threads to wake up, not their identity, so it uses
the unspecific wakeup operationthread wakeup any(), relying on that primitive to
wake up waiters (which, in IPC terms, aresenderswaiting in the lock owner’s send
queue) in priority order. If the thread cannot usethread wakeup any() because it
has other IPC relationships that could interfere, a variant of this solution uses a queue
of sleeping threads instead of a counter. In this variant,unlock() is responsible for
waking up the threads on the queue on priority order after it has detached the queue
from the lock with the CASW.7 I have not shown this variant in Figure 3.2, but next
section’s switching lock (shown in Figure 3.3) uses this idea.

As theunlock() operation unconditionally wakes up all threads that have blocked
during the critical section, the following question arises: Do the threads woken up
by unlock() become runnable all at once, compete for the lock, and (except for the
winner) end up callingthread sleep() again? Such behavior is considered a prob-
lem because it would result in excessive overhead. It is known as thethundering-herd
problem.

On uniprocessors, this lock design does not suffer from the thundering-herd prob-
lem despite the need to wake up all waiters, provided all threads differ in priority. Once
the highest-priority thread has been woken up, it restarts and grabs the lock. The previ-
ous lock owner cannot restart more threads until the high-priority thread stops. When
that happens, the previous lock owner restarts the thread with the next-highest priority,
and so on. Therefore, each sleeping thread gets restarted exactly once in this case.

On multiprocessors, the thundering-herd problem only can be circumvented by
binding all participating threads to a single CPU. Therefore, this mechanism is not
practical for synchronizing accesses to global data.

3.3.3.3 Time-slice donation

In this case, the kernel exports an interface like this:

void thread_switch (Threadid other);

This system call passes the current time slice to another thread, independent of that
thread’s priority. The call simply does nothing if the other thread is not ready to run.8

7Recall that CASW is the double-word version of CAS—see Section 2.2.1.2.
8The L4 system callthreadswitchcurrently does a full reschedule in this case and would have to be

extended to support these semantics.

3.3. WAIT-FREE SYNCHRONIZATION 37

class User_mutex2
{
struct User_mutex_data {

Threadid owner;
int waiting;

};

static const User_mutex_data nil = { .owner = 0, .waiting = 0 };

User_mutex_data d_data;

public:
void lock ()
{

for (;;)
{

User_mutex_data myself
= { .owner = current(), .waiting = 0 };

if (CASW (&d_data, nil, myself))
break; // Success

User_mutex_data state_new, state_old;

state_old = state_new = d_data;
++state_new.data.waiting;

if (! CASW (&d_data, state_old, state_new))
continue; // Retry

thread_sleep (state_new.owner);
}

}

void unlock ()
{
int wait_count;
User_mutex_data state_old;

do
{
state_old = d_data;
wait_count = state_old.waiting;

}
while (! CASW (&d_data, state_old, nil));

while (wait_count--)
thread_wakeup_any ();

}
};

Figure 3.2: User-mode lock with priority inheritance using sleep–wakeup interface,
withouta mediator thread

38 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

K ERNEL SUPPORT. When implementing priority inheritance at user level using this
interface, the only requirement on the kernel is that it schedules threads according to
static priorities. In particular, it is not necessary that the kernel implements priority
inheritance itself.

USER-MODE LOCK IMPLEMENTATION . The user-level implementation of locking
with priority inheritance using a thread-switching operation can be very similar to the
in-kernel implementation I described in Section 3.3.1. However, the user-level imple-
mentation needs some extra care to avoid race conditions. A kernel can easily combine
checking of lock ownership, queuing in the lock’s queue, and switching to the lock
owner into one atomic operation. Without special kernel support, this is impossible at
user level.

Figure 3.3 shows a possible implementation. It picks up the wait-queue idea from
the end of previous section.

Like the in-kernel design I proposed in Section 3.3.1, this implementation uses a
stack (d data.waiting) to keep track of threads that are busy helping. However, there
are also a number of differences to the in-kernel design.

First, the helping threads are notified explicitly whenever the lock owner releases
the lock. When that happens, helping threads retry an atomic lock acquisition. In con-
trast, the in-kernel variant’s unlock operation directly transfers lock ownership to the
highest-priority waiter. However, it implies that the next owner can be atomically de-
queued from a live (i. e., potentially being modified from another thread), synchronized
stack or list—which is difficult in user mode.

Second, I do not assume the stack of helping threads to be in priority order. In-
stead, myunlock implementation searches for the highest-priority thread in the stack
before waking it up. This makes the design more applicable for multiprocessors. It is
possible to search the stack because it is not live and does not need to be synchronized
anymore—only the thread doingunlock has access to it.

This implementation is subject to the same thundering-herd issues as previous sec-
tion’s second implementation. Please find a discussion of these issues at the end of that
section. In essence, it works best if all participating threads run on a single CPU.

3.3.3.4 Avoiding blocking in user-mode programs

To avoid blocking inside critical sections, user programs must take extra care typically
unnecessary in the kernel: They need to ensure that critical sections do not trigger page
faults leading to blocking. For that, user programs need operating-system support.

I consider three possible operating-system interfaces to deal with this problem:

Memory pinning. The trivial solution is to prevent page faults. To make this possible,
the operating system has to provide an interface for memory pinning.

Nonblocking memory manager. Paging that leads to blocking (such as page-ins from
disk) is forbidden, but page faults that can be resolved without blocking (such as
a copy-on-write implementation) are allowed. In this case, high-priority threads
must trust the memory managers of low-priority threads with whom they share
data. As a consequence, the operating system must implement priority inheri-
tance in its page-fault protocol.

3.3. WAIT-FREE SYNCHRONIZATION 39

Recover from page faults.This solution works by letting the page-fault handler know
that the user program is executing a critical section. As for a nonblocking mem-
ory manager, a precondition to using this method is that the page-fault handler
inherits the priority of the faulting thread.

The page-fault handler usually runs inside the kernel. However, microkernels
such as L4 provide user-level page-fault handling. For successful user-mode
handling of page faults, it is necessary to ensure that the user-level page-fault
handler does not generate a blocking page fault itself. This can be accomplished
by combining this method with either of the first two variants (memory pinning;
or trusted nonblocking memory manager).

The page-fault–recovery method allows the page-fault handler to detect that a
page fault occurred while executing a critical section, and to initiate some form of
recovery that prevents the critical section from blocking (such as rolling back the
critical section). Page-fault recovery has the advantage over the nonblocking–
memory-manager strategy that it does not depend on cooperation of the memory
manager.

Let me discuss two possible forms of recovery:

Recovery in the page-fault handler. If the page fault interrupted a critical sec-
tion, it does any recovery necessary before its usual processing.
In systems that allow user programs to define their own page-fault handler
(such as L4-based systems), this is a very flexible solution as user programs
can define an application-specific recovery strategy.
With a hard-wired kernel page-fault handler, this solution is not as flexible.
The page-fault handler can roll back the critical section to its beginning
and free the lock. This method assumes that the page-fault handler knows
the implementation of the critical section, or that there is an interface that
informs the page-fault handler about the steps that need to be undone. This
is certainly possible, but it defeats the ease of use of the synchronization
schemes I presented in previous sections.

Reflect a trap to the user code.In this case, the page-fault handler sends the
faulting user code a signal. The user code performs the recovery itself
in any way it wants. It can abort or roll-back the critical section, or it can
communicate with a memory manager using a synchronization scheme that
provides priority inheritance.

If page-fault handling is possible in user mode, it is possible to implement the
second form of recovery in terms of the first: When the page-fault handler detects
that a page fault occurred in a critical section, it can deliver a signal to the faulting
thread (using a system call such as L4’slthread ex regs).

User-mode recovery combined with either or both of memory pinning and non-
blocking memory manager is the most flexible solution. The combination of memory
pinning and page-fault reflection has the nice property that it is very easy to provide in
any operating-system kernel.

3.3.3.5 Summary

Multithreaded user programs can use my design technique if the operating system pro-
vides some support that real-time systems provide frequently, or can easily implement:

40 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

class User_mutex3
{
struct Waiting {
Threadid thread;
int priority;
Waiting* next;
bool queued;

};

struct User_mutex_data {
Threadid owner;
Waiting* waiting;

};

static const User_mutex_data nil = { .owner = 0, .waiting = 0 };

User_mutex_data d_data;

public:
void lock ()
{
for (;;)
{
User_mutex_data myself
= { .owner = current(), .waiting = 0 };

if (CASW (&d_data, nil, myself))
break; // Success

User_mutex_data state_new, state_old;
Waiting w;

state_old = state_new = d_data;
state_new.waiting = w;
w.thread = current ();
w.priority = current_priority ();
w.next = state_old.waiting;
w.queued = true;

if (! CASW (&d_data, state_old, state_new))
continue; // Retry

// Keep helping until we are dequeued
while (w.queued)
thread_switch (state_new.owner);

}
}

*** Continued on next page ***

Figure 3.3: User-mode lock with priority inheritance using switch interface

3.3. WAIT-FREE SYNCHRONIZATION 41

void unlock ()
{
Waiting* wait_queue;
User_mutex_data state_old;

// Unlock
do
{

state_old = d_data;
wait_queue = state_old.waiting;

}
while (! CASW (&d_data, state_old, nil));

while (wait_queue)
{

Waiting** highest_prio = &wait_queue;

// Find thread with highest priority in queue
for (Waiting** w = &(wait_queue->next);

*w;
w = &((*w)->next))

{
if ((*w)->priority > (*highest_prio)->priority)
highest_prio = w;

}

Waiting* waking_up = *highest_prio;
Threadid waking_thread = waking_up->thread;
int waking_priority = waking_up->priority;

*highest_prio = waiting->next; // Dequeue
waking_up->queued = false;

if (waking_priority > current_priority())
thread_switch (waking_thread);

}
}

}; // User_mutex3

Figure 3.3: (cont.) User-mode lock with priority inheritance using switch interface

42 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

MWCAS support or preemption-safe locking; priority inheritance; and an interface
that allows the prevention of page faults that block the program.

I proposed three different kernel interfaces that enable a user-mode program to im-
plement priority inheritance: Lock with priority inheritance, sleep and wakeup with
priority inheritance, and time-slice donation. The first interface exposes a lock imple-
mented as a kernel object, the second is based on a sleep-and-wakeup–based protocol
such as IPC, and the third uses only thread switching. The first two interfaces assume
that the kernel implements priority inheritance; the latter interface does not.

I discussed three kernel interfaces that allow a user program to cope with page faults
that lead to blocking: memory pinning, nonblocking memory manager, and user-mode
page-fault recovery combined with either or both of the first two.

For a second-generation microkernel that provides synchronous IPC—such as L4
implementations—, the IPC-based priority-inheritance protocol is the most natural one.

L4 microkernels support external user-mode memory managers, and the page-fault
protocol for these memory managers is based on IPC. This makes priority inheritance
in the page-fault protocol a natural extension. Also, memory pinning can be imple-
mented using the standard L4 memory-management services. These features allow the
use of all three of the blocking–from–page-fault avoidance techniques I proposed.

For kernels that map page fault to IPC (such as L4-based kernels like Fiasco), I
therefore propose implementing IPC with priority inheritance. This feature enables
both nonblocking memory management and the sleep–wakeup–based user-mode lock
implementation of Section 3.3.3.2.

3.3.4 Strength of the wait-free locking

As long as critical sections do not nest, it is easy to see that my construction can be
used to implement wait-and-notify monitors9 [LR80] (or their recent descendant, Java
synchronized methods). Whenever a monitor-protected object’s method is called, the
object’s lock is acquired. The monitor’s wait operation would then be implemented as
an unlock–sleep–lock sequence. Figure 3.5 shows a possible monitor implementation
that uses a simple lock-free semaphore, shown in Figure 3.4.

Synchronization is more difficult when more than one object can be locked at a
time. I will discuss two scenarios: nested monitor calls (i. e., nested critical sections),
and atomic acquisition of multiple locks.

As long as monitor methods never wait for events, locking with helping works for
nested monitor calls in the same way as for non-nested monitors. However, if a nested
method wants to wait for an event, freeing the nested monitor does not help because
the outer monitor would still be locked during the sleep—which is illegal under my
scheme. That is why nested monitor calls must not sleep.

