
Diploma Thesis

USB for DROPS

Gerd Grießbach
gg5@os.inf.tu-dresden.de

Dresden University of Technology
Operating System Group

15th March 2003

Declaration

I declare that all parts of this work were autonomously written by the author while using only
legal resources. All resources that were used within this work, are explicitly marked. To the
best of my knowledge the content of this work is original and was not published before by me
or another author.

Gerd Grießbach, Dresden, 15th March 2003

2

Contents

1 Introduction 5
1.1 Acknowledgements . 6

2 Background 7
2.1 USB . 7

2.1.1 User Benefits . 7
2.1.2 Developer Aspects . 8
2.1.3 Architecture . 9
2.1.4 Protocol . 11
2.1.5 Descriptors . 13
2.1.6 Software Layer . 15
2.1.7 Resource Management . 16

2.2 Real-time Systems . 17
2.3 DROPS . 18
2.4 DROPS Components . 19

2.4.1 Common L4 Environment (L4Env) 19
2.4.2 Device Driver Environment (DDE) 19
2.4.3 DROPS Streaming Interface (DSI) . 20
2.4.4 Desktop Operating Environment (DOpE) 20

2.5 Existing USB Stacks . 20

3 Porting Base 22
3.1 The Linux USB stack . 22

3.1.1 Device Driver API . 23
3.1.2 USB Request Block (URB) . 23
3.1.3 Architecture . 23
3.1.4 Real-time Behavior . 25

3.2 OVCam Driver . 29
3.2.1 Video for Linux (V4L) API . 29
3.2.2 Architecture . 30
3.2.3 Real-Time Behavior . 30

4 Concept 31
4.1 Design Goals . 31
4.2 Porting the Linux USB Stack . 31

4.2.1 Modularization . 32

3

Contents

4.2.2 Wrapper Layers . 32
4.2.3 Control Flow . 33
4.2.4 Control Data Structures . 35
4.2.5 Transfer Buffers . 37
4.2.6 Assuring Real-Time Capabilities . 38
4.2.7 Security Issues . 41

4.3 L4Linux Stub . 42
4.4 Porting the OVCam Driver . 42

5 Implementation 43
5.1 DDE Extensions . 43
5.2 Scheduling . 43

5.2.1 Thread Switching Pitfalls . 43
5.2.2 Critical Interrupt Path . 44

5.3 L4Linux Stub . 44
5.3.1 Transferring USB-API Structures . 45
5.3.2 Stub Call Propagation . 45

5.4 Web-cam Viewer . 46
5.4.1 Source File Modifications . 46
5.4.2 Module Parameter Passing . 46
5.4.3 DOpE Application . 46

6 Evaluation 47
6.1 Measurements . 47

7 Conclusions and Future Work 50

Acronyms 51

Bibliography 53

4

1 Introduction

The Universal Serial Bus (USB) provides the PC architecture with a low-cost, bi-directional and
isochronous interface. Devices are dynamically attachable. Nearly all currently available PC
chip-sets support USB and the number of available devices grows rapidly. Since over 500 com-
panies joined the USB Implementers Forum until now, USB can be considered as an industry
standard.

The capability to perform isochronous data transfers makes the USB attracting for real-time
operating systems like DROPS (Dresden Real-Time Operating System [BBH

�

98]). Isochronous
transfers are predestined for real-time applications (audio, video) that require guaranteed deliv-
ery time but need no error correcting in the transfer.

The wide variety of available Linux USB devices represents a rich resource to extend the
functionality of DROPS. To make use of this wealth, the ported Linux USB stack ought to be
compatible with any Linux USB device driver. As example, a web-cam driver will be ported
too. The output of the web-cam driver will be shown by a viewer. The real-time properties of
all ported components will be assured. Finally, all dispensable bandwidth left on the USB bus
is to be made accessible to instances of L4Linux.

Document structure

The following chapter lists all basics that are required to understand this document. First a de-
tailed description of the Universal Serial Bus (USB) will be presented. The Dresden Real-Time
Operating System (DROPS) as target platform and its components used for implementation of
this work will be introduced as well.

Chapter 3 takes a close look at the components to be ported. This includes the Linux USB
stack and the OVCam driver, which is used to demonstrate the efficiency of the resulting USB
system.

At the beginning of Chapter 4 all requirements needed to start the development are gathered.
Individual problems will be identified and separately discussed. This results in a concept for the
realization of the ports.

Chapter 5 describes problems, which occurred during implementation and how some aspects
of the concept had to be altered.

In Chapter 6 evaluates the achieved results and ends with a performance analysis of the pre-
sented implementation.

Finally, Chapter 7 provides a short summary of this work and suggests starting-points for
future development.

5

1 Introduction

1.1 Acknowledgements

The author of this document wants to thank Jork Löser for being a helpful tutor during the time
of this work and Christian Helmuth for his patience telling me some of the secrets of the Linux
kernel. Furthermore, a lot of thanks have to go to Prof. Dr. Hermann Härtig, Norman Fenske,
Martin Pohlack, Adam Lackorzynski, Lars Reuther and all the other member of the OS group at
the Dresden University of Technology. Last but not least, this work is based upon the excellent
work done by the developers of the Linux USB stack and Mark McClelland’s OVCam driver.

6

2 Background

2.1 USB

The USB was designed to bring more connectivity to the PC architecture. Ease-of-use is an-
other important feature. Devices can be attached and detached at runtime (hot-plugging). The
development of USB devices and the according device drivers is supported by published speci-
fications [CIMN98, CHPI

�

00].

2.1.1 User Benefits

The introduction of USB brings a lot of benefits for the user. All the confusion caused by a
variety of different cables for external devices like keyboard, mouse, joystick, printer, camera
etc. will be avoided by one type of connector and one type of cable. Up to 127 devices (including
hubs) can be attached to a USB, and most PCs are equipped with at least two buses. Hubs can
be used to increase the number of physical attachment points.

Data can be transferred to different devices at the same time with a maximum bandwidth of
12 Mbit/s (USB 1.1) and 480 Mbit/s (USB 2.0). The revision 2.0 is fully downward compatible
to revision 1.1. Since most motherboards are already equipped with USB controllers, the user
has no need to install adapter cards into his computer. There are no technical oddities to deal
with. No restart is needed to configure a newly attached device. Since one goal of the USB
developers was to integrate communication devices, real time capabilities were added.

Up to 500 mA at 5 V will be provided by the bus. Small devices like web-cam, smart card
reader and hub need no own power supply and are referred to as “host powered”, keyboard and
mouse anyway. Last but not least, a power management function at bus level builds the base for
a less power consuming computer periphery. The following list summarizes the most important
features from the user’s point of view:

� ease-to-use

� port expansion

� plug & play, hot-plugging

� protocol flexibility: isochronous and asynchronous data transfer

� “host powered” devices & power management

USB devices are available for nearly all areas of application. An overview presents Figure 2.1.
Depending on the requirements of the application, an appropriate transfer speed can be chosen

7

2 Background

by the device developers. USB 1.1 conforming devices are restricted to the applications that are
framed by the gray shaded box.

Figure 2.1: Application space taxonomy [CIMN98]

2.1.2 Developer Aspects

The USB specifications [CIMN98, CHPI
�

00] describe the bus attributes, communication pro-
tocol, types of transactions, bus management, and the programming interface required to design
and build systems and peripherals that are compliant with this standard. The goal is to enable
devices from different vendors to co-operate in an open architecture. This concept is accepted
by the market and makes the architecture attractive for developers.

The specified protocol allows arbitrary data rates and transfer types. Flow control and error
handling are included at minimal overhead. Failures caused by malfunctioning devices and
cables, inappropriate user handling or transmission failures will not affect the system stability.
This leads to a robust system. The legacy interrupt sharing problem of the PC architecture is
extenuated by reducing the number of needed interrupts to one per bus. At last, the availability
of inexpensive USB interface chips attracts the developers to integrate them in their devices.
The following USB features are especially interesting for hardware developers:

8

2 Background

� industry standard

� adaptive protocol

� robustness

� few system resources needed

� cheap hardware components

2.1.3 Architecture

After the introduction of common USB features this section enumerates all physical components
that are interacting on a USB, and how they are connected.

Topology

In contrast to its name, the USB physically features a cascaded star structure (tiered-star) with
the host as root (see Figure 2.2). From the user’s point of view, devices are stackable in one
serial cable. This gives the impression of a bus and makes it, for example, possible to attach a
mouse to a keyboard that is directly connected to the computer.

Figure 2.2: USB Topology [CIMN98]

Host

Every USB is controlled by exactly one host. The USB interface to the host computer system
is referred to as the Host Controller (HC). The HC may be implemented in a combination of

9

2 Background

hardware, firmware and software. There are only few different host controller implementations
available on the market today. The most common are:

� UHCI (Universal Host Controller Interface) (Intel) [Int96]

� OHCI (Open Host Controller Interface)
(Compaq, Microsoft and National Semiconductor) [CMS99]

� EHCI (Enhanced Host Controller Interface) (Intel) [Int02]

Controllers conforming to the UHCI and OHCI specifications are USB 1.1 compliant. Both
controller types offer different trade-offs regarding the complexity of hardware and software.
The UHCI specification has been designed to reduce hardware complexity by requiring the host
controller driver to supply a complete transfer schedule. OHCI type controllers are much more
independent by providing a more abstract interface and by doing a lot of work transparently.
High-speed transfers coming with USB 2.0 can only be handled by EHCI controllers.

Several PCI (Peripheral Component Interconnect) cards are available to upgrade computers
with USB functionality. These host controllers are mostly implemented with OHCI, while the
chip-sets are usually implemented with UHCI. Intel as developer of the UHCI and EHCI stan-
dard equips its chip-sets with host controllers of this kind.

To provide one or more attachment point, every host controller incorporates a so-called virtual
root hub.

Hubs

To obtain additional attachment points, external hubs will be needed. Although hubs are con-
nected to the bus in the same way as any other devices, they are part of the USB infrastructure
(see Figure 2.2). After hubs are configured by the host, they work as a repeater, multiplexer
(transfer to host) and demultiplexer (transfer to device). Hubs are often integrated in other
devices (monitor, keyboard).

Devices and hubs communicate with each other via peer-to-peer connections. Due to signal
propagation delays, the topology is restricted to five hub levels and a cable length of five meters.
Hubs have to protect the USB from invalid data transfers emitted by malfunctioning devices.
Attaching and detaching of devices is first indicated by hubs, which propagate these events to
the host for further handling.