There are two ways to deal with this restriction: Either construct the system such
that second-level monitors or even all monitors never sleep, or make the locking more
coarse-grained so that all objects that would have to be locked before going to sleep
are in fact protected by a single monitor.

In the Fiasco microkernel, I have chosen the first option; in fact, I constructed the
kernel so that critical sections never need to sleep. I discuss synchronization in the
Fiasco microkernel in more detail in Section 4.2.3.

9There is a large variety of monitors with differing semantics, but most of them can be shown to have
equivalent expressive power [How76, BF95]. Wait-and-notify monitors, also classified as “no-priority non-
blocking monitors” [BF95], have first been used in Mesa [LR80].

3.3. WAIT-FREE SYNCHRONIZATION 43

A different situation arises if the locks a critical section needs are known before
the critical section starts, and during its execution. In this case, the wait operation
can release all locks before sleeping, and reacquire them afterwards. However, this
method cannot maintain internal state while waiting for an event—the object has to be
transferred into a consistent state before sleeping.

3.3.5 Real-time serializer

Before I implemented the wait-free locking scheme described in Section 4.2.3, I exper-
imented with Massalin’s and Pu’s single-server synchronization scheme discussed in
Section 2.2.1 [MP91]. In this section, I discuss how the single-server mechanism can
be changed for real-time systems, and why I changed it into the simpler locking-with-
helping scheme.

In Massalin’s and Pu’s scheme, threads that want to change an object put a change-
request message into the request queue of the server thread that owns the object. In
similar spirit to my helping-lock design from Section 3.3, I can minimize the worst-
case wait time for high-priority threads by replacing the request queue with a stack (so
that messages from high-priority senders get processed first), and by letting requesters
actively donate CPU time to the server thread until it has handled their request.

When I first designed and implemented my wait-free synchronization mechanism,
I drew inspiration from Massalin’s and Pu’s work. In particular, my design looked as
follows:

My kernel ensured serialization of critical sections by allowing only one thread,
an object’sowner, to execute operations on that object. In other words, all locked
operations ran in the thread context of the owner of an object.

Threads were their own owners. Consequently, threads carried out themselves all
locked operations on them, including those initiated by other threads.

The kernel assigned ownership for other objects (not threads) on the fly using lock-
free synchronization. This design can also be viewed as follows: The only object type
that can be locked at all is the thread. All other objects are “locked” by locking a thread
and assigning ownership of the object to that thread. Then, all operations on that object
are carried out by the owner.

Helping an owner was as simple as repeatedly switching to the owner until either
the owner had completed the request, or a thread that deleted the owner had aborted
the request. The context-switching code took care of executing all requests before
returning to the context of the thread.

I consider this design to be not inelegant, but unfortunately, it required a context
switch for every locked operation. Only later I realized that this mechanism in fact
shares many properties with the wait-free locking scheme with priority inheritance I
derived in Section 3.3.1. My new locking mechanism is less complex and performs
much better than my original single-server scheme.

44 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

class Binary_semaphore
{
List<Thread*> d_q; // Lock-free thread list
int d_count;

public:
void down ()
{
d_q.enqueue (current());

int old;
do
{
old = d_count;

}
while (! CAS (&d_count, old, old - 1));

if (old > 0)
{
// Own the semaphore,
// can safely dequeue myself
d_q.dequeue (current());

} else {
sleep (Thread_sem_wakeup);
// Have been dequeued in up ()

}
}

void up ()
{
int old;
do
{
old = d_count;

}
while (! CAS (&d_count, old, old + 1));

if (old < 0)
{
Thread* t = d_q.dequeue_first ();
wakeup (t, Thread_sem_wakeup);

}
}

}; // Binary_semaphore

Figure 3.4: Pseudocode for a simple lock-free binary semaphore (for single-CPU ma-
chines). It makes use of a lock-free list of threads (Thread list) with a given queuing
discipline, for example a FIFO queue or a priority queue, andsleep andwakeup prim-
itives like those in Figure 4.1 (page 54).

3.3. WAIT-FREE SYNCHRONIZATION 45

class Monitor
{
Helping_lock d_lock;

public:
void enter ()
{

d_lock.lock (); // Locking w/ helping
}

void leave ()
{

d_lock.unlock ();
}

void wait (Binary_semaphore* condition)
{

d_lock.unlock ();
condition->down ();
d_lock.lock (); // Locking w/ helping

}

void signal (Binary_semaphore* condition)
{

condition->up ();
}

}; // Monitor

Figure 3.5: Pseudocode for a wait-and-notify monitor based on a helping lock. This is
a simple textbook implementation—except that it uses only nonblocking synchroniza-
tion primitives. Semaphores used as condition variables need to be initialized with 0.

The signal operation wakes up a waiter according to the semaphore’s queue-
ing discipline. When one or more waiters have been restarted, and more threads are
trying to enter the monitor, theHelping lock’s helper stack guarantees that the thread
with the highest priority can enter the monitor first.

46 CHAPTER 3. PRAGMATIC NONBLOCKING SYNCHRONIZATION

Chapter 4

The Fiasco microkernel

I developed the Fiasco microkernel as the basis of the DROPS operating-system
project—a research project exploring various aspects of hard and soft real-time
systems and multimedia applications on standard PC hardware [HBB+98]. The micro-
kernel runs on uniprocessor and multiprocessor x86 PCs, and it is an implementation
of the L4/x86 binary interface [Lie95]. It is able to run L4Linux [HHL+97], a Linux
server running as a user-level program that is binary compatible with standard Linux,
and it is freely available fromhttp://os.inf.tu-dresden.de/fiasco/.

In this chapter, I concentrate on aspects of Fiasco that relate to the main subject
of this thesis, pragmatic nonblocking synchronization. I have described other aspects
of the system in a technical report that accompanies this thesis, “The Fiasco kernel:
System architecture” [Hoh02].

This chapter is organized as follows.

In Section 4.1, I introduce Fiasco by way of defining its functional and real-time
requirements. It will become apparent that Fiasco’s requirements match the goal of
the development methodology I proposed in Chapter 3—which should not come as a
surprise as I developed the methodology from the kernel’s requirements.

In Section 4.2, I describe in detail how synchronization works in Fiasco. I map
Fiasco’s kernel objects to the synchronization approaches of Chapter 3. I describe
Fiasco’s implementation of wait-free locking, and, as a case study, I look in detail at
the synchronization of IPC in Fiasco.

4.1 Requirements

I have laid down the requirements for Fiasco in a technical specification [Hoh98].

I intended Fiasco to be a drop-in replacement for L4/x86. Therefore, Fiasco’s spec-
ification includes verbatim the L4 Reference Manual [Lie96a], which includes a gen-
eral description of the user-visible concepts of the L4 microkernel interface as well as
a definition of L4’s ABI for x86 CPUs.

In addition to being an implementation of L4, there were a number of other require-
ments for Fiasco. In this section, I first outline the general functional requirements
imposed by the L4 programming interface, and then discuss other goals.

47

48 CHAPTER 4. THE FIASCO MICROKERNEL

4.1.1 Functional requirements

The L4 programming interface (or short, L4) is a very minimal microkernel interface.
As a general rule, L4 kernels only implement whatmustbe implemented in kernel
mode. Policies such as memory management or device drivers do not belong into the
kernel and can be implemented at user level; L4 kernels only implement mechanisms
[Lie95].

L4 uses two main user-visible abstractions:address spacesand threads. Tasks
consist of an address space and at least one thread. Threads are active entities that
execute user code (and kernel services on behalf of the user program).

Threads can communicate usinginter-process communication (IPC).Threads can
either store messages in buffers in their virtual memory, in which case the IPC is called
a long IPC.There is also a fast IPC mode,short IPC,which does not copy a memory
buffer, but only transfers register contents. L4 IPC is synchronous: Senders block until
receivers actively request a message—that is, messages are not queued in the kernel,
but senders are. To enable fast synchronous message transfer and fast RPC round
trips, L4’s IPC semantics allow an implicit context switch from sender to receiver,
independent of these threads’ priorities. Fiasco’s IPC system call allows to disable this
behavior to facilitate strict priority-based scheduling for real-time systems.

Address spaces contain memory references(mappings)and references to input–
output ports(I/O mappings)a task’s threads may access. Threads can pass along map-
pings using IPC. This special IPC data type is called aflexpage.

The kernel translates a threadA’s page faults into IPC messages(page-fault mes-
sages). It sends these messages onA’s behalf to a predestined threadB that is acting as
A’s pager. Together with the flexpage-IPC mechanism, it is possible to implement any
paging policy at user level.

The kernel also translates hardware interrupts (IRQs) to IPC messages(IRQ mes-
sages). Threads can attach to hardware-interrupt sources to register for IRQ messages.
(Attaching to IRQs also uses a special IPC protocol.) Using this facility, interrupt-
driven device drivers can be implemented as user-level threads.

Other traps and exceptions must be handled by the thread that causes them. L4
allows threads to install a thread-specific interrupt-descriptor table in x86 format using
x86’slidt instruction (which must be emulated by the kernel). This facility allows the
emulation of a different ABI; for example, L4Linux uses it to emulate Linux’ system-
call ABI.

The kernel by default uses a built-inpriority-based round-robin schedulerto mul-
tiplex threads on each CPU. This scheduler uses two thread attributes as parameters:
priority andtime-slice length.There are two other thread attributes that are meant to
facilitate user-level scheduler implementations:internal and external preemptor. Pre-
emptors are threads that control when a preempted thread gets a new time slice, using
an IPC protocol like the page-fault protocol. However, it is an area of ongoing research
(and beyond the scope of this thesis) to investigate whether such a preemptor facility is
sufficient for implementing versatile user-level scheduling.1 Consequently, no current
L4 kernel implements preemptors.

A taska’s threads can create or delete another taskb (identified by number) only
if it owns the right to do so(task right). In this case,a is said to beb’s chief, andb
belongs toa’s clan. Clans can be nested. Task rights can be passed along between tasks
with a system call. When a chiefa deletes one of its clan membersb, all tasks ina’c

1Jean Wolter, personal communication.

4.1. REQUIREMENTS 49

clan are deleted as well, as well as their clans, and so on, recursively; taska inherits all
task rights that were present inb andb’s subclans.

L4 originally defined a clans-and-chiefs–based security model that restricted direct
inter-clan IPC. When a threadA sent an IPC to a threadB in different clan, the kernel
had to intercept the message and send it to the next thread in the chain of chiefs between
A andB. This chief could inspect the message and then pass it along on behalf ofA
using a special mode of IPC, “deceiving IPC.” This security model proved to be too
inflexible and was abandoned. Fiasco does not place restrictions on inter-clan IPC. It
currently has no support for controlling communication.

The kernel interface comprises only seven system calls: synchronous IPC; find
nearest IPC partner in a clan; revoke a memory mapping; switch to a different thread;
create a thread or modify thread state; modify a thread’s scheduling attributes; and
create or delete task or pass task right.

L4 kernel implementations do not contain default device drivers or memory man-
agers. Consequently, they cannot load programs from disk. Therefore, such infrastruc-
ture must be loaded before booting the kernel.

L4 defines an IPC protocol for the lowest-level memory manager, namedσ0 or
Sigma0(pronounced “sigma-zero”) and defines that Sigma0 can send flexpages for all
valid memory and input–output addresses as if it owned mappings for them. Sigma0 is
a trusted server that must always be present. However, Sigma0’s implementation is not
part of the kernel and runs at user level.

In addition to the kernel ABI and the Sigma0 protocol, the specification also re-
quires a number of interfaces for booting, debugging, and profiling.

4.1.2 Design goals

There were three major design goals for Fiasco: real-time properties, speed, and main-
tainability. In this thesis, I concentrate on real-time and performance issues only; I
discuss maintainability in depth in a companion technical report, “The Fiasco kernel:
System architecture” [Hoh02].

4.1.2.1 Real-time properties

Fiasco is meant to be used in real-time systems. Such systems have three main require-
ments: predictability, latency, and flexibility.

Predictability. Real-time systems need to guarantee a worst-case execution time for
all operations that are relevant to real-time computing. Such operations include
hardware-interrupt handling, scheduling, and certain system calls including IPC.

Low Latency. In addition to bounding worst-case execution times, it is also important
to optimize for short reactions to system events such as interrupts and system
calls.

Flexibility. There exists a large number of different real-time scheduling strategies.
Fiasco must be designed to enable adaptions to a number of scheduling strate-
gies.

Also, the kernel should allow concurrent execution of both real-time and non-
real-time applications, and still be able to guarantee real-time properties.

50 CHAPTER 4. THE FIASCO MICROKERNEL

I have addressed predictability by designing Fiasco as a preemptible kernel. That
means that interrupts can preempt the kernel virtually anywhere without risking incon-
sistencies, and can wake up a higher-priority user-level thread in bounded time. The
thread with the highest priority can also execute all system calls in bounded time, in-
dependent from other threads’ states. As the L4 programming interface provides tasks
with a very low-level system view, it is possible to build systems that rule out surprises
for real-time tasks such as page faults caused by vanishing mappings, or dynamic pri-
ority changes.

Preemptability, together with “hard” priorities, also provides the flexibility to run
both real-time and non-real-time applications side-by-side on one machine. There is
no way for a low-priority, non-real-time thread to prevent a higher-priority thread from
accessing a kernel service or resource in bounded time.

As I stated in Section 4.1.1, flexible user-level scheduling on L4 is still an area
of active research, and is beyond the scope of this work. Therefore, I did not con-
sider scheduling flexibility as a special real-time requirement—instead, it is more of a
maintainability issue, which I discuss in my companion technical report [Hoh02].

I will discuss the low-latency requirement separately in the next section.

4.1.2.2 Speed

The main grief with early microkernels is that these kernels suffered from bad per-
formance. For a long time it was thought that the slowness stemmed from structural
problems inherent to microkernel-based systems.

Jochen Liedtke proved this assumption wrong. He laid down design principles that
enable performance-oriented kernel design. He also designed the L4 programming
interface such that L4 implementations can be fast [Lie95].

I wanted Fiasco to be an efficient L4 implementation. That meant that I needed
to follow Liedtke’s guidelines when designing kernel internals. However, as maintain-
ability was an important concern, too, I chose to implement in a higher-level language.
As a compromise between efficiency and convenience, I selected C++ as Fiasco’s im-
plementation language. One of the design challenges was to merge the two aspects of
object-oriented modeling with factored, well-isolated components and performance-
oriented kernel design.

Speed also is an issue for Fiasco as a real-time system because the worst-case ex-
ecution time for critical parts of the system should be low. In case of Fiasco, the most
important parts are the IPC subsystem and the interrupt-handling paths. Nonblocking
synchronization already takes care of not hindering high-priority threads when they
become ready to run. However, nonblocking synchronization can have a significant
overhead. Therefore, the design methodology I developed and used for Fiasco (see
Chapter 3 of this thesis) mandates that kernel-global data shared between noncoop-
erating threads needs to be synchronized using the lowest-overhead scheme possible:
lock-free synchronization, and very short critical sections protected with interrupt dis-
abling and—on SMP machines—spin locks.

4.2 Synchronization in the Fiasco microkernel

The Fiasco kernel closely follows the design outlined in Section 3.1. In this section,
I report how various data structures are synchronized in this kernel, and I detail the
design of my wait-free locking-with-helping mechanism.

4.2. SYNCHRONIZATION IN THE FIASCO MICROKERNEL 51

4.2.1 Overview of kernel objects

Let me begin by briefly describing the objects the Fiasco microkernel implements. (For
a philosophical discussion on what a microkernel should and should not implement, I
refer to Liedtke [Lie95].)

For this summary, I have grouped the kernel objects into local state and global state
according to the synchronization methodology (Section 3.1.2).

L OCAL STATE .

Threads. The thread descriptors contain the complete context for thread execution:
a kernel stack, areas for saving CPU registers, a reference to an address space,
thread attributes, IPC state, and infrastructure for locking (more on the latter in
Section 4.2.3).

Address spaces.There exists one address space per task. Address spaces implement
the x86 CPU’s two-level page tables. They also contain the task number, and the
number of the task that has the right to delete this address space.

Hardware-interrupt descriptors. Each hardware interrupt can be attached to one
user-level handler thread. The kernel sends this thread a message every time
the interrupt occurs.

Mapping trees. The Fiasco microkernel, like L4, allows transferring virtual-to-
physical page mappings via IPC between tasks. The mapping in the receiving
task is dependent on the sender such that when the mapping is flushed in the
sender’s address space, dependent submappings are recursively flushed as
well [Lie95]. Mapping trees are objects to keep track of these dependencies.
There is one mapping tree per (physical) page frame.

GLOBAL STATE .

Present list and ready list. These doubly-linked ring lists contain all threads that are
currently known to the system, or ready-to-run, respectively. On both lists, the
“idle” thread serves as anchor of the list.

Array of address space references.This array is indexed by address-space number.
It contains a reference for each existing address space; for nonexisting address
spaces, the array contains an address space index referring to the task that has
a right to create the address space. The Fiasco microkernel uses this array for
create-rights management, and to keep track of and look up created tasks.

Timer and timeouts. The kernel supports timeouts on IPC operations. These timeouts
are descriptors that can be registered with a timeout queue that is traversed by
the timer-interrupt handler.

Array of interrupt-descriptor references. In this array, the Fiasco microkernel
stores assignments between user-level handler threads and hardware interrupts.

Page allocator. This allocator manages the kernel’s private pool of page frames.

52 CHAPTER 4. THE FIASCO MICROKERNEL

Mapping-tree allocator. This allocator manages mapping trees. Whenever a mapping
is flushed or transferred using IPC, the corresponding mapping tree shrinks or
grows. Once certain thresholds are exceeded, a new (larger or smaller) mapping
tree needs to be allocated; this behavior is an artifact of the Fiasco microkernel’s
implementation of mapping trees.

4.2.2 Synchronization of kernel objects

Following my design methodology from Section 3.1.2, the global state should be syn-
chronized using lock-free synchronization, while for local state the overhead of wait-
free locking is acceptable. Primarily, I closely adhered to these guidelines. But I also
made the requirements somewhat stronger (i. e., I disallowed wait-free locking because
of the extra overhead) where performance was critical, and I allowed a small relaxation
to gain ease of use where it did not affect real-time properties.

L OCAL STATE . Threads are the most interesting objects that must be synchronized.
I accomplish synchronization using wait-free locks (described in Section 4.2.3). How-
ever, for IPC-performance reasons I do not lock all of a thread’s state. Instead, I defined
some parts of thread data to be not under the protection of the lock, and use lock-free
synchronization for accessing these parts. In particular, the following data members of
thread descriptors are implemented lock-free: the thread’s state word, which also con-
tains the ready-to-run flag and all condition flags for waiting for events (as explained
in Section 3.3); and the sender queue, a doubly-linked list of other threads that want
to send the thread a message. The state word can be synchronized using CAS. For
the doubly-linked sender list I use a very short critical section protected by disabling
interrupts.2

The Fiasco microkernel protects mapping trees, like the bulk of the thread data,
using wait-free locks.

Address spaces require very little synchronization. The kernel has to synchronize
only when it enters a reference to a new second-level page table into the first-level page
table. Deletion does not have to be synchronized because only one thread can carry out
this operation: Thread 0 of the corresponding task deletes it when it is itself deleted.
Otherwise, I do not synchronize accesses to address spaces: Only a task’s threads can
access the task’s address space, and the result of concurrent updates of a mapping at
a virtual address is not defined. As mappings are managed in (concurrency-protected)
mapping trees and not in the page tables, mappings cannot get lost, and all possible
states after such a concurrent update are consistent.

I did not have to synchronize hardware-interrupt descriptors at all because once
they have been assigned using their reference array (global state), only one thread ever
accesses them.

GLOBAL STATE . The reference arrays for address spaces and hardware-interrupt
descriptors can easily be synchronized using simple CAS.

For the doubly-linked present and ready lists, I use a very short critical section
protected by disabling interrupts.3

2The SMP version uses a spin lock per receiver to synchronize accesses to the sender list.
3For the SMP port, this does not present a problem: The ready list is per-CPU, so interrupt-disabling can

still be used. Accesses to the present list are rare and can be synchronized using a spin lock.

4.2. SYNCHRONIZATION IN THE FIASCO MICROKERNEL 53

It is unnecessary to implement the kernel allocators for pages and mapping trees
with lock-free synchronization; here I used wait-free locking, as for the local state. I
allowed this relaxation of my guidelines in these instances for the following assump-
tion: Threads with real-time requirements never allocate memory (for page tables) or
shrink or grow mapping trees once they have initialized. Instead, they make sure that
they allocate all memory resources they might need at initialization time. Therefore,
real-time threads do not compete for access to these shared resources, and the overhead
for accessing them is irrelevant. Should my assertion become false in the future, I will
revisit this design decision.

4.2.3 Wait-free locking

The implementation of wait-free locking with helping in the Fiasco microkernel is very
similar to the uniprocessor and multiprocessor mechanisms presented in Section 3.3.

The Fiasco microkernel extends the basic wait-free locking mechanism in two re-
spects.

First, locks that protect threads in the Fiasco microkernel (thread locks) are fur-
nished with a switch hint. This hint overrides the system’s standard policy of schedul-
ing the threads, locking thread or locked thread, once the locker frees the lock. Usually,
the runnable thread with the highest priority is scheduled, but the Fiasco microkernel’s
IPC–system-call semantics dictate that the receiver gets the CPU first.4 The hint can
take one of three values: When the lock is freed, switch to (1) the previously-locked
thread, (2) the locker, or (3) to whoever (of the two threads) has the higher priority.
To achieve IPC semantics, the sender locks the receiver, wakes it up, and sets the hint
to Value 1 before releasing the lock. Value 2 is used when a sender locks a receiver
during a long-IPC operation (it is used as an optimization during flexpage transfers in
long IPC), and Value 3 is used for all other (non-IPC) thread manipulations.

Second, threads need to maintain a count of objects they have locked. This count
is checked in the thread-delete operation to avoid deleting threads that still hold locks.

If one thread is locked by another, it usually cannot be scheduled. If the scheduler
or some other thread activates a locked thread, its locker is activated instead. The
only exception is an explicit context switch from a thread’s locker. The thread-delete
operation uses this characteristic to first lock to-be-deleted threads and then push them
out of their critical sections. After a thread has released all locks, it can be safely
deleted.

The time-slice donation scheme introduced in Section 3.3 requires that nested crit-
ical sections do not sleep. During the implementation of the Fiasco microkernel, I did
not find this limitation to be very restricting. I completely avoided nesting critical sec-
tions that might want to sleep: I found that even for complex IPC operations, there was
no need to lock both of two interacting threads.

Instead, a threadA that needs to manipulate another threadB usually locksB, but
not itself (A). Kernel code running inA’s context needs to ensure that locked operations
on A itself (by a third thread,C) cannot change state that is needed duringA’s locked
operation onB. In practice, this is very easy to achieve: All locked operations first
check whether a change to the locked thread is allowed. If the locked thread is not in
the correct state, the locked operation is aborted. All threads explicitly allow a set of
locked operations on them by adjusting their state accordingly.

4This behavior can be disabled using a flag argument to the IPC system call when strict priority-based
scheduling is required in a real-time system.

54 CHAPTER 4. THE FIASCO MICROKERNEL

void sleep (unsigned condition)
{
Thread* thread = current ();

for (;;)
{
unsigned old_state = thread->state;
if (old_state & condition)
{
/* condition occurred */
break;

}
if (CAS (& thread->state,

old_state,
old_state & ~Thread_running))

{
/* ready flag deleted, sleep */
schedule ();

}
/* try again */

}

thread->state &= ~condition;
}

void wakeup (Thread* thread,
unsigned condition)

{
for (;;)
{
unsigned old_state = thread->state;
if (CAS (& thread->state,

old_state,
old_state | Thread_running

| condition))
{
/* CAS succeeded */
break;

}
}

if (thread->prio > current()->prio)
switch_to (thread);

}

Figure 4.1: Pseudocode for thesleep andwakeup operations. As the condition flag
is stored in the same memory word as the scheduler’s ready-to-run flag, thesleep
implementation does not risk a race condition with thewakeup code.

4.2. SYNCHRONIZATION IN THE FIASCO MICROKERNEL 55

In Section 3.3.1 I mentioned the problem of race-free sleep and wakeup when a
resource has to be unlocked before sleep can be called. Figure 4.1 shows pseudocode
for my sleep and wakeup operations, which I use for thread synchronization in the IPC
implementation. As a means to avoid race conditions between sleep and wakeup, I use
binary condition flags for synchronization. All condition flags are located in the same
memory word that also contains the scheduler’s ready-to-run flag. Using CAS, a thread
that wants to sleep can make sure that the condition flag is still unset when it removes
the ready-to-run flag.