USB 1.1 compliant hubs act as switches and forward all data without conversion (no store-
and-forward). Transfers, coming from the host, pass through the hub only in direction of the
addressee. Thus, slow speed devices will be protected from full/high-speed traffic. Hubs imple-
menting the 2.0 specification contain additional buffers and convert traffic of different data rates
if needed.

Devices

All USB specification compliant devices offer a self-description including vendor ID, device
ID, version number, class ID, subclass, protocol etc. (see Section 2.1.5). With this information
the host controller driver (HCD) is able to select a proper device driver. A unique address is

10

2 Background

assigned to every device by the HCD. This number is needed to address a specific device and
used by hubs to route the traffic. A device implementing more than one logical function is
denoted as a composite device. Devices incorporating a hub are called compound devices.

2.1.4 Protocol

While devices physically connect to the USB in a tiered-star topology, the host communicates
with each logical device as if it were directly connected to the root port. It is the host controller’s
responsibility to partition USB time into 1 ms (USB 2.0: 0.125 ms) quantities called frames,
regardless of the other bus activity or lack thereof. Within a frame data packets addressing
different devices can be placed. The host sends a token (request) with the address of the desired
device on the bus and awaits an immediately reply resp. transfers data to the device.

The host controls all attached devices and initiates all transmissions. The devices are not al-
lowed to communicate directly with each other. Data and control transfers occur only between
host and a selected device. Hence, the scheduling of all bus activities is exclusively managed
by the host. This simplifies the enforcement of real-time properties and avoids competing ac-
cess. Data collisions are implicitly avoided and the communication is simplified. This leads to
simplified device hardware as well. On the other side, the host has to handle nearly all kinds of
errors (CRC, timeout) etc. itself.

To detect configuration changes the host controller periodically polls the state of all attached
devices. The CPU (Central Processing Unit) is completely disencumbered and only notified by
interrupt if something happened what requires handling by the HCD.

Figure 2.3: Communication Flow [CIMN98]

Pipes & Endpoints

From the view of the USB interfaces, all communication between a device and the host con-
troller is performed by using so-called pipes (see Figure 2.3). These pipes are not to be confused

11

2 Background

with UNIX pipes. A USB pipe can be considered as an association between an endpoint at a
device and the software on the host (abstract peer-to-peer connection). Devices mostly provide
more than one endpoint, depending on their configuration. Endpoint zero, also known as default
control pipe, is used to determine device identification and configuration requirements, and to
configure the device. The default control pipe is mandatory for every device and must always
be available once a device is powered and has received a bus reset. A pipe basically consists of
the following information:

� device address

� endpoint number

� direction (IN: to host, OUT: to device)

� speed (slow, full, high)

� transfer type

� status

Except for some predefined control transfers (standard device requests), data submitted via pipes
appears as unstructured data stream at USB protocol level.

Transfer Types

The communication between a driver and the according device is restricted to the following four
basic types of data transfer:

1. Control Transfer

� mandatory, because it is needed for identification and configuration of devices at
attach time

� can be used for other device-specific purposes, including control of other pipes on
the device

� max. 10% of bus bandwidth reserved

� lossless data delivery by protocol

12

2 Background

2. Interrupt Transfer

� notification of device state changes
� guaranteed maximum service period (poll interval): 1-255 ms
� used for signals, characters or coordinates with human-perceptible echo or feedback

response characteristics

3. Isochronous Transfer

� occupy a prenegotiated amount of bus bandwidth with a prenegotiated delivery la-
tency (streaming real time transfers)

� no error detection and handling (retrying) by protocol
� together with interrupt transfer max. 90% of bus bandwidth can be reserved
� requests to establish pipes with unsatisfiable requirements will be rejected

4. Bulk Transfer

� consumes remaining bandwidth
� generated or consumed in relatively large and burst-like quantities
� wide dynamic latitude in transmission constraints

To provide a guaranteed delivery mechanism, interrupt, control, and bulk transfers are retried
if they do not complete successfully. Slow speed devices are limited to small amounts of data
payload and only support control and interrupt transfers.

USB supports no transmission retries for isochronous transfers. In other words, devices can
perform isochronous transfers in an easy send-and-forget manner. It has to be pointed out that
only interrupt and isochronous transfers are suitable to meet real-time requirements.

2.1.5 Descriptors

USB devices report their attributes using descriptors. The descriptor hierarchy includes devices,
configurations, interfaces and endpoints (see Figure 2.4).

Device Descriptor

A device descriptor contains general information about a USB device. It includes information
that applies globally to the device and all of the device’s configurations. A USB device has only
one device descriptor.

13

2 Background

Figure 2.4: Descriptor Hierarchy [Kel01]

Configuration Descriptor

The configuration descriptor specifies a collection of interfaces provided by the configuration.
Each interface may operate independently. For example, an ISDN device might be configured
with two interfaces, each providing 64 KBit/s bi-directional channels that have separate data
sources or sinks on the host. Another configuration might present the ISDN device as a single
interface, binding the two channels into one 128 KBit/s bi-directional channel.

Interface Descriptor

USB interfaces represent the logical interfaces to device drivers. The host operating system tries
to find an appropriate driver for each interface. It is possible that devices using configurations
with more than one interface may be served by more than one driver.

An interface can consist of up to 15 endpoints and may include alternate settings that allow
the endpoints and/or their characteristics to be varied after the device has been configured.
For example a multifunctional device like a video camera with an internal microphone could
have three alternate settings to change the bandwidth allocation on the bus: camera activated,
microphone activated and both activated.

Endpoint Descriptor

An endpoint descriptor contains information required by the host to determine the bandwidth
requirements of each endpoint. An endpoint represents a logical data source or sink of a USB
device. The endpoint zero is used for all control transfers and there is never a descriptor for this
endpoint. The USB specification uses the terms “pipe” and “endpoint” interchangeably.

14

2 Background

String Descriptor

Where appropriate, descriptors contain references to optional string descriptors that provide
displayable information about a descriptor in human-readable form, sometimes multilingual.

2.1.6 Software Layer

Regarding the communication model, the host and the device are divided into three distinct
layers depicted as rows in Figure 2.5.

Figure 2.5: Interlayer Communications Model [CIMN98]

Vertical arrows indicate the actual communication on the host. The corresponding interfaces
on the device are implementation-specific. All communications between the host and device
ultimately occur on the physical USB wire. However, there are logical host-device interfaces
between each horizontal layer. These communications, between client software resident on the
host and the function provided by the device, are typified by a contract based on the needs of
the application currently using the device and the capabilities provided by the device. All layers
of the host software will be implemented by according drivers:

Host Controller Driver (HCD)

The HCD acts as USB bus interface and was introduced to more easily map the various host con-
troller implementations (see Section 2.1.3) into the USB system, i.e. provides an abstraction of
the host controller hardware. The interface between HCD and USB driver is never directly avail-
able to the client (device driver). Therefore, a client interacts with its device without knowing
to which Host Controller the device is connected. Overall, the host layers provide the following
capabilities [CIMN98]:

� detection of the attachment and removal of USB devices

15

2 Background

� management of the USB standard control flow between host and devices

� management of the data flow between host and devices

� gathering of status and activity statistics

� controlling of the electrical interface between the Host Controller and USB devices, in-
cluding the provision of a limited amount of power

USB Driver (USBD)

The USB system software is implemented by the USBD, which provides the basic host interface
for clients (device drivers) to USB devices. This includes data transfer mechanisms in the form
of I/O Request Packets (IRPs1), which consist of a request to transport data across a specific
pipe. In addition, the USBD is responsible for presenting an abstraction of a USB device that
can be manipulated for configuration and state management. As part of this abstraction, the
USBD owns the default control pipe (see Section 2.1.4) through which all USB devices are
accessed for the purposes of standard USB control.

Client Driver

The client driver layer describes all the software entities (clients) that are responsible for in-
teracting with specific USB devices. One single client (driver) may even control different in-
terfaces of several devices. Clients are only allowed to interact with the according peripheral
hardware. The USB standard places USB system software between the client and its device;
that is, a client cannot directly access the device’s hardware.

A class code is assigned to a group of related devices or interfaces with similar attributes,
requirements or services that has been characterized as a part of a USB Class Specification
[SI97]. A class of devices may be further subdivided into subclasses and within a class or
subclass a protocol code may define how the host software communicates with the device.

A complete class specification allows manufacturers to create implementations that may be
managed by an adaptive device driver. These so-called class drivers are intended to be devel-
oped by operating system and third party software vendors as well as manufacturers supporting
multiple products.

Until now the following device classes have been specified (excerpt): audio, smart card, secu-
rity, communication, firmware, imaging, IrDA, HID (Human Interface Device, input devices),
mass storage, monitor and printer. In spite of the availability of class drivers, in reality most
of the USB devices are designed to be used with its own drivers, which are often exclusively
available for MS Windows.

2.1.7 Resource Management

Whenever a pipe is to be established by the USBD for a given endpoint, the USB system must
determine if it can support the pipe. The USB System makes this determination based on the

1An IRP is identifiable request by a software client to move data between itself (on the host) and an endpoint of a
device in an appropriate direction.

16

2 Background

requirements stated in the endpoint descriptor. There are two stages to check for available
bandwidth. First the maximum execution time for a transaction is calculated from:

� number of data bytes to be transmitted

� transfer type

� depth in the topology (signal propagation delay)

Then, the frame schedule is consulted to determine if the indicated transaction will fit. The al-
location of the guaranteed bandwidth for isochronous and interrupt pipes, and the calculation of
whether a particular control or bulk transaction will fit into a given frame, can be determined by
a software heuristic in the USB System. This calculation must also include any implementation-
specific delays, such as preparation or recovery time required by the host controller itself.

2.2 Real-time Systems

Real-time means the ability of a computer system to react to any event under all circumstances
within a specified period. Such events may be triggered by user inputs or devices, which support
isochronous data transfers. Because there are limited resources in any system real-time activities
have to be scheduled in advance including reservation of all necessary resources.

“Hard” real-time systems are designed to handle the “worst case”. Missing the deadline could
lead to an immediate damage as in the case of an engine control. To satisfy the viewer of a video
application, the stream of frames has to be shown with a constant frame rate. Rare occurrences
of dropped frames cannot be considered as dangerous. Such “soft” real-time systems provide
often a much better utilization of the system resources.

Event or Time driven

Event driven systems will be primarily influenced by asynchronous events triggered from the
outside (hardware interrupts). In case of such an event, resources will be allocated according to
the thread priority.

The opposite approach to event driven systems is the complete planning of all system pro-
cesses and consideration of process synchronization, data flow and failure model. Schedules for
all critical resources will be set up.

Event-based scheduling is more flexible than time driven scheduling because it can adapt the
schedule dynamically to react to changes in the execution environment. For example, a real-
time application has not consumed its guaranteed worst-case CPU quantum. The remaining
CPU time can be donated to other applications.

Events, Latency and Jitter

Real-time operating systems have to deal with events caused by internal time triggered and
external device driven interrupts. In both cases, the delay between occurrence of event and start

17

2 Background

of the interrupt handling routine is called latency or reaction time. In real systems with a certain
complexity the latency will not show a deterministic behavior. Due other system activities
latency varies in a statistical manner denoted as jitter.

2.3 DROPS

The operating system group at the Dresden University of Technology focuses its research and
development on the Dresden Real-Time Operating System (DROPS). According to the termi-
nology of real-time systems introduced in Section 2.2, DROPS can be placed between these two
extreme approaches. It tries to unite predictability, dynamic and adaptability. It features a multi
server architecture and supports application with QoS (Quality of Service) requirements. An
overview of the DROPS architecture is shown by Figure 2.6.

Figure 2.6: DROPS Architecture [BBH
�

98]

The DROPS project is based on an in-house implementation (Fiasco) of the second genera-
tion micro-kernel L4 [Lie96]. According to the micro-kernel philosophy, all classical operating
system components like device drivers and resource managers are implemented as server pro-
cesses at user level. The micro-kernel only provides thread control, address space protection
and IPC (Inter Process Communication) mechanisms.

One of the project goals is to support applications that are used in multimedia systems. Mul-
timedia applications can accept violations of QoS contracts, as long as they occur rarely. Multi-
media systems are usually run on standard PC hardware, which features a limited suitability for

18

2 Background

hard real-time applications. Not consequently considering the “worst case” at all costs leads to
a much better utilization of the system resources while assuring the specific real-time require-
ments of multimedia applications at the same time.

Running Linux Applications

Another goal of DROPS is to run real-time and non real-time applications in parallel as demon-
strated in [BBH

�

98]. According to the DROPS architecture most device drivers should provide
a L4Linux stub, the USB stack port as well. L4Linux [Hoh96] is a server based Linux port
running on an L4 micro-kernel which makes a large amount of non real-time applications avail-
able to DROPS. Only minimal changes on architecture dependent parts and device drivers of
the Linux kernel were necessary. The ABI (Application Binary Interface) of this server offers
binary compatibility to the Linux implementation for x86-CPUs.

2.4 DROPS Components

This chapter briefly introduces DROPS components that are essentially needed for the imple-
mentation of the port.

2.4.1 Common L4 Environment (L4Env)

L4Env consists of libraries providing the basic operating systems primitives like locks and
semaphores for application programmers. Additionally it defines basic abstractions for thread
control and memory management with according runtime support. L4Env applications are not
L4-API dependent anymore.

2.4.2 Device Driver Environment (DDE)

One of the main tasks of an operating system is to provide an abstraction of devices. Obtaining
adequate device drivers is problematic for most research based operating systems. Because of
the complexity an in-house development of device drivers is often very time consuming and
expensive, respectively. A promising approach is to port device drivers from other operating
systems to DROPS with minimal adaptations to keep the maintenance effort as low as possible.
The proof of this concept is shown in [Hel01], which introduces the Device Driver Environ-
ment (DDE). It acts as a wrapper around Linux device drivers (see Figure 2.7) emulating the
Linux kernel environment. DDE provides all needed kernel calls for handling of processes, wait
queues, timer, interrupts, memory and PCI bus.

Of course, the aim of DDE is not to implement the whole Linux kernel functionality. There-
fore extensions of DDE will be done only on demand. This was necessary in the context of this
work (see Chapter 5).

19

2 Background

Figure 2.7: DDE Wrapper Layer

2.4.3 DROPS Streaming Interface (DSI)

DSI [LHR01] offers a framework for real-time interprocess communication. It defines a timed
and packed-oriented zero-copy transport protocol at user-level between real-time components
using shared memory. For actual data transfer, DSI uses a producer-consumer scheme on a
ring buffer containing packet descriptors. In this work DSI will be used to establish a real-time
communication between the web-cam driver and a video viewer.

2.4.4 Desktop Operating Environment (DOpE)

With DOpE [Fen02] an extensible windowed graphical user interface is available for the DROPS
operating system. It is a foundation for capturing those application fields, where comfortable
graphical user interfaces in connection with real-time demands are needed. Control widgets
and frames displaying streaming data can be created easily. DOpE provides an easy to use API
(Application Programming Interface) and might be the future platform for all graphic oriented
DROPS applications. DOpE fits the needs of the required web-cam application and thus will be
used.

2.5 Existing USB Stacks

Nearly all operating systems offer USB support today. As co-developer of the USB standard,
Microsoft released the first full functioning USB stack within MS Windows. Presently most
devices are shipped with MS Windows drivers.

Apple Computers even released its iMacs (Mac OS) without legacy peripheral connectors
like serial and parallel ports. Hence, the USB support by this system software is well developed.
The major drawback for further examinations of both mentioned operating systems is the lack
of available source codes.

There are many other commercial USB stacks offered for instance by Intoto, MicroDigital,
Phoenix Technologies, Simtec and SoftConnex, which partially are designed for use in embed-
ded devices and are closed source too.

Due to the complexity of the development of a complete USB stack from scratch the decision
was made to port an existing USB stack to DROPS. The widespread and freely distributable op-
erating systems FreeBSD, NetBSD and Linux come with source codes. FreeBSD and NetBSD

20

2 Background

use the same USB code base. The most USB device drivers are currently available for Linux.
After a fundamental rework pushed by Linus Torvalds, the USB stack of Linux has matured
over the last years and is now in stable state. Further maintenance can be expected.

The operating system group of the Dresden University of Technology has gathered a lot of
experiences from porting parts from Linux into DROPS. Since a USB stub should be provided
for L4Linux, the Linux USB stack is chosen as porting base. The Device Driver Environment
(DDE) provides a promising starting point.

Investigations for other related works brought no utilizable results, at least not for porting the
Linux USB stack.

21

3 Porting Base

The aim of this work is to port the Linux USB stack under consideration of real-time properties.
This chapter gives a detailed insight into the Linux USB stack. The reader is expected to be
familiar with the Linux operating system in general.

3.1 The Linux USB stack

As reasoned in Section 2.5 the Linux USB stack [LUP] was chosen as porting base. To keep in
synchronization with the development of L4Linux, the current kernel version 2.4.20 will be the
subject of all following examinations.

Within Linux exists a subsystem called the USB core with a specific API to support USB
devices and host controllers. Its architecture follows closely the guidelines of the USB com-
munications model (see Figure 2.5) and is shown in Figure 3.1. Analogous to Figure 2.5, USB
device drivers are clients of the USB core resp. USB system. Host Controller Drivers (HCD)
are assigned to physical bus interfaces.

Figure 3.1: Linux USB Stack Architecture [Fli00]

The USB core abstracts hardware specific and USB specific issues. It provides an API with
data structures, macros and functions and contains routines common to all USB device drivers
and host controller drivers. These functions can be grouped into an upper and a lower API layer.
The upper one, the device driver API [Fli00], is well documented while this is not the case for
host controller interface. There is no official specification for the interface between the HCD
and the USB core, except for the source code.

22

3 Porting Base

3.1.1 Device Driver API

Client drivers access the USB-API using a standard Linux header file (usb.h). The Linux USB
subsystem uses only one data transfer structure called USB Request Block (URB), which is
equivalent to the entity IRPs (I/O Request Packet) from the USB specification. This structure
contains all parameters to setup any USB transfer type. The USB core asynchronously processes
each request and signals the completion per callback function, if desired.

The USB-API features a quite lean structure. All functions can be grouped into the following
four categories:

1. USB Device Driver Framework

� device driver registration an deregistration
� interface claiming

2. Standard Requests

� device configuration

3. USB Transfers

� URB handling (allocate, free, submit, unlink)
� URB initialization macros

4. Compatibility (Convenience) Wrappers

� control (configuration) and bulk transfers
� caller is blocked until the request is finished (synchronous)

In the Linux environment there also exists the possibility to write user mode device drivers,
even for the USB. This simplifies and speeds up the development. Drivers of this kind are
represented as files in a so-called ’USB device file system’ and can be controlled by common
file operations. Porting Linux USB user mode drivers towards DROPS is currently not possible.
A file system abstraction layer has to be available in DROPS to let user mode drivers access the
devices. Not supporting user mode drivers does not lead to a significant disadvantage, because
only few such drivers currently exist. In contrast to that, there are more than 50 kernel module
drivers available.

3.1.2 USB Request Block (URB)

To make the API lean the URB structure will be used for every transfer type. Figure 3.2 provides
an overview about the huge amount of parameters that are only be valid for certain transfer types.
A detailed description provides [Fli00].

3.1.3 Architecture

This section describes all components that are necessary to build a running USB subsystem.

23

3 Porting Base

struct urb {
spinlock_t lock; // lock for the URB
void *hcpriv; // private data for host controller
struct list_head urb_list; // list pointer to all active urbs
struct urb *next; // pointer to next URB
struct usb_device *dev; // pointer to associated USB device
unsigned int pipe; // pipe information
int status; // returned status
unsigned int transfer_flags; // USB_DISABLE_SPD | USB_ISO_ASAP ...
void *transfer_buffer; // associated data buffer
int transfer_buffer_length; // data buffer length
int actual_length; // actual data buffer length
int bandwidth; // bandwidth for request (int,iso)
unsigned char *setup_packet; // setup packet (ctl)
//
int start_frame; // start frame (iso,irq)
int number_of_packets; // number of packets in request (iso)
int interval; // polling interval (irq)
int error_count; // number of errors in transfer (iso)
int timeout; // timeout (in jiffies)
//
void *context; // context for completion routine
usb_complete_t complete; // pointer to completion routine
//
iso_packet_descriptor_t iso_frame_desc[0];

};

Figure 3.2: URB Structure

USB Core

The USB core module provides the implementation of the USB-API building on different host
controller driver implementations. The framework manages the attached devices for every bus,
registers device drivers and parses descriptors. The USB core looks for an appropriate driver
for each newly attached device. Bandwidth accounting is to be handled by the USB core, too.