This solution is only applicable inside a kernel, and it restricts the number of con-
dition flags to the number of bits per memory word. For my microkernel, this was not
a severe restriction (the Fiasco microkernel needs less than 10 condition flags), but it
may become a problem for more complex systems. For such systems, a more general
solution (e. g., protecting sleep and wakeup using a simple lock) can be used.

4.2.4 Synchronization of the IPC operation

Inter-process communication, or IPC, is the secure, kernel-assisted message transfer
between a sender and a receiver [Lie96a]. In this section, I describe thread synchro-
nization in Fiasco’s IPC mechanism. (I describe the IPC mechanism in more detail in
my companion technical report, “The Fiasco kernel: System architecture” [Hoh02].)

The IPC mechanism serves as a case study for nonblocking synchronization and is
intended to underline two major suppositions I have made in this thesis:

1. A complex protocol that involves concurrent threads and includes thread syn-
chronization and waiting (i. e., voluntary blocking) can be implemented using
only nonblocking synchronization primitives.

2. I provide evidence that even for protocols of this complexity, my methodology’s
restriction of disallowing blocking in critical sections (or, in the monitor termi-
nology of Section 3.3.4, disallowing waiting for events innestedmonitor meth-
ods) is not a severe limitation.

In fact, I have implemented the protocol without any need to wait for events
inside any critical section (nested or nonnested). Therefore, I have not used the
monitor implementation of Section 3.3.4; instead, waiting occurs only outside
critical sections.

OVERVIEW . From a user’s point of view, L4 IPC is synchronous, that is, senders
block until a thread receives their message. For the kernel that means that synchroniza-
tion between threads involved in an IPC is necessary.

Fiasco uses the wait-free synchronization mechanism described in Section 4.2.3
to synchronize with, that is,lock other threads and to carry out complex operations
on them. However, as critical sections are not allowed to block, they must not access
the user part of the virtual address space. It follows that in order to transfer memory-
buffer–based messages (i. e., long IPC), the IPC operation must be split into several
nonblocking critical sections that implement a stateful protocol between threads doing
an IPC handshake, and potentially blocking memory accesses must be done outside
critical sections.

In other words, both sender and receiver pass through a number of IPC states,
constituting four basic IPC phases. I first discuss the memory representation of IPC

56 CHAPTER 4. THE FIASCO MICROKERNEL

State State flags used in IPC
ready recv/

wait
ipc send busy busy

long
poll poll

long
cancel

Sender states
send prepared + + + + –
sleeping – + + + –
woken up + + + – –
long IPC in
progress

+ + + – –

page fault in IPC
window

+ + + – +

page-in wait – + + – +
after send + –
Receiver states
setup + +
prepared + + + – – –
going to
rendezvous

+ + + – + –

waiting – + + – + –
in long IPC – + + – – +
page-in + + + – – +
after receive + –
Error conditions
Timeout + –
IPC canceled + – +

Legend: + = flag set; – = flag cleared; otherwise, flag can be set or cleared.

Table 4.1: Sender and receiver states, expressed in state flags.

states in Subsection 4.2.4.1, before I discuss IPC phases and walk through their IPC
states in Subsection 4.2.4.2.

The sender uses locked operations to asynchronously modify the receiver’s state,
and vice versa. Two locked operations cannot rely on thread states remaining un-
modified in-between because other operations (like anlthread ex regssystem call) can
terminate the IPC operation for one partner. Therefore they always verify that the other
thread is in the correct state, and abort the IPC if that is not the case. I discuss error
conditions and guarding against them in Subsection 4.2.4.3.

In this thesis, I do not discuss how Fiasco translates hardware interrupts and page
faults to IPC messages. Please refer to the companion technical report for information
on that subject [Hoh02].

4.2.4.1 IPC states

As I already mentioned, Fiasco implements IPC as a stateful protocol between a sender
and a receiver. Figures 4.2 and 4.3 show an overview of sender and receiver states.

4.2. SYNCHRONIZATION IN THE FIASCO MICROKERNEL 57

send prepared

long IPC
in progress

page fault
in IPC window

sleeping

woken up

page-in wait

(ipc_send_regs)

(ipc_send_regs)

[short IPC][page fault]

[receiver page inaccessible]

[long IPC]

[ipc_send_regs failed]

ipc_continue

(ipc_finish)

[resolved]

ipc_receiver_ready

Figure 4.2: Sender state chart.

prepared

going to
rendezvous waiting

in long IPC

page-in

ipc_finish

ipc_finish

irq_hit

ipc_short_cut(ipc_receiver_-
ready)

setup

ipc_send_regs
[short IPC]

ipc_send_regs
[long IPC]

ready for rendezvous

ipc_pagein_request

(prepare_receive)

Figure 4.3: Receiver state chart.

58 CHAPTER 4. THE FIASCO MICROKERNEL

As senders and receivers not only keep track of their own state but also modify
their IPC partner’s state as part of the IPC protocol, the IPC states need an explicit data
representation. Fiasco keeps IPC states as part of each thread’s state word. It also uses
a number of flags in the state word to avoid race conditions when sender or receiver go
to sleep. Table 4.1 defines how IPC states translate into state flags.

As is obvious from Table 4.1, IPC states are defined by a bit pattern in the state
word. Each state transition changes the bit pattern in a unique way (but two states can
have the same pattern if there is no transition between them). Not all bits are significant
for each state. This feature allows a thread to stay in receiver–setup state while carrying
out a send operation. Therefore, for a combined send–receive IPC system call, Fiasco
can set up the receive operation before carrying out the send operation, allowing it to
atomically switch from a sender state to a receiver state by clearing the “send” flag. In
the sender states, the additional flags used for receiving are irrelevant.

State transitions must be guarded, that is, Fiasco needs to check whether an IPC
state it modifies is still valid. As Fiasco allows preemption and parallel execution
of sender and receiver, state checking and modification need to be atomic from the
IPC partners’ point of view. In other words, Fiasco must synchronize accesses to and
modifications of IPC states to ensure atomic state transitions.

Fiasco synchronizes simple state transitions using lock-free compare-and-swap–
based atomic update. More complex transitions such as the IPC handshake between
sender and receiver are implemented with critical sections locked using Fiasco’s wait-
free synchronization mechanism (Section 4.2.3). Section 4.2.4.3 covers IPC-state syn-
chronization in more detail.

4.2.4.2 IPC walk-through

Both the send and the receive IPC operations are logically structured into four phases:
setup, rendezvous, data transfer, and finish.

SETUP AND RENDEZVOUS . During an IPC system call with both send and receive
parts, the send operation always takes place before the receive operation. However, the
receive setup phase actually executes before the send operation’s phases to facilitate
atomic switching from the send operation to the receive operation—a behavior the L4
specification requires: Threads must accept reply IPC immediately (without requiring
a timeout in the sender).

During rendezvous, the sender takes the active role while the receiver remains pas-
sive. The receiver basically sleeps through the whole procedure; the sender only wakes
up the receiver if the receiver needs to page in a virtual-memory page (in the receiver’s
address space), or when the IPC has been finished.

Figure 4.3 shows a state diagram for the receiver. To enable IPC rendezvous, the
receiver first puts itself into state “setup,” followed by state “prepared.” The two states
are separate to make it possible to carry out a send operation between the two and
atomically switch from the send operation to the receive operation’s “prepared” state.

Once the receiver has entered the “prepared” state, senders can asynchronously
rendezvous using methodipc sendregs, for example, by putting the receiver into the
final state (for short IPC) or into state “in long IPC” (for long IPC).

However, the receiver would normally proceed to state “going to rendezvous”
where it checks the if a sender has queued in the receiver’s sender queue. If that is
the case, the receiver wakes up the sender using theipc receiverreadyoperation; the

4.2. SYNCHRONIZATION IN THE FIASCO MICROKERNEL 59

sender becomes active, rendezvouses, and executes the IPC (putting the receiver into
the final state or state “in long IPC”).

If there is no sender waiting for a rendezvous, the receiver tries to proceed to state
“waiting” where it sleeps until a sender rendezvouses. The transition only succeeds if
no sender has already asynchronously put the receiver into another state (“prepared,”
“in long IPC,” or final), in which case execution proceeds there.

Meanwhile, the sender prepares for IPC by entering state “send prepared” (see
Figure 4.2). It queues in the receiver’s sender queue and attempts a first rendezvous
using ipc sendregs. If successful, the sender directly proceeds to its final state (for
short IPC) or “long IPC in progress” (for long IPC). Otherwise, it starts sleeping by
going to state “sleeping.” When a receiver sends aipc receiverready request, the
sender continues in state “woken up.” It then switches back to state “send prepared,”
where it retries theipc sendregsoperation.

DATA TRANSFER . In receiver state “in long IPC,” a sender has rendezvoused and
started a long IPC. The receiver continues to sleep, waiting either for the IPC to finish,
or for the sender to request a page-in usingipc pageinrequest(which puts it into state
“page-in”). In the latter case, the receiver tries to page in user data (using flexpage
IPC), and subsequently resumes the sender usingipc continue.

After the initial rendezvous for a long IPC, the sender continues in state “long IPC
in progress.” It maps the receiver’s message buffer and indirect-string buffer(s) into two
regions of the kernel’s virtual address space, theIPC windows. These mappings allows
the sender to copy data using a simple memory-copying routine. During memory-
copying, page faults in the sender’s address space are handled by the usual user-paging
mechanism. Page faults in the IPC windows put the sender into state “page fault in IPC
window,” where it sends anipc pageinrequestto the receiver; then, the sender goes
to sleep (state “page-in wait”) and waits for the receiver’sipc continueto resume it in
state “long IPC in progress.”

Senders in state “long IPC in progress” also transfer flexpage mappings usingipc -
sendfpage.

The sender finishes off its send operation usingipc finish(or a variant ofipc send-
fpageif just one flexpage is sent using short IPC) and goes to its final state.

FINISH . For the receiver, IPC finishes when the “ipc” state flag is removed from its
state word (refer to Table 4.1). This happens when one ofipc sendregs, ipc send-
fpage, andipc finishputs it into its final state, or when an error condition (timeout or
cancel; see next subsection) removes that flag. Whenever it awakes, the receiver has to
check for this condition.

The send operation also finishes when an error condition removes the “ipc” state
flag, and it also has to monitor its state word to detect this condition. Otherwise, the
send operation ends when the “send” flag is removed, that is, when the sender enters
its final state. When reaching that state, the sender needs to check if the send operation
is followed by a receive operation. If not, the “ipc” state flag is removed also.

4.2.4.3 Asynchronous state changes

During IPC, a thread’s state can change asynchronously because of any of the following
three reasons: An IPC error occurred, another thread executed a locked operation on
the first thread, or an interrupt IPC is being delivered. I discuss the first two cases

60 CHAPTER 4. THE FIASCO MICROKERNEL

in this section; please find information on interrupt IPC in my companion technical
report, “The Fiasco kernel: System architecture” [Hoh02].

There are three error conditions that can lead to abortion of an ongoing IPC opera-
tion:

Timeout. When an IPC timeout has been specified and occurs, a timeout handler will
execute. This handler will modify the thread’s state: It removes the “ipc” flag,
and it adds the “ready” flag.

This change can occur at any time, even during the execution of locked opera-
tions. Therefore, “normal” kernel code related to IPC has to guard against this
error condition, and locked operations at least need to be aware of it.

Cancel. When a thread executes althread ex regssystem call on another thread in-
volved in an IPC, it runs aninitialize method on that thread. Theinitialize locked
operation removes the “ipc” flag and adds the “ready” and “cancel” flags.

As this modification is implemented in a locked operation, it cannot affect other
locked operations such asipc sendregs, but it can occur during execution of
normal kernel code. Therefore, normal code has to guard against this error con-
dition; locked operations need to check the thread’s state only once at the begin-
ning.

Kill. When a thread is killed using akill method, it will have all of its state removed,
and its state word will be cleared out, terminating ongoing IPC.

Again, as this modification is implemented in a locked operation, it cannot affect
other locked operations, but it can occur during execution of “normal” kernel
code. However, once a thread has been killed, its kernel code will stop being ex-
ecuted. Therefore, it cannot directly guard against this error condition. Instead,
the thread needs to record any resources that depend on it so that thekill method
can free them.

Guarding against the first two error conditions works as follows: As the thread’s
state can be asynchronously modified, state transitions in normal kernel code must
be done atomically. When changing the state using the atomicCMPXCHG instruction,
it is possible to detect beforehand if one of the error condition has occurred. If this
is the case, the thread must not go to sleep again; instead, it must return to the user
immediately.

If the IPC actually finishes (without further blocking) even though a timeout or
a cancel occurred, the user does not have to be made aware of the error. Otherwise,
the IPC must be aborted and the error must be signaled. This may include waking up
the IPC partner (and signaling it the error as well) if it depends on the thread that has
detected the error.

In locked operations, it is sufficient to guard the whole operation with a state check
at the beginning. This check ensures that the thread the operation works on still is in
the required state. For example,ipc finishneeds to verify that the receiver is state “in
long IPC” or “page-in” (Figure 4.3); otherwise, some error condition has interfered
with the ongoing IPC, and the operation needs to be aborted.

Once locked operations have done the initial check, they can carry out their work
without monitoring the state word. They cannot be superposed with other modifica-
tions on the thread (including the thread’s state word) except timeouts; however, these
operations do not have to care about timeouts because they themselves never block

4.2. SYNCHRONIZATION IN THE FIASCO MICROKERNEL 61

Operation Precondition State modification Action
irqhit ipc && recv/wait +ready, –busy queue interrupt sender
timeout ipc +ready, –ipc timeout
initialize none +ready, +cancel, –ipc reset thread
kill none deletes all flags delete thread

Table 4.2: State modifications some asynchronous operations carry out during an IPC

(they are not allowed to). They just have to make sure that state modifications made by
the timeout handler are not accidently undone. Therefore, locked operations also use
the atomicCMPXCHG instruction to modify state words.

The bottom of Table 4.1 shows IPC-state flags modified by error conditions against
which Fiasco’s IPC code must guard. Table 4.2 shows the error conditions in context
with other asynchronous operations the IPC mechanism must handle.

62 CHAPTER 4. THE FIASCO MICROKERNEL

Chapter 5

Performance evaluation

In previous chapters, I have developed a methodology for building real-time systems
using nonblocking synchronization, and I have described the Fiasco microkernel, an
operating-system kernel I developed using my methodology. In this chapter I analyze
the performance of the synchronization primitives my approach proposes. Specifically,
I look at the implementations of these primitives in Fiasco.

I present two different kinds of performance results. In Section 5.1, I look at
minimal performance overheads imposed by the synchronization mechanisms, for the
uniprocessor and the multiprocessor version of Fiasco. Section 5.2 presents worst-case
real-time performance results; in particular, it gives a measure of the interruptibility I
achieved for Fiasco by determining how long Fiasco disables interrupts in the worst
case.

5.1 Microbenchmarks

In this section, I assess the practicability of nonblocking synchronization on x86 CPUs.
I look at best-case performance overheads for both lock-free synchronization and the
uniprocessor and multiprocessor helping mechanisms I introduced in Sections 3.3.1
and 3.3.2, in their implementation in the Fiasco microkernel, and I compare these costs
with those of alternative implementations of critical sections.

In another measurement, I compare the cost of my current wait-free lock implemen-
tation with that of my previous Massalin–Pu serializer-style synchronization mecha-
nism (described in Section 3.3.5).

5.1.1 Measurements and results

Table 5.1 summarizes my findings about synchronization overheads. The upper part
of the table shows the cost of uniprocessor implementations of the synchronization
mechanisms, and the lower part shows the multiprocessor results. I have included
results for mechanisms implementing both lock-free synchronization—atomic memory
update using interrupt-flag manipulation and CAS—and wait-free synchronization—
Fiasco’s helping-lock mechanism.

ATOMIC MEMORY UPDATE . I measured the overhead of updating one or two mem-
ory words using an atomic counter, CAS, and CASW. On uniprocessors, any memory

63

64 CHAPTER 5. PERFORMANCE EVALUATION

Synchronization operation Duration
Pentium III, 450 MHz Pentium 4, 1.6 GHz
[cycles] [ns] error [cycles] [ns] error

Uniprocessor operations:
atomic counter 7 16 3 2
CAS 11 24 18 11
CASW 19 42 166 104
Interrupts off+on 23 51 78 49
lock without contention 198 440 −4% 216 135 −2%
lock with helping 760 1689 −8% 1296 810 −12%
context switch 172 382 216 135
Multiprocessor operations:
atomic counter (bus-locked) 34 76 140 88
CAS (bus-locked) 35 78 147 92
CASW (bus-locked) 40 89 213 133
lock without contention 294 653 −2% 668 418 −1%
lock with helping 1668 3707 −4% 3830 2394 −4%
context switch 381 847 984 615
raw IPI latency 1149 2553 1500 ? 938 ?

Table 5.1: Duration of synchronization operations. I evaluated the helping-lock im-
plementation of the Fiasco microkernel; for comparison, I provide the cost of simple
synchronization primitives. All values are best-case results; they allow assessing a
minimum overhead and cannot be used for worst-case execution-time analysis.
The “error” columns show the maximal measurement overhead of the given measure-
ment. The question marks “?” indicate that I could not measure IPIs on the Pentium
4 because I do not have access to a multiprocessor machine with Pentium-4 CPUs;
however, I made an educated guess (explained in the text).

Synchronization operation Duration
Pentium, 133 MHz Pentium II, 400 MHz
[cycles] [µs] [cycles] [µs]

current Fiasco thread lock 245 1.842 245 0.613
old Massalin–Pu–style thread lock
(includes two context switches)

627 4.714 607 1.518

Table 5.2: Comparison of Fiasco’s current thread lock with previous synchronization
mechanism based on Massalin–Pu-style serializer.

5.1. MICROBENCHMARKS 65

update can be made atomic by turning off interrupts (and preventing page faults) for
the duration of the critical section, so I have included the overhead induced by this
mechanism as well.

The multiprocessor versions of these primitives often are significantly more costly
than the uniprocessor versions, especially on the Pentium 4. This is so because in
the multiprocessor version, these primitives require memory-bus lock (“lock” prefix
in x86 assembly language), which costs between 21 and 27 additional cycles on the
Pentium III and about 130 cycles on the Pentium 4.

HELPING . I measured the cost of my helping mechanism (uniprocessor and mul-
tiprocessor variants) on a no-operation critical section for both the uncontented and
the contented case. To simulate contention, I set up a (low-priority) thread that ac-
quired the lock and then released the CPU; I then measured the elapsed time in another
thread from entering a critical section, helping, and leaving the critical section. Help-
ing includes two context switches (to and from the context of the helped thread, which
releases the lock immediately when activated).

I have included a “measurement error” percentage in Table 5.1 because the mea-
surement overhead was slightly different in the contented and uncontented experi-
ments. In the uncontented case, it is that of a loop which runs the experiment 10000
times. In the contented case, I had to factor out the cost to set up the experiment
(initialization of low-priority thread), which required two extra measurements in each
loop cycle. As the cost of the “read time-stamp counter” instructions I used varies
depending on the CPU’s pipeline state, I cannot simply subtract a fixed cost from the
measured elapsed times. Instead, I present times including measurement overhead, and
maximum error values. These uncertainties are small enough to still allow meaningful
comparisons.

In the multiprocessor version, locking an object when there is no contention costs
294 and 668 cycles (on Pentium III and Pentium 4, respectively), whereas helping costs
an additional 470 percent (on both CPUs).

Multiprocessor versus uniprocessor versions. The table indicates that a
helping-lock implementation is significantly more costly on multiprocessors than on
uniprocessors: On the Pentium III, the uncontented case has an additional cost of 48
percent, and locking with helping adds 119 percent. On the Pentium 4, the values
are even worse: 209 percent and 196 percent. Apparently the main source of extra
overhead are the context-switch operations.

I tracked down this extra cost to my implementation’s use of atomic memory-
update instructions such as CAS. As I stated in a preceding paragraph, these instruc-
tions are relatively costly, especially on the Pentium 4.

IPI. I also measured the minimum IPI latency. In this test, one thread interrupts
execution on another CPU using an IPI, and the interrupt handler on the other CPU
signals arrival of the IPI by changing one memory word. The latency is the elapsed
time on the first CPU from sending the IPI to noticing the change in the memory word.
It does not include a context switch on either CPU.

I could carry out this measurement only on the Pentium III, where I determined
a latency of 1149 cycles or 2553 nanoseconds. On the Pentium 4, I expect a latency
of about 1500 cycles: The IPI transmission is likely faster on the Pentium 4 (because
on this CPU, IPIs are transferred on the processor bus, not on the APIC bus [Int99]),

66 CHAPTER 5. PERFORMANCE EVALUATION

but interrupts need more cycles than on the Pentium III. For example, the Pentium 4
needs 1168 cycles to enter the kernel when the CPU’s local APIC generates an interrupt
(Pentium III: 203 cycles).

SINGLE -SERVER PERFORMANCE . Table 5.2 compares Fiasco’s current thread lock
with my previous synchronization mechanism based on a Massalin–Pu-style serializer.

The current lock implementation evaluated here is mostly equivalent to the unipro-
cessor helping lock of Table 5.1 (line “uniprocessor lock without contention”). How-
ever, the overhead I measured for this lock is slightly different in Table 5.2 because of
two reasons: First, I chose to compare the Massalin–Pu mechanism against a thread
lock, not a plain lock, because my Massalin–Pu implementation by its nature always
locks a thread (see Section 3.3.5); thread locks differ from plain locks in that they are
extended with a switch hint (see Section 4.2.3). Second, the measurement was con-
ducted on somewhat older hardware.

This measurement indicates that the performance of the Massalin–Pu solution is
limited by the context-switch overhead. The new solution is more than twice as fast
than the old one.

5.1.2 Discussion

COST AND BENEFIT OF NONBLOCKING SYNCHRONIZATION . Obviously, non-
blocking synchronization comes with a cost. The cost can be as low as 3 cycles (atomic
counter on uniprocessor Pentium 4) and as high as some thousand cycles (3830 cycles
for helping lock under contention on multiprocessor Pentium 4).

However, there are also benefits to nonblocking synchronization: When compared
to protecting (long) critical sections by disabling interrupts, the system remains inter-
ruptible during critical sections, providing lower interrupt latency and better schedul-
ing accuracy. Nonblocking synchronization also prevents priority inversion, which
ultimately leads to lower worst-case execution times. Additionally, lock-free synchro-
nization removes lock contention from multiprocessor system, and Michael and Scott
have shown that lock-free implementations scale better than lock-based approaches on
multiprocessors [MS96].

Disabling interrupts as a lock-free protection mechanism. In the preceding
paragraph I assumed that interrupt-disabling is used only to protect very short critical
sections (such as a system-level CAS2 implementation). As long as these critical sec-
tions take less cycles than the longest possible atomic CPU operation (e. g., a system
call using theint instruction on the Pentium 4 takes 796 cycles), interruptibility is not
adversely affected.

When this condition is true forall critical sections of an object,and interrupt-
disabling can be used to protect this object (i. e., on uniprocessors, or for CPU-local
data on multiprocessors), this lock-free protection mechanism can be less costly than
using the wait-free helping lock.

In Fiasco, this condition clearly was not true for many critical sections, and some
critical sections cannot be made shorter (i. e., preemption points cannot be introduced)
without restructuring the kernel. However, the future L4 interface (dubbed L4 version
4) has been carefully engineered to not require long critical sections in the kernel, so
this technique may become a viable alternative for implementations of that interface.

5.1. MICROBENCHMARKS 67

HELPING VERSUS IPI ON MULTIPROCESSORS. An alternative to cross-CPU
helping (i. e., executing a blocked thread’s critical sections on remote CPUs) would be
to use strictly CPU-local resources. To access such a resource from a different CPU,
remote threads would have to run their critical sections by invoking a cross-CPU RPC
implemented using IPIs. In this scenario (which I call “IPI solution”), accesses to
remote resourcesalwaysrequire an IPI, independent from contention.