While the USB core defines the resource managing policy, the actual implementation of
mechanisms to deal with data transfers is left to the respective HCD. For example, URB re-
lated calls will be redirected to an according function implemented by the HCD.

Finally the USB core offers hot-plugging support. Every time a device is attached an applica-
tion (hot-plug daemon) specified in /proc/sys/kernel/hotplug loads drivers modules and config-
ures the device. The detachment of devices will be reported to the hot-plug daemon as well. If
the USB file system is available, user-space drivers (a common Linux application) can directly
read all the device descriptors under /proc/bus/usb. Since DROPS (resp. DDE) currently does
not support no /proc file system, the Linux USB file system will not be ported.

24

3 Porting Base

Host Controller Driver

The host controller driver fills the gap between the USB core and host controller, which can only
be accessed via memory mapped PCI registers. As lowest software layer, the HCD registers an
interrupt handler (ISR1), called top half in Linux terminology. Since the frame intervals last
1 ms (full speed), up to 1000 hardware interrupts per second may occur. USB 2.0 introduces
high-speed micro frames that last for 125 µs and may cause up to 8000 hardware interrupts
per second. Since USB 2.0 simply features an eight time higher frame rate, in the rest of this
document all considerations of frames can easily adapted to micro frames.

At the end of the ISR all drivers owning recently completed URBs will optionally be notified
via completion calls. If any error occurs during URB submission, the completion handler will
be called, too. Bottom half handlers can, if needed, be implemented in the device driver.

To perform its tasks, the HCD need some memory. Slab caches2 will be used to hold a private
version of the URB structure, extended by internal scheduling parameters. The communication
with the UHCI host controller will be performed using so-called transfer descriptors, which
will be stored in PCI pools to ensure DMA (Direct Memory Access) capability. These transfer
descriptors will be processed by the HC asynchronously to the processor. As long as the transfer
schedule is empty the HCD sends an idle host controller to suspended mode.

Linux provides two implementations for UHCI host controllers, one for OHCI and EHCI,
and for embedded host controllers. One of the UHCI variants is a replacement, but does not
implement all “features” of the older one that is needed to make some old drivers work. Thus,
both UHCI implementations are currently supplied for compatibility reasons.

Hub Driver

The detection of hub events (attaching and detaching of devices) is accomplished by a hub
daemon thread, which uses the services of USB core. In case of any hub event the USB core
will be notified.

Every host controller contains an integrated virtual root hub, which is controlled with help of
two PCI registers. To be able to use the hub driver even for the virtual root hub, the HCD maps
the hub driver USB requests (control and interrupt transfers) to the corresponding virtual root
hub registers. For handling the virtual root hub actually no real USB transfers are performed.
The state of external hubs is polled periodically by an interrupt transfer.

3.1.4 Real-time Behavior

The real-time properties of the USB stack are preconditioned for real-time device drivers and
have to be achieved at all cost. In this section, the Linux USB stack implementation will be
reviewed. All factors influencing the real-time behavior in any way will be identified and re-
quirements concerning the environment of the ported stack will be posted. It has to be reminded
that only isochronous and interrupt transfers are suitable for real-time applications.

1Interrupt Service Routine
2Slab caches and PCI pools can be considered as caches for constant sized memory objects like structures, buffers

etc.

25

3 Porting Base

Hardware

Before real-time applications can be successfully deployed, real-time capabilities have to be
ensured at hardware level. Developers should be aware of so-called intelligent devices, which
may relieve the processor from doing some work but show unpredictable behavior. For instance,
mass storage devices may often implement hardware buffer for data caching.

There are many factors affecting the real-time performance that are out of interest in this
work. Regarding the port of Linux USB stack, the only peripheral hardware device used is the
host controller, typically integrated in the motherboard chip-set. USB host controllers are not
equipped with hidden buffers. Devices producing isochronous data streams will surely imple-
ment a well-defined buffer based upon the sampling characteristics, which can be considered as
unproblematic.

Interrupt Handling

The host controller provides interrupt capability based on two general groups of interrupt sources,
those resulting from execution of transactions in the schedule, and those resulting from a Host
Controller operation error. Additionally, individual transfers can be marked to generate an in-
terrupt on completion (IOC). When a successfully processed transfer descriptor is encountered
with the IOC bit set to 1, the IOC bit in the HC status register is set to 1 at the end of the frame.
If interrupts are enabled, a hardware interrupt is signaled to the system. HC operation errors
will signaled per interrupt, too. To catch these interrupts, the HCD registers an interrupt handler
(ISR, top half).

In an interrupt context only the most urgent tasks will be performed: interrupt acknowl-
edgement, schedule update and completion handling. The schedule update just removes the
descriptors of the transferred data. The scheduling itself will be done in thread context (API
call). If desired, an URB completion notification has to be sent to the concerning device driver.
The control flow is transferred to the device driver. This mechanism causes problems that will
be discussed later in this work.

Additionally, to detect hub status changes, the virtual root hub registers are polled periodically
by a timer interrupt. The hub daemon thread that needs to react to port status changes in non-
time-critical manner will be activated by this timer interrupt. No other dedicated threads are
used by the Linux USB subsystem.

Thread Control

Threads commonly influence each other via synchronization mechanisms like semaphores and
locks. Serious problems may occur when a thread is blocked until its deadline is exceeded.
In the case of the Linux USB stack, there is a competition between interrupt serving and API
serving threads to access URB and descriptor lists. A solution for this problem will be presented
in Section 4.2.6.

Threads using blocking API calls (see Section 3.1.1) will be added to wait queues until the
according transfer is finished. When a process is put to sleep, the USB core is still alive and can
be called by another process.

The only API call concerning running real-time transfers, submit_urb(), is complete asyn-
chronous. All it does is to schedule the given URB.

26

3 Porting Base

There are several wait_ms() calls placed in the source code, which cause delays up to
500 ms. These calls have no negative effects to the real-time behavior because they are only
used for configuration handling that always will be performed in process (client) context. In
other cases it is necessary to give devices some time to react to configuration changes (control
transfer).

It is assured that the source code to be ported do not try to forbid system interrupts (cli(),
sti()) as it can be assumed for all used DROPS environment resources.

Bus Scheduling - Bandwidth Reservation

On the USB, 1 ms frame times are used to transfer data. The host controller begins each frame by
generating a start of frame (SOF) token. In UHCI, if there is isochronous data to be transferred,
the HCD schedules this data first. The HCD ensures that there is enough time to complete all
scheduled isochronous and interrupt (<90%) transfers with some time remaining for control
(<10%) and bulk transfers as shown in Figure 3.3.

Figure 3.3: UHCI Transfer Type Schedule Order [Int96]

The host controller supports real-time data delivery by generating a SOF packet every 1 ms.
If necessary, minor adjustments can be made to the frame time period to maintain real-time
synchronization throughout a USB system.

The UHCI data structures include a frame list (FL), queue heads (QH), and queued transfer
descriptors (TD). These data structures are used by HCD to construct a schedule in host memory
for the host controller to execute (see Figure 3.4). The host controller is programmed with the
starting address of the FL, then released to execute the schedule. During a frame period no other
synchronization with the HCD is required. Transfer descriptors point to data buffers and include
information about the addressing, data, and general behavior characteristics of the transaction.
The flow through the schedule is based on link pointers in the FL, TDs, and QHs. Link pointers
are the fundamental component used to connect all the scheduled data objects together. The host
controller uses the link pointer to determine where to find the next TD to execute. Addresses
in the link pointer fields must be a physical address and not a virtual address. At the start of a
frame, the host controller repeatedly follows link pointers, beginning at the current FL index,
pausing its traversal to perform transactions described in TDs, and stopping when the frame
expires (or a terminate bit is set on a horizontal flow execution).

27

3 Porting Base

Figure 3.4: Example Schedule [Int96]

All traffic on a bus is under control of the according host controller. Depending on the cur-
rent bus topology and utilization, the HC decides to schedule further real-time (isochronous)
transfers or not (admission control). Once a transfer is permitted the compliance with the
prenegotiated QoS parameters is guaranteed. For isochronous pipes, the bandwidth required
is typically based upon the sampling characteristics of the associated function. The maximal
acceptable latency is determined by the buffer size available at each endpoint. All isochronous
pipes transfer exactly one data packet each frame. The USB limits the maximum data payload
to 1023 bytes for each isochronous pipe. One pipe with 1023 bytes payload and 1000 frames
per second consumes 69% of the full speed bus bandwidth, not considering the overhead. If an
URB contains a transfer buffer that is larger then the maximum payload size of the destination
pipe endpoint the HCD will split the buffer into small packets that fit in the frames. This avoids
overload conditions at device side. Overload at host controller side is automatically avoided by
USB specification. Devices send only if they were told to do so.

The USB bandwidth and bus accesses are granted based on a calculation of worst case bus
transmission times (see Section 2.1.7) and required latencies. The bus time contribution is
calculated as a constant although it is actually data-dependent3 . Therefore, bus time will remain

3The actual bus time taken for a given transaction will almost always be less than that calculated because bit stuffing
overhead is data-dependent. Worst case bit stuffing is calculated as 1.1667 (7/6) times the raw time. Bit stuffing
is employed by the transmitting device in order to ensure adequate signal transitions. A zero is inserted after
every six consecutive ones in the data stream. This gives the receiver logic a data transition at least once every
seven bit times to guarantee the clock synchronization. For more details concerning the electrical and signaling
details refer [CIMN98].

28

3 Porting Base

in each frame time versus what the frame transmission time was calculated to be. In order to
support the most efficient use of the bus bandwidth, control and bulk transfers are candidates to
be transferred over the bus as bus time becomes available. Both transfer types are not suitable
for real-time applications. This feature just increases the throughput and is called bus bandwidth
reclamation.

Error Handling

A timeout in jiffies4 can be specified to automatically remove an URB from the host controller
schedule. A timeout error will be notified via completion call, so an application (driver) can
react in a proper way.

Bus errors caused by malfunctioning hardware may lead to unpredictable delay for recovery.
In these cases, no warranty of real-time properties can be made any longer.