From Table 5.1 I can infer that entering a critical section using an IPI needs signif-
icantly more elapsed time in the uncontented case, whereas the IPI solution can have
an advantage when the critical section is blocked. The actual blocking time depends
on the nature of synchronization required on the remote CPU before the critical section
is started. For example, there can be overhead for scheduling the critical section, or—
if critical sections are protected by enabling and disabling interrupts—the IPI may be
blocked before it is actually handled.

After the critical section has been completed, the remote CPU needs to notify the
first CPU, which can be realized synchronously (first CPU polls) or asynchronously
(remote CPU replies with an IPI). In both cases, the total number of cycles spent on
both CPUs to handle the RPC likely is higher than with helping (even in the contented
case).

UNIPROCESSOR SYNCHRONIZATION FOR GLOBAL RESOURCES . Compared to
the uniprocessor synchronization primitives, the multiprocessor-safe operations are rel-
atively expensive. This effect is especially serious on the Pentium 4, and I expect it to
occur on all modern CPUs with high internal clock frequencies and long pipelines.

When remote resource accesses are infrequent, it is possible to reduce synchro-
nization overhead by using an uniprocessor synchronization scheme and carrying out
remote accesses with RPCs (as I discussed in previous paragraphs) or by transparently
falling back to a multiprocessor synchronization scheme (e. g., using a form of special-
ization [PAB+95]).

Using pairs of enabling and disabling interrupts is especially attractive as a local
synchronization scheme because of these operations’ low cost. This method creates
critical sections that are not preemptible, which can lead to a higher blocking time.
Therefore, interrupt disabling is best suited for very short critical sections where the
total time of the critical section is only a fraction of other methods’ pure overhead.

For longer critical sections where preemptability is a concern, I suggest my unipro-
cessor helping lock.

EXPENSIVE ATOMIC OPERATIONS AND POSSIBLE OPTIMIZATION . The high
cost of multiprocessor-safe atomic operations on the Pentium 4 was quite surprising,
given that this CPU does not actually lock the memory bus but synchronizes atomic
memory accesses using its cache-coherency protocol.1 Apparently the Pentium-4 de-
signers did not find these operations interesting enough for inclusion in the CPU’s
high-performance RISC core. Also, cache synchronization costs more CPU cycles on
the Pentium 4 because of the larger difference between CPU and cache-memory clock
rates.

I have carried out a study of the cost of various atomic memory operations on the
Pentium III and Pentium 4 CPUs, to gain hints for a future optimization of my locking
primitives. Removing the need for thecmpxchg8b instruction (which atomically com-
pares and exchanges 8 contiguous bytes in memory) seems to be especially rewarding

1I verified this behavior by analyzing the CPU’s performance counters.

68 CHAPTER 5. PERFORMANCE EVALUATION

as this instruction alone is more than five times as expensive as on the Pentium III.
Optimizing my mechanism using this data still remains an area of future work, though.

SERIALIZER VERSUS WAIT -FREE LOCK . My wait-free lock implementation has
significantly lower overhead than the Massalin–Pu serializer. The reason is that in
the uncontented case, thread switches become unnecessary. Besides the performance
improvement, the lock solution is also significantly easier to use because it directly
supports the mutual-exclusion programming paradigm.

5.2 Real-time characteristics

To assess Fiasco’s real-time performance, I ran a minimal interrupt-latency benchmark
under worst-case conditions.

In this experiment, I compared Fiasco with RTLinux, a Linux kernel extended with
a small real-time executive [YB97]. RTLinux is known to have excellent real-time–
scheduling properties [Meh99], which justifies using it as a comparison metric for Fi-
asco.

For an accurate and fair comparison, on top of Fiasco I used a combination of soft-
ware that provides the RTLinux API. This allowed me to run the same benchmark on
both systems.2 In particular, this software, taken from the DROPSsystem [HBB+98],
consisted of the following components:

• L4RTL, an implementation of the RTLinux API on top of the L4 inter-
face [MHSH01].

• L4Linux, a Linux server for time-sharing programs that runs as an appli-
cation program on top of Fiasco and is binary-compatible with original
Linux [HHL+97]. L4Linux was configured to use locks instead of interrupts for
internal synchronization to prevent its device drivers from disabling interrupts
and thereby inducing scheduling delays [HHW98]. In other words, L4Linux can
be preempted by real-time tasks at any time.

The main architectural difference between RTLinux and the L4RTL–DROPScom-
bination is that L4RTL real-time threads run in their own user address spaces while in
RTLinux, all real-time threads run within the Linux kernel in kernel mode.

In this experiment, I measured the time between the occurrence of a hardware event
that triggers an interrupt and the reaction in an RTLinux real-time thread. I conducted
the experiment for both original RTLinux and L4RTL.

5.2.1 Experimental setup

To induce worst-case system behavior, I have used two strategies.
First, prior to triggering the hardware event, I configured the system such that the

kernel’s and the real-time thread’s cache and TLB working sets they need to react to
the event are completely swapped out (and the corresponding 1st-level and 2nd-level
cache lines are dirty).

2I used a PC with an 800-MHz Pentium III Coppermine CPU, 256 MByte RAM (100 MHz SDRAM)
and 256 KByte 2nd-level cache. Both RTLinux and L4RTL were based on Linux kernel version 2.2.18. I
used version 3.0 of RTLinux.

5.2. REAL-TIME CHARACTERISTICS 69

Second, I exercised various code paths in RTLinux, L4Linux, and the Fiasco micro-
kernel. These coverage tests are a probabilistic way to reveal code paths with maximal
execution time while interrupts are disabled. Additionally, they increase confidence
that the DROPScomponents and the Fiasco microkernel indeed are completely pre-
emptible. To avoid missing critical code paths because of pathologic timer synchro-
nization, I varied the time between triggering two interrupts.

For cache- and TLB-polluting purposes I used a Linux program that invalidates the
caches. It ensures that all 1st-level and 2nd-level cache lines are dirty and need to be
written back to main memory when the hardware event occurs. Note that all of the
first-level and the second-level cache lines mapping to a specific memory address can
contain dirty data from different memory addresses. Therefore, in the worst case a
single memory-read operation results in three memory accesses: write-back of a dirty
first-level cache line, write-back of a dirty second-level cache line, and finally the read
that was actually intended. This case, also known as thedouble-purge case, can occur
only in systems that have multi-associative 1st-level caches and that do not provide
the inclusion property[LH01]. The inclusion property states that the contents of the
1st-level cache also have to be in the 2nd-level cache. Usually this property is needed
to guarantee cache consistency on multiprocessor systems where only the highest-level
caches take part in a cache-consistency protocol such as MESI. However, on x86 CPUs
both the 1st-level and 2nd-level caches independently take part in the MESI protocol,
making inclusion unnecessary [Int99]. As a result, inclusion is not required on x86
CPUs.

Because the cache-flooding program uses more memory pages than TLB entries, it
has the side effect of flushing the TLB.

For code coverage I used a benchmarking suite for UNIX , hbench [BS97]. This
benchmark is designed to provide excellent coverage for Unix systems such as Linux
and L4Linux, and I have verified using a profiling tool that it also provides wide cover-
age for the Fiasco microkernel.

As a measurable and reliable interrupt source, I have used the x86 CPU’s built-in
interrupt controller (Local APIC3). This unit is measurable as it offers a timer interrupt
that can be used to obtain the exact time between the hardware event and the reaction in
kernel or user code. When the Local APIC’s timer interrupt is used in periodic mode,
its overhead is close to zero because first, it does not require repeated reinitialization,
and second, the elapsed time since the hardware trigger can be read directly from a
hardware register. The Local APIC is reliable because the chance of a programming
error accidently blocking it or preventing its reactivation is very low.

The drawback of this interrupt source is that unlike other interrupt sources, it cannot
be given a higher hardware priority than other interrupt sources. In other words, except
for disablingall interrupts in the CPU, it is impossible to globally specify which other
interrupts must not occur until this interrupt has been acknowledged. I have therefore
simulated hardware-interrupt priorities by manually disabling interrupts in the external
PIC (not in the CPU) until the user-level interrupt handler in the L4RTL measurement
thread has acknowledged its interrupt.

With this precaution in place, my interrupt source has the system’s highest priority.
It cannot be blocked by any other interrupts, and no other interrupt can preempt my
interrupt’s handler—not even the system’s timer interrupt.

3APIC = advanced programmable interrupt controller

70 CHAPTER 5. PERFORMANCE EVALUATION

5.2.2 Measurements

5.2.2.1 What I measured

For both RTLinux and L4RTL, I measured the time between the occurrence of the
hardware event and the first instruction in the real-time thread. I measured this time
under four conditions: Average case (no additional system load), under hbench, under
cache-flooding, and under a combination of the hbench and cache-flooding loads.

Additionally, I measured the time between the occurrence of the hardware event and
the first instruction of the kernel-level interrupt handler in both RTLinux and the Fi-
asco microkernel. This measurement quantifies the effect of critical code sections that
disable interrupts within these kernels.4 By measuring both kernel-level and real-time–
thread latencies, I was able to separate overhead induced by kernel code that executes
with interrupts turned off from overhead caused by the kernels’ implementations.

5.2.2.2 Expectations

In this subsection I estimate the worst-case cost for invoking the user-level interrupt
handler for both RTLinux and Fiasco. First I assess the total cost to invoke the handler
including address-space switching cost and kernel-entry cost, but assuming the kernel
is ideally preemptible. Then I estimate the worst-case time during which interrupts are
disabled in the kernels. These two figures are equivalent to the two separate overheads
measured in this experiment, except that the initial kernel entry (800 cycles = 1 µs)
is accounted for in my user-level–handler–invocation estimation, not in the interrupt-
blocking–time estimation.

ENTERING A USER -LEVEL HANDLER . In the following I estimate the activation
cost of an interrupt handler in an RTLinux application for both RTLinux and L4RTL
under worst-case conditions.

A trap to enter kernel mode induced by a hardware interrupt universally takes about
1 µs—that is, about 800 cycles on my test machine. I measured a memory-read oper-
ation that does not hit the cache to cost around 98 cycles. A TLB miss that cannot be
satisfied from the second-level cache costs twice as much—around 198 cycles.

When the CPU needs to write data to main memory, it uses a special cache called
“write buffer.” This cache stores the written data and asynchronously writes them out to
main memory when the memory bus becomes available. As long as a write buffer can
be allocated in the CPU, the memory-access cost is not worsened by dirty cache lines.
I expect that the number of available write buffers (four cache-line–sized buffers, i. e.,
4×32 bytes) is sufficient to temporarily cache write-back data from dirty cache lines. I
set up an extra experiment to verify this expectation.

For RTLinux, I estimated 8 TLB misses (2 instruction-TLB misses and 6 data-TLB
misses) and about 3000 CPU cycles. I guessed the number of cache-line misses to be
about 250—equivalent to touching about 8 KByte worth of code and data.

For the L4RTL system, I have to distinguish between kernel code (Fiasco’s trap
handler and interrupt-to-IPC translation) and user code (L4RTL’s handler). In the Fi-
asco microkernel, I believe the code path to be somewhat longer than in RTLinux (4000
cycles), but the data set to be more local (250 cache-line misses despite the larger num-
ber of code cycles). For the L4RTL code running in user mode, I estimate another 8
TLB misses (2i/6d), 10 cache-line misses, and 300 CPU cycles.

4 L4Linux is not an issue here, because it never disables interrupts for synchronization.

5.2. REAL-TIME CHARACTERISTICS 71

Event Number Cycles / Time
Kernel trap + hardware 1 800
TLB misses 8 1548
Cache misses 250 24500
Kernel module code 3000

Total Sum 29884 (37.4 µs)

Table 5.3: List of events and estimated costs responsible for delay to activate applica-
tion interrupt handler in RTLinux

Event Number Cycles / Time
Kernel trap + hardware 1 800
TLB misses 8 1584
Cache misses 250 24500
Kernel code 4000
Kernel mode sum 30884 (38.6 µs)
Return to user 1 70
Cache misses 10 980
TLB misses 8 1584
User code 300
User mode sum 2864 (3.6 µs)

Total Sum 33818 (42.3 µs)

Table 5.4: List of events and estimated costs responsible for delay to activate applica-
tion interrupt handler in Fiasco and L4RTL

Tables 5.3 and 5.4 summarize my estimations for RTLinux and L4RTL, respec-
tively.

The 37.4 µs I expect for RTLinux are higher than the 15 µs claimed in [RTL01].
This can either be the result of a too pessimistic approach on my part or an underesti-
mation of the worst-case cache-miss costs by the authors of RTLinux.