Other Resources

Sophisticated features like paged memory must be avoided. The L4 memory protection may
cause page faults in unsuitable moments as well. These problems can be avoided by statically
mapping (pinning) the memory pages before they will be accessed in real-time data transfers.
Slab caches and PCI pools needed by the HCD have to be implemented this way as well.

As shown in [Sch02], the design of the PCI bus is variable enough to be utilized in real-
time environments. The advantages of the round-robin arbitration scheme used by current host
bridges are simplicity and low arbitration costs. However, it is too simple to provide adequate
features for using the PCI bus in real-time systems where overload can occur.

3.2 OVCam Driver

The OVCam driver [McC] was taken from Linux to act as demonstration device driver for the
ported Linux USB stack. Actually, the OVCam driver is a set of drivers for the OmniVision
OV5xx series of chips. These are USB-only video capture chips used in many web-cam devices
and some TV-capture devices. They support streaming and capture of color or monochrome
video. The OVCam driver supports most image widths and heights that are multiples of 64,
with a maximum resolution of 640x480. Additionally the driver offers a couple of module
parameters, for example compression (4,6,8:1) support and optional filters (mirror, deflicker
artificial light). The frame rate depends on the resolution and compression and can be up to 40
frames per second.

The next sections introduce the API and architecture of the OVCam driver followed by an
analysis of its real-time behavior.

3.2.1 Video for Linux (V4L) API

V4L is an API that allows control of capture devices (cards) on Linux machines. There are a
variety of capture cards, which can be web-cams, TV cards, radio cards, or devices used just

4Linux time unit, usually 10 ms.

29

3 Porting Base

to capture images from a camera. A device-specific driver controls a capture device and offers
a semi-standard interface to the system. Application developers can use V4L’s API without
knowing much about the actual device or its driver.

The V4L implementation (videodev) has no own threads. It just acts as a registrar for capture
device and provides a common API, which includes data structures and ioctl()5 parameters
as well. With help of these parameters a capture application can control multimedia devices,
especially query device capabilities, define capture windows, configure the device and control
capturing.

V4L comes with a precise documentation included in the Linux kernel distribution [LKS].
Meanwhile there is an overhauled API available, V4L two, which implements slight changes,
but is not supported by OVCam driver.

The OVCam driver API conforms to the V4L-API extended by special ioctl() calls.

3.2.2 Architecture

The OVCam driver is structured like a common Linux device driver. The top half handler
is collecting raw data packets until the whole frame of a video stream is received. Then the
bottom half thread will be released, which converts the raw data into standardized frames. This
includes processes like format conversion, decompression and filtering. Each pixel of a frame
may be touched several times. To avoid at least unnecessary copying the OVCam driver shares
a memory mapped V4L stream buffer with the capture application.

3.2.3 Real-Time Behavior

Once the shared buffer has been established the capture application submits a VIDIOCMCAP-
TURE ioctl to start the capture. When the VIDIOCMCAPTURE ioctl returns, the frame is not
captured yet; the driver just instructed the hardware to start the capture. The application has
to use the VIDIOCSYNC ioctl to wait until the capture of a frame is finished. VIDIOCSYNC
ioctl takes as argument the frame number to wait for. The frame post-processing will be done
in the process context of the capture application.

Since USB supports no transmission retries for isochronous transfers, special error handling
is needed. In the case of the OVCam driver, the incoming packet stream will be scanned for
synchronization patterns (start of frame). The length of a frame is predictable. In the case of
any error, incomplete frames will just be dropped and the start token of the next frame will be
awaited.

5input/output control

30

4 Concept

After the introduction of the Linux USB stack, the OVCam driver and components from the
DROPS environment, this chapter describes the port itself.

4.1 Design Goals

At first some general design goals for this work have to be defined:

� modularity

� real-time capability

� performance

� security

Modularity means to follow the DROPS philosophy to put every functionality in a separate
module. The user should be able to extend the system capabilities at runtime by loading the
desired modules. All developed modules have to integrate themselves as common DROPS
modules. Modularity in the broader sense is keeping the source code of the components to be
ported untouched as far as possible, in particular APIs. This allows easy synchronization with
the ongoing Linux development. To keep compatible with common Linux USB device drivers,
the USB-API will not be altered.

An important issue is to consider real-time requirements for all approaches that will be de-
veloped. Issues like performance and security, which are often contrary to each other, have
to be regarded. All required resources of the Linux USB stack will be provided by DROPS
components that can be considered as real-time capable.

4.2 Porting the Linux USB Stack

As result of Chapter 3 the port of the Linux USB stack towards the DROPS environment seems
to be feasible and saves a lot of development time. Of course, the port of drivers from a mono-
lithic kernel environment into a component based system like DROPS causes some problems
described in the following sections.

31

4 Concept

4.2.1 Modularization

Co-location of Core Components

USB 1.1 equipped systems contain mostly two host controllers of one type. Since USB 2.0, to
support high-speed data transfers, a system has to be equipped with an additional controller im-
plementing the EHCI. Slow and full speed transfers are handled by a companion host controller
(UHCI or OHCI). The approach to place every HCD into an extra module to provide at least the
same modularity as Linux kernel modules introduces the following problem:

Figure 4.1: Component Architecture

Examinations revealed a strong linkage between the HCD and the core, which is very difficult
to map to a client-server scheme with a lean interface. Every bus interrupt and device driver
interaction would cause a large amount of IPC, which results in a significant performance loss.
So, it is recommended to place (co-locate) the core and host controller drivers in the same
module (address space) like it is done in the Linux kernel (see Figure 4.1). Furthermore there
exists one hub driver that is always needed, so it is co-located, too. Finally, modularity can
still be achieved by controlling every bus through a separate USB core module. From here, this
module is called USB core or simply core.

Separate Device Drivers Modules

Since the separation of all USB device drivers is a design goal, to gain access to the API of the
USB core a library is provided.

4.2.2 Wrapper Layers

The basic architecture of the DROPS USB port consists of two wrapper layers (see Figure 4.2):
one wraps the USB core, and another one (USB library) has to be linked against the ported USB
device driver, e.g. L4Linux stub. For this reason the communication between the USB core and
the USB device drivers is always under control of the USB port.

32

4 Concept

Figure 4.2: Wrapper Layers and Control Flow

4.2.3 Control Flow

Normally, a USB device driver can be viewed as client and the core as server. Callback functions
defined in the USB-API break this simple client-server scheme. Sometimes the roles have to
be changed. Clients pass pointers to probe and disconnect functions, file operations (fops) and
URB completion handlers to the core. The core has to be able to call this functions which means
the clients have to act as servers, too. In short, it is necessary to emulate a pure function call
semantic as conventional in the origin of the ported components, the Linux kernel. It has to be
possible to transfer the control flow boundless between the USB core and the drivers. A solution
for this scenario is not yet available in DROPS and will be developed later in this section.

In Linux, core and device drivers are located within the same address space (kernel) and
interact via simple function calls. In an L4 environment, IPCs are the usual way to pass the
control flow to code in other modules. Suppose the core is implemented as a common server
with one thread waiting for requests. Due to the synchronous manner of IPC the client is blocked
until the server sends a reply. While a server is already handling a request it cannot accept
another one. Thus, a second client is blocked for an undefined time. Only one thread can
enter the core server at the same time, which is not satisfying. In order to handle synchronous
compatibility wrapper calls (see Section 3.1.1), the ported USB stack may not be blocked until
such calls are finished.

Multiple Worker Threads

Currently, a DROPS server can register only one interface serving thread at names. This is a
naming service to help other components find the available servers. As consequence, servers
in DROPS cannot handle multiples request at the same time. Therefore other ways have to
be found to allow multiple clients to enter the core simultaneously. Beside the assumption
that future L4 kernel APIs may offer IPC with auto-propagation, today the only way to handle
multiple IPC requests in parallel is the introduction of worker threads. Worker threads executes
exactly the same code but at each case in a different context, i. e. as proxy for a different client.

One approach to implement parallel server threads is to use a single interface thread that
delegates each request to a currently unused worker thread to be immediately ready to receive
another request. The worker thread will enter the core code in context of the request. Fortu-
nately, the flick stub generator1 produces reentrant code that can be executed by several worker

1Flick is an IDL (Interface Definition Language) compiler that creates client and server stubs for a given interface

33

4 Concept

threads at the same time (thread-safe). All requests from a certain client must be serialized.
After finishing its job a worker thread cannot directly reply to the client that is doing a close
wait for the interface thread’s reply. So, the reply is send back to the interface thread, which
has to redirect the reply back to the client. All in all, at least two additional IPCs are needed for
every client request.

Another option to solve the problem is to put a little more “intelligence” into the client (lib).
During the initialization of the USB library the client receives a number of dedicated worker
thread IDs from the server. When a client wants to call the core the library choose a free ded-
icated worker thread as addressee for the request. A drawback is creating many threads in
advance. On the other side, as an advantage, this approach costs no additional IPCs. Because
performance is an important issue, this approach exceeds the first one and is therefore imple-
mented.

Problems with Worker Threads

When the limit is reached more dedicated workers have to be reserved at the core server. This
event, of course, may affect the real-time properties in a negative manner and should be avoided
by serving a sufficient number of worker threads before any transaction starts.

A general proposition how many worker threads will be needed cannot be made. It depends
on the implementation of the particular device driver and its thread structure. The design of
the USB-API itself does not cause deep recursion. All USB-API calls cause at most one call-
back, considering further API calls by completion handlers. An example for one of the worst
case scenarios is: client driver registers at core, core calls probe callback, driver calls core for
configuration issues. In consequence, the number of dedicated worker threads a client has to
reserve is: two times (recursion depth 1) the number of parallel running and USB-API using
driver threads.

One problem with multiple worker threads is left to be discussed. On single processor sys-
tems, Linux kernel threads are not preemptible in kernel, except for disruptions caused by in-
terrupts. Linux can be compiled for SMP (Symmetric Multiprocessing) environments, too. To
avoid inconsistency caused by threads parallel accessing the same data, all critical structures
are protected by spin locks. To provide better SMP performance, current Linux device drivers
offers fine-grained locking mechanism, fortunately the Linux USB stack as well. Since the USB
stack is aware of multiple threads running in the Linux kernel, so no special treatment is needed
to make it multi-threading safe.

Callbacks

To accomplish callbacks the client library has to provide dedicated worker threads in the same
way as the core server does. The mechanism is completely transparent for the device drivers.
The worker threads of the client library will execute the callback functions as proxy for the USB
core.

The dependencies between the blocked worker threads in the scenario shown in Figure 4.3

definition.