I NTERRUPT-BLOCKING TIME . In an RTLinux system, the only component that
disables interrupts is the RTLinux real-time executive itself. Like L4Linux, RTLinux
uses locks for low-level synchronization. RTLinux enables and disables only “soft
interrupts,” not hardware interrupts. In other words, RTLinux can be blocked only by
itself.

Internally, RTLinux does disable interrupts for synchronization. The by far longest
and most costly code path during which interrupts are disabled is the interrupt-delivery
path—the code path I examined in Table 5.3. Therefore, I assume that RTLinux’ worst-
case interrupt-blocking time is close to the 37.4 µs I estimated in that table.

If my assumptions are true that (1) the same RTLinux code path is responsible for
both worst-case interrupt-blocking time and handler-invocation time and (2) this code
path is considerably more costly than other code paths, I should expect to find that the
total worst-case time is considerable less than the sum of the two constituent worst-
case times because hitting the worst case for the first part means that cache has been
preloaded with code and data for the second part.

72 CHAPTER 5. PERFORMANCE EVALUATION

Event Number Cycles / Time
TLB misses 8 1548
Cache misses 50 4900
Timer-chip acknowledgment 1 10000
Kernel code 1000

Total Sum 17448 (21.8 µs)

Table 5.5: List of events and estimated costs in Fiasco’s timer-interrupt handler

For Fiasco, I know from profiling that the timer-interrupt handler is the longest code
path in which interrupts are disabled. The timer-interrupt code that runs with disabled
interrupts needs to acknowledge the system board’s clock chip (which is very costly
because of Fiasco’s conservative two-stage acknowledgment routine that includes 25
in andout instructions!) and processes the timeout queue (which contains up to one
element in this benchmark—the L4Linux’ timer thread’s timeout). I guess that this code
takes about 1000 CPU cycles, 8 TLB misses (2i/6d) and about 50 cache-line misses. I
summarize my estimation in Table 5.5.

As this worst-case interrupt-blocking code path is not equivalent to the code path
that invokes the user-level interrupt handler, I expect that the worst cases of these two
code paths add up in the total worst-case time (21.8 µs + 42.3 µs = ca. 64.1 µs).

In RTLinux, an important consequence of disabling interrupts in the handler-
invocation path is that another incoming hardware interrupt cannot break into the
execution of this path. Fiasco, on the other hand, enables interrupts in this path,
allowing an interrupt with a higher hardware priority to intercept5 and cause a higher
worst-case execution time. In this experiment, however, I arranged that the measured
interrupt always has the highest priority (see Section 5.2.1).

5.2.2.3 Results and discussion

The diagrams in Figures 5.1 and 5.2 show the densities of the interrupt-response times
under the four load conditions: no load, hbench, cache flooder, and a combination of
hbench and cache flooder.

FIASCO /L4RTL RESULTS. The measured worst-case time for L4RTL was 85 µs.
The maximal time to invoke the Fiasco microkernel’s handler was 53 µs, and the maxi-
mal time to start the corresponding L4RTL thread was 39 µs (Figure 5.2, bottom row).

As the sum of these separate maximums is close to the total maximum, it seems that
the code path that disables interrupts and the code path that starts the L4RTL thread
indeed use different code and data and are accounted for separately as I predicted in
the previous subsection.

RTL INUX RESULTS . The worst-case latency for RTLinux was 68 µs.
RTLinux obviously has long periods of disabled interrupts, too. It takes up to 53 µs

to invoke a kernel handler. The fact that this value is close to the total maximum
of 68 µs suggests that the code that keeps interrupts disabled is close or identical to

5By “intercept” I mean a hardware interrupt not handled by a higher-priority interrupt thread. In a prop-
erly constructed system, this usually can only be the (kernel-handled) timer interrupt (which has the highest
interrupt priority) as other higher-priority interrupts normally have higher-priority handler threads.

5.2. REAL-TIME CHARACTERISTICS 73

the code that is executed when an interrupt occurs (Figure 5.1, bottom row). In other
words, it supports my theory that it is probably RTLinux itself that impairs the system’s
interruptibility.

ACCURACY OF PREDICTIONS , VERIFICATION OF ASSUMPTIONS . The worst-
case real-time–handler invocation times I observed (center column in Figures 5.1 and
5.2) seem to be in line with my expectations for L4RTL (39 µs vs. 42 µs), but not for
RTLinux: The worst-case, total time I measured for RTLinux (56 µs) exceeds both my
estimation (29884−800= 29084 cycles= 36.4 µs) and, more significantly, the worst-
case time I measured for L4RTL (39 µs). It seems that RTLinux has a larger cache
footprint than L4RTL.

I verified my expectation that dirty cache lines do not impair predictability by set-
ting up my cache flooder to flush, but not to dirty the caches. As I anticipated, all
worst-case times (and even the shape of my density diagrams) stayed the same.

I verified my assumption that in Fiasco, the timer-interrupt handler is the main
reason for interrupt delaying. I altered the experiment to measure under worst-case
conditions the time the timer-interrupt handler disables interrupts. The result was 20 µs.
This result suggests that Fiasco’s timer-interrupt handling should be modified to leave
interrupts enabled—by sacrificing either portability (by using a timer that has lower
acknowledgment cost but is not available in older PCs, such as the Local APIC’s timer
interrupt) or accuracy (by allowing interruptions in the acknowledgment sequence).

AUXILIARY RESULTS . My measurements indicate that the main architectural differ-
ence between RTLinux and L4RTL—real-time tasks run in their own address spaces
under L4RTL—introduces less uncertainty than blocked interrupts and caches. I de-
duce that providing address spaces for real-time tasks does not lead to unacceptable
worst-case scheduling delays.

Another interesting result, even though not directly related to the subject of this
thesis, is that the worst-case latency for RTLinux is 68 µs. It seems like RTLinux’
authors did not take into account the penalty for accessing dirty cache lines when they
claimed RTLinux guarantees 15-µs response times on current PC hardware [RTL01].

SUMMARY . I have evaluated the interruptibility of Fiasco, an operating system that
I designed using Chapter 3’s methodology and built using only nonblocking synchro-
nization.

My results indicate that my methodology lead to an operating-system kernel with
excellent interruptibility, comparable to a minimal real-time executive. Interrupt-
response latency was low despite the presence of long critical sections (such as the
task-delete operation). This was possible because my methodology allows only
low-overhead lock-free synchronization (or very short critical sections) for global data
needed during context switches, and maintains preemptability for all longer critical
sections.

74 CHAPTER 5. PERFORMANCE EVALUATION

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

idle: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

idle: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: rt task entry

worst case = 7 µs worst case = 6 µs worst case = 13 µs

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_proc_sh_static: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_proc_sh_static: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_proc_sh_static: rt task entry

worst case = 19 µs worst case = 8 µs worst case = 25 µs

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: rt task entry

worst case = 49 µs worst case = 44 µs worst case = 58 µs

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sbrk: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sbrk: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sbrk: rt task entry

worst case = 53 µs worst case = 56 µs worst case = 68 µs

Legend: X axis shows interrupt latency. Y axis shows density of occurrence of particular laten-
cies. Note that the Y axis has a logarithmic scale.

Figure 5.1: RTLinux performance under no load (top row), hbench (2nd row), cache
flooder (3rd row), and hbench + cache flooder combined. Left: Time to enter kernel
mode. Center: Time to activate handler in RTLinux thread. Right: Accumulated, total
time

5.2. REAL-TIME CHARACTERISTICS 75

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

idle: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

idle: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

idle: rt task entry

worst case = 37 µs worst case = 17 µs worst case = 43 µs

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sigaction: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sigaction: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sigaction: rt task entry

worst case = 38 µs worst case = 20 µs worst case = 57 µs

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

flooder: rt task entry

worst case = 47 µs worst case = 38 µs worst case = 82 µs

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sigaction: kernel entry

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sigaction: kernel path

10−5

10−4

10−3

10−2

10−1

100

0 10 20 30 40 50 60 70 80

F
re

qu
en

cy

IRQ occurence rate (µs)

lat_syscall_sigaction: rt task entry

worst case = 53 µs worst case = 39 µs worst case = 85 µs

Legend: X and Y axes have the same meaning as in Figure 5.1

Figure 5.2: L4RTL performance under no load (top row), hbench (2nd row), cache
flooder (3rd row), and hbench + cache flooder combined. Left: Time to enter kernel
mode. Center: Time to activate handler in L4RTL thread. Right: Accumulated, total
time

76 CHAPTER 5. PERFORMANCE EVALUATION

Chapter 6

Conclusion

6.1 Contributions of this work

This dissertation comprises three main contributions and a number of auxiliary contri-
butions.

M AIN CONTRIBUTIONS .

Design methodology for real-time systems.(Chapter 3: Sections 3.1–3.3.3; Chapter
5)

I developed a pragmatic approach for developing real-time systems using non-
blocking synchronization, with the following properties:

• My methodology leads to real-time systems with excellent real-time prop-
erties and a low synchronization overhead.

• It is applicable to both kernels and user-mode programs.

• It extends naturally to multiprocessor systems.

• It is not restricted to CPUs that provide an atomic CAS2 instruction.

• Using my methodology is straightforward. It makes use of interfaces simi-
lar to those of mutual exclusion and uses only simple lock-free data struc-
tures.

Low-overhead priority inheritance. (Chapter 3: Sections 3.3.1–3.3.4; Chapter 5)

I proposed wait-free lock designs for uniprocessor and multiprocessor kernels. I
also discussed kernel interfaces that allow user-mode programs to take advantage
of priority inheritance. My lock designs have the following properties:

• My lock designs provide a variant of priority inheritance, which I call
“locking with helping.”

• My multiprocessor lock implements a new real-time resource-access pro-
tocol, the multiprocessor priority-inheritance protocol (MPIP).

• They provide synchronization semantics as powerful as those of wait-and-
notify monitors, as long asnestedmonitor calls never block.

77

78 CHAPTER 6. CONCLUSION

Real-time serializer. (Chapter 3: Section 3.3.5; Chapter 5: Section 5.1)

I proposed a simple modification to Massalin-Pu synchronization servers (also
known as serializers) to make them applicable to real-time systems. This modi-
fication has the following properties:

• Its synchronization semantics are equivalent to locking with priority inher-
itance.

• It is possible to implement this scheme with acceptable performance, but
in direct comparison to my implementation of priority inheritance, it has
significantly higher overhead.

Fiasco microkernel. (Chapters 4, 5)

I verified my methodology in the design and implementation of the Fiasco mi-
crokernel. It has the following properties:

• Fiasco runs on uniprocessors and multiprocessors with x86 CPUs.

• It implements my “locking with helping” schemes in their uniprocessor and
multiprocessor kernel variants.

• As Fiasco has been designed according to my design methodology, it is
(almost) completely preemptible, which translates to excellent real-time
properties.

• Fiasco does not need to sleep within any critical sections (nested or
nonnested). This provides evidence that my locking scheme’s restriction
of disallowing nested critical section that may block is not a show stopper.

AUXILIARY CONTRIBUTIONS .

Address spaces in real-time systems.(Chapter 5: Section 5.2)

I provide evidence that the introduction of address spaces to real-time systems
does not cause uncertainties larger than those generally accepted by system de-
signers, namely jitter induced by caches and interrupt blocking.

Caches and worst-case estimations.(Chapter 5: Section 5.2)

The fact that the worst-case latency I measured for RTLinux is four times larger
than what its designers claim shows that the effect of caches worst-case execution
times are often underestimated.

6.2 Suggestions for future work

I see three major areas for future work.
First, in this thesis I have not discussed schedulability analysis for MPIP, as it does

not fit into the scope of this work. However, work in this field has already started within
our group.

Second, the balance between the use of lock-free and wait-free synchronization
within the Fiasco microkernel certainly can be improved further. In my first design, I
overestimated the cost of a number of locked operations and concluded wrongly that
they could not be put into avery shortcritical section protected by disabling interrupts
without causing noticeable priority inversion. I therefore created numerous critical

6.3. CONCLUDING REMARKS 79

section protected by wait-free locks in which both the locking overhead and cost of a
kernel entry are higher than the cost of the critical section. As I write this conclusion,
members of our group refine Fiasco using this insight. This work will result in a much
better performing kernel.