34

4 Concept

Figure 4.3: Providing Conventional Call Semantic

form a conventional function call semantic. All involved worker threads cooperate within the
same request context without knowing of it.

4.2.4 Control Data Structures

The amount of control data structures and all other data that are transferred as arguments for
USB-API calls is relatively small. So the decision was made to build up copies of all needed
control data structures at driver and core side. Different types of data will be identified and
treated in a specific way.

USB entities

The usb_device structure is the root of all USB specific structures and will be used as argument
for all configuration calls. This structure completely describes the current state of a device
including all descriptors.

During registration a device driver passes the usb_driver structure to the core. This struc-
ture contains among other things references to callback functions.

Descriptor structures

Descriptor structures are only used for device configuration, which will never be performed dur-
ing data transfers. Thus performance need not be achieved at all cost. The descriptor structures
form a tree (see Section 2.1.5) as described in the USB specification. This tree will be created
by the core once a device is attached to the bus. To send the tree to the device driver, it has to
be serialized.

URBs

Most control data is exchanged via URBs (see Section 3.1.2). The number of URBs to pass per
second strongly depends on transfer speed and transfer buffer size. Especially devices control-
ling isochronous data transfers tend to produce up to 100 URBs per second. Bulk data transfers

35

4 Concept

mostly make use of more bandwidth than isochronous data transfers but use larger transfer
buffers, which need more time to fill. Hence, less completion calls are needed.

URBs are relatively small (currently 108 bytes). Most of their elements have to be inspected
by the wrapper layer anyway. Some elements of the URB structure are exclusively used at the
server or the client side, respectively. Generally, having copies of a structure at both sides makes
it possible to use these elements for other purposes such as storing context information.

URB structures are normally reused by the device drivers. They have to be completely build
up at the server side once only at URB allocation time. Every time the control flow passes the
wrapper layer, URB structures on the particular side have to be updated to preserve consistency.
This is sufficient because, once a driver has submitted an URB the exclusive control over the
URB is given to the core until the URB completion call.

Consistency

Device drivers are not allowed to alter shared USB structures autonomously. The driver has to
use the API calls instead. Unfortunately, the API allows explicitly the parsing of the descriptor
structures by the device driver.

Since there are copies of all structures at both sides, structures, which are used as an argument
for an API call have to be synchronized by the wrapper layer before a call is performed. The
same has to be done when the call returns. Depending on the implementation of the Linux USB
core, many optimizations can be applied. In the most cases only few structure elements have to
be updated. Most elements are only relevant in the particular context (client or server side).

Reference Mapping

The USB-API was designed to be used by components that share the same address space (Linux
kernel). Thus, handing over references to data structures and buffers is very common. In
DROPS each component has its own address space. Virtual addresses provided as argument
for USB-API calls are only valid in the according address space. The usage of replicated struc-
tures in different address spaces involves an approach to map references, what has to be done
by the wrapper layer. The following example illustrates how it works:

A device driver registers itself at core using the register_device() call. A device driver
structure will be created and sent back to the driver. Now two copies of the same structure exist.
Later, the client wants to submit a usb_control_msg() call and sends its device structure refer-
ence as an argument. The server side wrapper layer translates this address to the corresponding
core structure reference and passes it to the core. Nearly all USB-API calls (see Section 3.1.1)
uses either a reference to a driver, device or URB structure.

For API communication those references that are valid in the address space of the caller will
be used. The according mapping information will only be stored on the other side. The callee
has to find the address for the according structure in its address space. So, any reference can be
addressed in both directions.

Fast address mapping can be achieved using hash tables. The unique hash key consists of the
caller’s task id associated with the submitted reference (virtual address).

36

4 Concept

4.2.5 Transfer Buffers

At maximum load the USB bus provides a bandwidth of up to 15 resp. 480 Mbit/s. Thus, large
transfer buffers (TB) are needed, which demands the use of shared memory. In contrast to the
control data structures, TBs contain just unstructured byte streams not containing references or
anything that has to be interpreted by the USB core.

Of course, it is possible to share address space regions manually by sending flexpages 2.
A more promising approach is to use components of the L4 environment, which implements
the concept of dataspaces and region mappers [ALE

�

01]. Dataspaces are unstructured data
containers that can be attached to regions of an address space. TBs managed by a dataspaces
can easily mapped3. Instead of a reference to the TB in client’s virtual address space an URB
request now specifies a dataspace - offset pair.

Most of the inspected Linux device drivers reuse few TBs or parts of it for all URB transfers.
Generally it is not necessary to allocate new TBs for every transfer. This includes the registration
of statically mapped TBs at initialization time.

If otherwise an URB transfer request wants to make use of an unattached dataspace, the TB
has to be attached dynamically. After the transfer is completed, the dataspace has to be detached.
This approach leads to performance drawbacks and is named as sharing a dynamically mapped
TB.

Some drivers provide unattached dataspaces with relatively small size. Then it is better to
copy the content of the TB. The USB core holds a statically attached TB for this case. There is
a break even when copying is as fast as mapping shared memory at 500-2000 bytes, depending
on processor and memory performance. This value will be used to decide whether a TB will be
copied or not.

2In L4 flexpages are regions of the virtual address space, which can be attached to other address spaces via IPC.
3Before a dataspace can be used at core side, the rights to access the dataspace has to be transferred.

37

4 Concept

Recapitulating, there are three ways to transfer the content of a TB between the USB core
and the drivers:

� sharing a statically mapped TB

� sharing a dynamically mapped TB

� copying the TB

TBs are allocated by device drivers and not by the USB core. Since USB device drivers are
coming from the Linux environment they know nothing about dataspaces. Sure, it is possible
for the USB lib to determine to which dataspace a given TB belongs. But as long it is not
possible to share subdataspaces, more memory has to be shared than actually needed. This is
the case for the L4Linux stub, which currently shares to whole L4Linux kernel memory with the
USB core. The OVCam driver’s allocation of the TBs was modified to use dataspaces. In the
most cases, this adaption can be easily applied.

Physical Addresses

TBs are allocated by the driver as non-pageable contiguous physical memory blocks, which will
be accessed per DMA by the host controller. The DROPS USB port is intended to run in DDE.
Per default, only the physical address of memory allocated by kmalloc() can be calculated by
DDE. The physical base address of other memory regions (dataspaces) have to be registered at
DDE, otherwise the __pa() call would fail. The physical base address of an attached dataspace
can easily be determined. After the dataspace is attached and DDE is updated, the USB transfer
can be started.

Since the content of TBs dataspace never will be interpreted by the HCD, TBs will never di-
rectly accessed by the processor. The dataspace only needs to be attached to USB core’s virtual
address space. Although the dataspace is not mapped, its physical address can be calculated
because dm_phys4 assigns a chunk of physical memory to each dataspace at creation time.

Scatter/Gather

A last issue concerning TBs has to be mentioned. Once again, TBs are contiguous chunks
of memory. USB drivers can perform scatter/gather transfers using linked URBs pointing to
different (scattered) memory chunks. These high level mechanisms are not recognizable for the
USB core. In contrast to that, the way USB core handles isochronous transfers can be considered
as a kind of scatter/gather. Isochronous packets will be transferred every frame. Each of these
packets is transferred from/to a specified offset and length within the TB. This feature can be
used to synchronize isochronous data streams.

4.2.6 Assuring Real-Time Capabilities

To view a web-cam stream in real-time, a lot of components have to work together without
negative interferences. In this scenario, the data stream passes a chain of software components

4The L4Env Physical Memory Dataspace Manager (DMphys) manages the available physical memory of a system.

38

4 Concept

including a host controller driver, a devices driver and a viewer application. To maintain hard
real-time capabilities all involved components have to show a predictable behavior, which im-
plies the availability of sufficient system resources5 . Therefore a common resource management
model is needed.

This section models the requirements regarding the most critical system resource: CPU time.
An adequate scheduling policy is required to fulfill each thread’s demand.

Figure 4.4: Scheduling Scenario

CPU Utilization Model

The following model is derived from the scenario of a video viewer application showing the
frame stream provided by a USB web-cam. For example, the viewer displays 25 video frames
per second. Each of these frames is the result of a processed raw data stream, which is assembled
of a resolution dependent number of URB transfer buffers. To complete an URB request the host
controller has to receive 10 iso-packets from the web-cam. Every 1 ms one iso-packet arrives
from the USB. The data stream flows though the chain of components, which are synchronized
to each other, but each requiring a different quantum of CPU time and period. Except for the
iso-packet receiving process the described scenario is illustrated in Figure 4.4. The boxes show
the CPU utilization for the respective threads.

In the underlying scenario every processing stage uses double buffering for URB transfer
buffers and video frames as well. This approach adjusts the jitter at the cost of a small and
well-defined delay. Right from the beginning of its period, each component can expect a ready
input buffer, which has to be processed until the end of the period. Preemption while processing

5Refer Chapter 3 for an analysis of all needed resources.

39

4 Concept

is permitted. The different gray shadings of the CPU utilization boxes in Figure 4.4 show the
way one resulting frame takes through all processing stages. This explains the delay between
a frame is received from the camera and displayed on the screen. The periods of the web-cam
driver and the video viewer should ideally be a integer multiple of each other (harmonic), or the
problem as described in Section 5.4.3 will occur.

The analysis of the ported components (see Chapter 3) shows that most of the CPU time
is consumed by device drivers, not by the USB core. Thanks to the usage of shared transfer
buffers, the task of the core component is restricted to resource management (bus scheduling)
and control of the HCD. In most cases simply setting and linking of transfer descriptors will be
performed.

Scheduling API Requirements

Based on the presented scenario, the following requirements for the upcoming DROPS schedul-
ing API can be derived by the illustrated scenario:

1. threads request a quantum of CPU time within a given period

2. these periods can be synchronized

Appropriate values for CPU time quantum and period have to be determined by experiments.
The second requirement maintains the synchronization of all threads working on the same
stream as shown in Figure 4.4. Synchronized periods provide threads with a mutual time base.

Defining thread priorities is the job of the scheduling API. Arbitrary thread preemption can
be performed as long requirement number 1 is preserved. To attach higher priorities to threads
with short periods is a common scheduling policy.

The preconditions for the usage of classic real-time scheduling methods RMS or EDF [LL73]
are fulfilled. These methods only allow sets of independent periodic processes (threads) that do
not require inter-process synchronization. Due to double buffering, threads are independent of
each other within their synchronized periods. Each thread is ready at the beginning of each
period and wants to consume a CPU time quantum that of course is less or equal than the period
time. The deadline is the end of a period. The CPU time quantum and the period are constants.
To apply RMS static priorities have to be assigned. To implement EDF, the scheduler always
has to switch to the thread with the earliest deadline. Instead of these two approaches, another,
most likely more complex scheduling policy may gain advantages like a reduced number of
context switches, as long as all requirements are met.

Even hardware interrupts can be handled by the described scheduling scheme, as long as they
occur periodically that is true in the case by USB host controllers.

In the case of video streams a quality of 100% is not always needed. Then the model specified
in [HLR

�

01] can be applied, which splits the requirements in a mandatory and an optional part,
which should be available as often as possible but at least with a certain percentage. This
distinction will not be made in this work because it only deals with hard real-time components.

A more general approach for resource reservation and management is presently developed at
the Dresden University of Technology within the scope of the COMQUAD [COM03] project.
In short, besides interfaces for offered services, COMQUAD components provide additional in-
terfaces for description and negotiation of quantitative properties. Once the COMQUAD project

40

4 Concept

is realized, it may offer adequate support for time slice donation and can be used to implement
the scheduling policy needed for the scenario mentioned above.

Locks - Always a Problem

The USB core uses some lists containing processing (scheduling) information, which are pro-
tected by locks. The access to these list is performed in very short critical sections called in
interrupt and interface context. Thus there is always a small chance for interferences between a
running interrupt handler and API calls. So it is necessary to prevent priority inversion where a
low-priority thread that blocks a high-priority thread is preempted by a mid-priority thread.

As stated in [Hoh02], wait-free synchronization can also be implemented using locks, albeit
with a nonblocking helping scheme. Helping is a family of mechanisms that implement wait-
free synchronization. When a higher-priority thread A’s critical section detects an interference
with a lower-priority thread B, A helps B to finish its critical section first, effectively lending its
own CPU time to B. During helping, A also lends B its priority to ensure that no other, lower-
prioritized activities can interfere. When B has finished, A executes its own critical section.
For instance, helping can be implemented by the Priority Inheritance Protocol or the Priority
Ceiling Protocol [SRL90]. This concept is successfully implemented by the Fiasco micro kernel
to protect critical sections. As result, Fiasco achieves good preemptibility.

A locking scheme with priority inheritance can be considered as a wait-free synchronization
scheme as long as critical sections never block. In the case of the examined Linux USB stack
this precondition is fulfilled. Critical sections are very short and not nested. Device driver
code will not be entered within critical sections. So, to avoid interferences, locks have to be
implemented together with priority inheritance.

4.2.7 Security Issues

The placement of USB core and the device drivers in different components (separate address
spaces) provides a basic protection from undesirable memory access. In contrast to the original
Linux environment, the control data structures will not be shared anymore. This allows to insert
effective security checks at API call level. But there are other security issues left:

For security reasons data sharing between the USB core and the device drivers has to be
restricted to the actual need. As described in Section 4.2.5, the device drivers share their transfer
buffers with the USB core only for performance reasons. These buffers need only to be attached
and not to be mapped and thus cannot be inspected or modified by an untrusted USB core.

In L4Linux, transfer buffers can be located elsewhere in the kernel address space, which is
currently completely shared with the USB core. Since real sharing (mapping) is not performed,
both components are protected from each other.

While transfer buffers cannot be accessed by USB core directly, the host controller is still
able to perform direct memory access (DMA). An extensive approach to use the untrusted USB
core in a trusted environment is to introduce an additional control instance that checks the USB
schedules for illegal physical addresses before they will be processed by the host controller.

How will denial-of-service attacks, started by malicious or malfunctioning drivers, affect the
USB core? Due to the usage of a limited number of preallocated worker threads for each client
driver, the services of the core cannot be completely claimed by a single client. Sooner or later a

41

4 Concept

driver will reach the worker thread limit and will be blocked. The USB core can treat this event
as an attack and is free to disconnect the driver. Sending IPCs to worker threads dedicated to
other clients can also be detected by the USB core and treated in the same way.

4.3 L4Linux Stub

According to Figure 3.1, stubs for L4Linux can be supplied at all three levels of the USB stack.

� host controller driver (HCD) stub

� USB core stub

� device driver stub

As already stated in Section 3.1 the host controllers are interacting with the USB core using
a undocumented API. This and the reasons for co-locating the HCD with the USB core as
enumerated in Section 4.2.1 advise not to implement a virtual HCD for L4Linux.

The ported USB core already implements the complete USB-API. To export this API by a
USB core stub allows to run all available USB drivers within L4Linux without modifications.
All requests by L4Linux that will not endanger the real-time capabilities at DROPS side can
be scheduled. Because of its advantages the USB core stub was implemented. Features like
hot-plugging and USB device file system are currently not implemented in the USB core and
thus cannot provided for L4Linux.

If there are plans to use a USB device by DROPS and L4Linux in parallel, developing a stub
for USB drivers is always possible and does not effect the stubs at other levels. For example,
the OVCam driver may export its V4L interface to L4Linux.

4.4 Porting the OVCam Driver

The OVCam driver comes with a separate decompression module, which is very small. Com-
pression is strongly needed for higher frame rates at higher resolutions. To simplify the port the
compression module will be co-located to the web-cam driver. As in the case of USB core, the
Linux kernel environment will be provided by DDE. The USB functionality can be accessed by
linking against the USB library.

There is one question left: how to deal with the V4L (see Section 3.2.1) interface? All
OVCam driver properties except for the module parameters can be controlled by capture appli-
cations via the V4L interface, which turned out to be quite usable and well documented. This
suggests not to create another new interface. So an IPC wrapper exports a subset of the V4L
interface to the V4L application. For the transmission of the data stream DSI (see Section 2.4.3)
is used, which establishes shared buffers and extends the original V4L interface about real-time
properties.

Because it is possible to use the OVCam driver under L4Linux, there is no need to implement
an own L4Linux stub for it. The web-cam driver can only be used by one application at the
same time. It provides no benefit to feed non real-time applications (L4Linux) with the output
of real-time components (OVCam under L4).

42

5 Implementation

In this chapter selected problems that have occurred during the implementation will be dis-
cussed. More detailed information can be gathered from the source code.

5.1 DDE Extensions

The ported Linux drivers need some Linux kernel functionality that was not implemented in
the DDE. Therefore, DDE has to be extended to support memory management functions for
kmem caches and PCI pools. The kmem caches were easily mapped to l4slab functionality,
inheriting their limitation to a maximum slab object size of the page size (4096 bytes). This
limit is sufficient in the most cases and in particular for the ported Linux USB subsystem.

Additionally, DDE was updated to support Linux conforming kernel threads. The Linux USB
subsystem installs a kernel hub daemon, which is permanently listening for port status changes.

5.2 Scheduling

To get the port running a fixed scheduling scheme based on priorities is used. This is generally
hard-coded into the system implementation and cannot be easily adapted. The introduction of
new components makes it necessary to rethink the priorities of all threads running in the system.

L4, and so its implementation Fiasco that underlies DROPS, currently has a prioritized multi-
level round-robin scheduling. This alone is insufficient to construct a non-trivial real-time sys-
tem [Elp01]. An appropriate processor scheduling framework is needed, which includes at least
the CPU time reservation (see Section 4.2.6) and avoids priority inversion. Since even thread
preempters are not yet supported by Fiasco, user level scheduling is currently not possible,
priority inheritance (helping) as well.

5.2.1 Thread Switching Pitfalls

While sending an IPC, the micro kernel Fiasco automatically switches to the receiver regardless
of the thread priority of both threads. The caller thread donates the rest of its time slice to the
receiver. This works fine in standard client server scenarios. In special cases, even if they are
performance critical, this behavior is not desired:

In its completion handler (interrupt context) the OVCam driver collects raw data buffers until
a frame end token is received. Then the bottom half handler is started to process the data. The
bottom half thread sleeps in a waiting queue until the completion handler wakes it up. Because
under Linux no scheduling will be done in interrupts, the bottom half handler will just be
moved to the ready queue and the time critical completion handler will proceed. In DDE, which

43

5 Implementation

provides the wait queues functionality for the OVCam driver, waiting queues are implemented
using semaphores. Thus, waking up a thread implies sending an IPC. The completion handler
is suspended regardless of its higher priority. Priority driven scheduling is not preserved. After
the bottom half handler is woken up, it has relatively time consuming calculations to perform
(decompression, format conversions). In other words, it will not release the CPU until its time
slice expires. In the meantime the interrupt thread (completion handler) is blocked. In Fiasco a
time slice may last up to 1 ms what is the same period in that already a new USB interrupt may
occur.

To cope with this problem there are two options. Inserting a schedule() right after the
sleeping operation of the bottom half handler will immediately switch back to the completion
handler. The desired thread switching semantic can also be achieved by using a special Fiasco
option. The send descriptor contains a so-called deceit bit. Since the mechanism according to
this bit is not implemented in Fiasco, the bit was rededicated and only the name remained. If
the deceit bit is set, an IPC leads not to a switch if the destination thread’s priority is lower than
the priority of the sending thread. In this case, the destination thread is only enqueued into the
ready queue and the sender can proceed. To activate the alternative switching behavior, Fiasco
and the semaphore package have to be compiled with according options.

5.2.2 Critical Interrupt Path

In the worst case scenario the completion call of an URB has to be performed every 1 ms. To
avoid data loss the maximum completion call processing time must be significantly smaller then
1 ms. If a completion call is not delivered in time, the host controller hardware may overwrite
transfer buffers not yet processed by the according device driver. Fast completion calls are even
more important if the transfer of several URBs is finished at the end of the same frame.

While running in interrupt context the USB core passes the control flow to the driver and
blocks for an unpredictable time period. This problem can be solved by setting the send and
receive timeout for the completion call IPC. Since the completion call provides no return values,
all possible damage is bounded to the driver, which can miss a completion call. If a send timeout
occurs, the USB core may retry to send the completion message later, which is at least not
reasonable for isochronous transfers that are delivered continuously. Just sending completion
messages (not calling the completion handler) works in the most cases, but breaks with the
conventional call semantic in the same way as deferred completion calls.