Third, being able to give real-time guarantees on a multiprocessor machine depends
on the condition that all CPUs get the machine resources (e. g., bus bandwidth) they
need. This condition can be guaranteed only if the effects on these resources caused
by (non-real-time) programs on all CPUs can be contained. The quantification of such
effects and devising ways to their containment remains future work.

6.3 Concluding remarks

In this thesis I have described a pragmatic approach for constructing real-time systems
that use only nonblocking synchronization. Taking recent theoretical contributions
with a grain of salt and using a practical interpretation of what constitutes nonblock-
ing synchronization, I developed a methodology for designing real-time system that is
easy to use and yields excellent results in low synchronization overhead and real-time
performance, especially interrupt latency.

Using my methodology, I developed the Fiasco microkernel, which is more than
just an academic experiment. Because of its real-time properties, TU Dresden’s
operating-systems group uses Fiasco as the base of the Dresden Real-Time Operating
System DROPS.

80 CHAPTER 6. CONCLUSION

Bibliography

[ARJ97a] James H. Anderson, Srikanth Ramamurthy, and Rohit Jain. Implementing
wait-free objects on priority-based systems. InProceedings of the Six-
teenth Annual ACM Symposium on Principles of Distributed Computing,
pages 229–238, Santa Barbara, California, 21–24 August 1997.

[ARJ97b] James H. Anderson, Srikanth Ramamurthy, and Kevin Jeffay. Real-time
computing with lock-free shared objects.ACM Transactions of Computer
Systems, 15(2):134–165, May 1997.

[Aud91] Neil C. Audsley. Resource control for hard real-time systems: A review.
Technical Report YCS 159, University of York, Department of Computer
Science, Real-time Systems Research Group, August 1991.

[Ber93] B. N. Bershad. Practical considerations for non-blocking concurrent ob-
jects. In Robert Werner, editor,Proceedings of the 13th International Con-
ference on Distributed Computing Systems, pages 264–274, Pittsburgh,
PA, May 1993. IEEE Computer Society Press.

[BF95] Peter A. Buhr and Michael Fortier. Monitor classification.ACM Comput-
ing Surveys, 27(1):63–107, March 1995.

[BS97] A. B. Brown and M. I. Seltzer. Operating system benchmarking in the
wake of lmbench: A case study of the performance of NetBSD on the Intel
x86 architecture. InACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 214–224, Seattle, WA, June 1997.

[Che95] Chia-Mei Chen.Scheduling Issues in Real-Time Systems. PhD thesis,
University of Maryland, Institute for Advanced Computer Studies, 1995.

[Elp01] Kevin Elphinstone. Proposed L4 scheduling behavior to support RT sys-
tem construction. InProceedings of the Second Workshop on Microkernel-
based Systems, Lake Louise, Banff, Canada, 2001.

[GC96] Michael Greenwald and David Cheriton. The synergy between non-
blocking synchronization and operating system structure. In2nd Sym-
posium on Operating Systems Design and Implementation (OSDI ’96),
October 28–31, 1996. Seattle, WA, pages 123–136, Berkeley, CA, USA,
October 1996. USENIX.

[GDFR90] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an application pro-
gram. InUSENIX Summer Conference, pages 87–96, Anaheim, CA, June
1990.

81

82 BIBLIOGRAPHY

[Gre99] Michael Greenwald.Non-blocking Synchronization and System Design.
PhD thesis, Stanford University, August 1999.

[HBB+98] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schönberg, and J. Wolter. DROPS: OS sup-
port for distributed multimedia applications. InProceedings of the Eighth
ACM SIGOPS European Workshop, Sintra, Portugal, September 1998.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent
data objects.ACM Transactions on Programming Languages and Sys-
tems, 15(5):745–770, November 1993.

[HHL+97] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The per-
formance of µ-kernel-based systems. In16th ACM Symposium on Operat-
ing System Principles (SOSP), pages 66–77, Saint-Malo, France, October
1997.

[HHW98] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux. In5th Annual Aus-
tralasian Conference on Parallel And Real-Time Systems (PART), Ade-
laide, Australia, September 1998.

[Hil92] D. Hildebrand. An architectural overview of QNX. In1st USENIX Work-
shop on Micro-kernels and Other Kernel Architectures, pages 113–126,
Seattle, WA, April 1992.

[HJT+93] Carl Hauser, Christian Jacobi, Marvin Theimer, Brent Welch, and Mark
Weiser. Using threads in interactive systems: A case study. In14th
ACM Symposium on Operating System Principles (SOSP), pages 94–105,
Asheville, NC, December 1993.

[HLR+01] C.-J. Hamann, J. L̈oser, L. Reuther, S. Schönberg, J. Wolter, and H. Ḧartig.
Quality Assuring Scheduling - Deploying Stochastic Behavior to Im-
prove Resource Utilization. In22th IEEE Real-Time Systems Sysmposium
(RTSS), London, UK, December 2001.

[Hoh98] Michael Hohmuth. The Fiasco kernel: Requirements definition. Technical
Report TUD–FI–12, TU Dresden, December 1998. Available from URL:
http://os.inf.tu-dresden.de/papers ps/fiasco-spec.ps.gz.

[Hoh02] Michael Hohmuth. The Fiasco kernel: System architecture. Technical
Report TUD-FI02-06-Juli-2002, TU Dresden, 2002.

[How76] John H. Howard. Signaling in monitors. InSecond International Confer-
ence on Software Engineering, pages 47–52, San Francisco, CA, October
1976.

[Int99] Intel Corp. Intel Architecture Software Developer’s Manual, Volume 3:
System Programming, 1999.

[LH01] Jork Löser and Hermann Ḧartig. Cache influence on worst case execution
time of network stacks. Technical Report TUD-FI02-07-Juli-2002, TU
Dresden, July 2001.

BIBLIOGRAPHY 83

[Lie95] J. Liedtke. On µ-kernel construction. In15th ACM Symposium on Operat-
ing System Principles (SOSP), pages 237–250, Copper Mountain Resort,
CO, December 1995.

[Lie96a] J. Liedtke. L4 reference manual (486, Pentium, PPro). Arbeitspapiere der
GMD No. 1021, GMD — German National Research Center for Informa-
tion Technology, Sankt Augustin, September 1996. Also Research Report
RC 20549, IBM T. J. Watson Research Center, Yorktown Heights, NY,
September 1996.

[Lie96b] J. Liedtke. Toward real µ-kernels.Communications of the ACM, 39(9):70–
77, September 1996.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment.Journal of the ACM, 20(1):40–61, 1973.

[LR80] B. W. Lampson and D. D. Redell. Experience with processes and monitors
in Mesa.Communications of the ACM, 23(2):105–117, February 1980.

[Meh99] Frank Mehnert. L4RTL: Porting RTLinux API to L4/Fiasco. InWork-
shop on a Common Microkernel System Platform, Kiawah Island, SC, De-
cember 1999. Available from URL:http://os.inf.tu-dresden.de/
~fm3/l4rtl l4ws.pdf.

[MHSH01] Frank Mehnert, Michael Hohmuth, Sebastian Schönberg, and Hermann
Härtig. RTLinux with address spaces. InProceedings of the Third Real-
Time Linux Workshop, Milano, Italy, November 2001.

[Moi97] M. Moir. Transparent support for wait-free transactions.Lecture Notes in
Computer Science, 1320:305, 1997.

[MP91] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel.
Technical Report CUCS-005-91, Columbia University, 1991.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. InProceedings of
the 15th Annual ACM Symposium on Principles of Distributed Computing
(PODC ’96), pages 267–275, New York, USA, May 1996. ACM.

[PAB+95] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana,
J. Walpole, and K. Zhang. Optimistic incremental specialization: Stream-
lining a commercial operating system. In15th ACM Symposium on Op-
erating System Principles (SOSP), pages 314–324, Copper Mountain Re-
sort, CO, December 1995.

[PRS+01] B. Pfitzmann, J. Riordan, Ch. Stüble, M. Waidner, and A. Weber. Die
PERSEUS System-Architektur. In D. Fox, M. Köhntopp, and A. Pfitz-
mann, editors,Verlässliche IT-Systeme (VIS). GI, Vieweg, September
2001.

[RM95] I. Rhee and G. R. Martin. A scalable real-time synchronization proto-
col for distributed systems. In16th IEEE Real-Time Systems Symposium
(RTSS), 1995.

84 BIBLIOGRAPHY

[RSL88] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization pro-
tocols for multiprocessors. InProceedings of the 19th IEEE Real-Time
Systems Symposium, pages 259–269, 1988.

[RTL01] RTLinux FAQ. URL: http://www.rtlinux.org/documents/
faq.html, October 2001.

[SB96] Vik Sohal and Mitch Bunnell. A real OS for real time — LynxOS provides
a good, portable environment for embedded applications.Byte Magazine,
21(9):51, September 1996.

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization.IEEE Transactions on Com-
puters, 39(9):1175–1185, September 1990.

[Sun97] Jun Sun.Fixed-Priority End-To-End Scheduling In Distributed Real-Time
Systems. PhD thesis, University of Illinois, Department of Computer Sci-
ence, 1997.

[TNR90] Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi Rao. Real-time Mach:
Towards a predictable real-time system. In USENIX, editor,Mach Work-
shop Conference Proceedings, October 4–5, 1990. Burlington, VT, pages
73–82, Berkeley, CA, USA, October 1990. USENIX.

[Tre86] R. K. Treiber. Systems programming: Coping with parallelism. Technical
Report RJ 5118, IBM Almaden Research Center, April 1986.

[Val95a] John D. Valois.Lock-Free Data Structures. PhD thesis, Rensselaer Poly-
technic Institute, May 1995.

[Val95b] John D. Valois. Lock-free linked lists using compare-and-swap. InPro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 214–222, Ottawa, Ontario, Canada, August
1995. Erratum available atftp://ftp.cs.rpi.edu/pub/valoisj/
podc95-errata.ps.gz.

[YB97] Victor Yodaiken and Michael Barabanov. A Real-Time Linux. InProceed-
ings of the Linux Applications Development and Deployment Conference
(USELINUX), Anaheim, CA, January 1997. The USENIX Association.

[ZPS99] K. M. Zuberi, P. Pillai, and K. G. Shin. EMERALDS: a small-memory
real-time microkernel. In17th ACM Symposium on Operating System
Principles (SOSP), pages 277–291, Kiawah Island, SC, December 1999.

		Introduction

		Basics and related work

		Synchronization in real-time operating systems

		Blocking and blocking time

		Bounding blocking

		Other resource-sharing protocols

		Nonblocking synchronization

		Wait-free and lock-free synchronization

		Overview

		Atomic memory update

		Nonblocking synchronization in operating systems: Synthesis and the Cache kernel

		Nonblocking synchronization vs. real-time systems

		Microkernel-based real-time systems

		Microkernels: state of the art

		The microkernel promise

		First-generation microkernels

		Second-generation microkernels

		Microkernels in real-time systems

		Pragmatic nonblocking synchronization

		A design methodology for real-time systems

		Design goals

		Design guidelines

		Priority-inversion--free atomic update

		Atomic update in kernel mode

		Atomic update in user-mode programs

		Wait-free synchronization

		Wait-free locking for a uniprocessor kernel

		Wait-free locking for a multiprocessor kernel

		Multiprocessor execution model

		Lockdown

		Wakeup

		Multiprocessor priority-inheritance protocol (MPIP)

		Comparison MPIP--MPCP

		Summary

		Wait-free locking in user-mode programs

		Lock with priority inheritance

		Sleep and wakeup with priority inheritance

		Time-slice donation

		Avoiding blocking in user-mode programs

		Summary

		Strength of the wait-free locking

		Real-time serializer

		The Fiasco microkernel

		Requirements

		Functional requirements

		Design goals

		Real-time properties

		Speed

		Synchronization in the Fiasco microkernel

		Overview of kernel objects

		Synchronization of kernel objects

		Wait-free locking

		Synchronization of the IPC operation

		IPC states

		IPC walk-through

		Asynchronous state changes

		Performance evaluation

		Microbenchmarks

		Measurements and results

		Discussion

		Real-time characteristics

		Experimental setup

		Measurements

		What I measured

		Expectations

		Results and discussion

		Conclusion

		Contributions of this work

		Suggestions for future work

		Concluding remarks

		References