5.3 L4Linux Stub

The L4Linux stub uses nearly the same USB library implementation as DROPS USB device
drivers do. This library runs within the same task together with L4Linux and exports the
USB-API symbols to the kernel. Some of L4Env functionality used by the library (threads,
semaphores, memory management) needs to be initialized, what is done at the start of L4Linux.
The regarding symbols have to be exported by the L4Linux kernel. To share the access to L4Env
functionality with L4Linux only the L4Env variant of L4Linux can be used.

From the view of the USB core, L4Linux virtually behaves as a client implementing several
driver interfaces. Since the USB core is capable to register a almost unlimited amount of clients,

44

5 Implementation

it is possible to run several instances of L4Linux with USB support in parallel. The number of
required worker threads for each L4Linux instance can only be estimated (see Section 4.2.3).

Another problem is to obtain equivalent dataspaces for the provided transfer buffers. An
interim solution is to share the whole kernel address space with USB core as mentioned in
Section 4.2.5.

5.3.1 Transferring USB-API Structures

In Section 4.2.4 the decision was made to build up extra copies of the used USB structures at
client and server side. Even though the source codes were not modified, the binary compatibility
cannot be assured because both components are compiled with different header files. While the
USB core is compiled against the DDE Linux kernel sources, the L4Linux stub uses of course
the L4Linux kernel sources. As consequence, semaphores and locks, which are part of some
structures, have different sizes at both sides. So it is inconvenient but necessary to convert all
transferred structures.

Structures used by the USB-API have to be serialized (see Section 2.1.5). There are a lot of
tools for serializing dynamically linked structures. Those are available in DROPS do unfortu-
nately not meet the requirements for three reasons. First, the structures have to be converted as
mentioned in the last paragraph. Second, the USB-API uses dynamically sized structures (e. g.
URB). This means, that the size of a structure only can be determined at run-time (sizeof()
will not work). References to certain substructures, which are only valid in the address space of
the sender, have to be stored for future reference mapping. Finally, a self-made implementation
for serialization of the required structures was developed.

5.3.2 Stub Call Propagation

In general, the L4Linux USB stub propagates all USB-API calls to the USB core. The same is
true for the callbacks. Problems arise from the transition of the control flow from L4Linux to
the DROPS environment, where the USB library runs, and vice versa.

In the case of USB-API calls, L4Linux kernel threads cannot call flick IPC stubs directly.
The kernel would be blocked until the call returns. This would only affect the performance of
L4Linux, but there are callbacks that can occur in the context such a stub call. In this case,
L4Linux is not ready to receive callbacks.

The solution is to block the calling L4Linux kernel thread in a Linux conformable way and
let an L4-thread do the call instead. The L4Linux thread has to wait until the L4 thread has
finished the call. Only L4Linux synchronization primitives can be used to block a L4Linux thread
properly, but L4 threads cannot access them without the risk of calling L4Linux scheduling
functions.

The implemented solution for this problem is a synchronization mechanism using a memory
cell, which is periodically polled for state changes. The waiting L4Linux thread loops around
a schedule_timeout() call until the memory cell has changed. Depending on the specified
timeout period, this solution introduces a delay for all non-time-critical calls which may cause
callbacks: usb_register(), usb_unregister() and unlink_urb().

All remaining API calls never cause callbacks and can be invoked by the L4Linux kernel
directly. The only time-critical API call submit_urb() can thus be called directly, too.

45

5 Implementation

Callbacks to L4Linux

The also non-time-critical callback calls probe() and disconnect() are expected to be called
from the process context. This can only be done by a valid L4Linux thread, which is created by
the L4Linux stub at initialization time. The synchronization works in the same way as for the
API calls.

Completion calls, which always have to be considered as time critical, can be directly pro-
cessed by the worker threads of the callback server, which is part of the USB library. This
approach works, because the completion handlers of the device drivers are designed to run in
Linux interrupt context and will therefore not use any Linux scheduling function.

5.4 Web-cam Viewer

5.4.1 Source File Modifications

The OV5Cam driver shares the frame buffer with V4L applications and provides transfer buffers
for the USB subsystem. In the DROPS world, shared buffers between applications will be
established by sharing dataspaces. In the case of the V4L frame buffers the driver tries to access
Linux low-level internals like page table entries. To emulate such Linux details in DDE would
go too far. Therefore, the memory allocation calls for all shared buffers were identified and
replaced.

5.4.2 Module Parameter Passing

The behavior of kernel modules can sometimes be significantly influenced by module parame-
ters. For example, the configuration of the OVCam driver filters will be performed this way. In
Linux, kernel module parameters will be set during loading. Modules in the DROPS world will
be loaded by GRUB1 or the L4 loader, which both not are able to set module parameters. To
specify module parameters at least at compile time without modifying the driver’s source code,
the driver is compiled with an adapted MODULE_PARM macro definition that creates a freely ac-
cessible variable for every module parameter. These parameters can be set during initialization
by the wrapper layer.

5.4.3 DOpE Application

The web-cam viewer was integrated in the DOpE example application vscreentest, which origi-
nally shows four attractive visual effects in separate windows (widgets). One of these windows
is now used to view the video stream provided by the OVCam viewer. Buttons to change pic-
ture properties like brightness and color were added to this window. Additionally, the web-cam
viewer makes use of DOpE’s sophisticated features like window content scaling.

1GNU Grand Unified Boot loader

46

6 Evaluation

As result of the development both UHCI and the OHCI host controller driver implementations
were successfully tested together with the OVCam driver. Further details are described in this
chapter.

Design Goals Review

At this place the achieved results has to be reviewed considering the design goals defined in
Section 4.1. The USB core and the OVCam device driver were placed in separate modules and
interact via IPC interface. This modular concept allows to load device drivers only if needed.
The goal to use unchanged Linux USB source codes was successfully achieved. The OV5Cam
had to be minimally modified (see Section 5.4.1).

Real-time properties were at least achieved for systems with minimal workload. Problems
that had to be solved are discussed in Section 5.2. To assure real-time characteristics even
in systems with higher workload, a scheduling API that meets the requirements presented in
Section 4.2.6, has to be provided by the run-time environment.

The achieved security level is described in Section 4.2.7 and a performance analysis will be
presented in the next sub-chapter.

Resource Consumption

The USB library, which is linked against every device driver, needs approx. 60 KB for code and
10 KB for dynamically allocated memory. The USB core consists of approx. 300 KB code and
additional 10 KB dynamically allocated memory for each registered device driver. Compared
to the original Linux drivers, the progression of the memory footprint can be marked as low.

In contrast to the memory footprint, the usage of threads is not very economical. The need
to introduce worker threads (see Section 4.2.3) leads to the reservation of at least two worker
threads per registered device driver. These threads are statically allocated and will be used very
rarely, if at all.

6.1 Measurements

Before quantitative results will be presented, the environment properties for all following bench-
marks will be reported. The test system featured following characteristics: Intel Celeron (Cop-
permine), 900 MHz, 128 MB main memory, Intel i815 chip-set (Camino 2), USB controller
implementing UHCI. The Fiasco configuration was: L4-V2 ABI, gcc 2.95, assembler IPC short
cuts. The implementation uhci.c of the UHCI host controller driver was used.

47

6 Evaluation

Call Overhead

Since no changes to the source code were applied, the ported USB stack is expected to consume
only slightly more CPU cycles than the original in the Linux environment. Sure, each API
call and each callback costs at least one context switch (call IPC). Additionally, all transferred
parameters have to be encoded and decoded. All other activities inside the USB wrapper layer
involve only accessing data structures and parameter conversions. There are no algorithms
(loops) executed featuring unpredictable processing time. The way that DDE influences the
performance cannot be estimated.

The USB-API functions called most often are usb_submit_urb() and the completion call-
back (see also Section 5.2.2). The latter one is optional but requested in nearly all cases. The
reason is that applications want to stay closely synchronized to the hardware activities. It is
sufficient to measure only the performance drawbacks of this calls, because during running
real-time URB data transfers all interactions between the core and the driver will be performed
using these functions. Since actual processing times depend on the implementation of the USB
core (usb_submit_urb()) and the driver (completion call), it would be reasonable to measure
only the call overhead caused by the USB wrapper layer (see table 6.1). All other API calls are
only used for configuration and thus can be considered as not performance relevant.

USB layer IPC & stub ∑
usb_submit_urb() (µs) 8.9 4.6 13.5

completion call (µs) 0.6 6.8 7.3

Table 6.1: Call Overhead

The term IPC costs summarizes the time needed for encoding, copying and decoding of the
IPC parameters (about 100 bytes) and the context switch. The USB layer needs 6 µ of 8.9 µ to
call l4rm_lookup() for determining the offset of a given transfer buffer within the according
dataspace. This IPC costs can be saved by caching the dataspace parameters locally. Without
doubt: the IPC costs are the limiting bottleneck of the presented implementation.

Since the measured call overhead is negligible compared to the USB frame rate of 1 ms, the
additional CPU time needed by the USB layer will never impact the performance.

If a driver wants to share dynamically mapped transfer buffers (see Section 4.2.4) three addi-
tional IPCs are required: getting subdataspace, attaching of the dataspace at USB core side and
determining of the physical address. Because getting subdataspaces is currently not possible,
this benchmark was skipped.

OVCam Driver Benchmarks

In all tests the web-cam captures frames with a resolution if 576x432 pixel and 16 bit color
depth. About 94% of the limit for isochronous transfers was used. This implies an overall
USB utilization of 65%. All benchmarks were conducted on otherwise idle Linux systems with
minimal workload. To void interference all unneeded activities were omitted. The results of
course depend on the web-cam used, which was a Terratec TerraCAM USB Pro in this case.

48

6 Evaluation

Table 6.2 allows to compare the characteristics of the USB subsystem (Linux kernel 2.4.20) and
the OVCam (version 1.63) web-cam driver in different environments.

Operating System DROPS L4Linux L4Linux Linux
USB subsystem USB port USB stub native native

av. usb_submit_urb() execution time (µs) 30 40 7 7

av. completion call execution time (µs) 80 72 67 67

frame rate (fps) 15.0 15.0 15.0 15.0

Table 6.2: OVCam Driver Capturing Performance

The presented values are driver specific. Since the processing times varies from call to call,
the table presents average values. Extremal values (criterion: 10 times higher than the average)
caused by preemption by higher prioritized threads (interrupts) were not considered.

Regarding to the used measurement precision, the results for the native Linux USB core
running in the Linux and L4Linux environment are the same. This is comprehensible since
exactly the same code was executed.

The performance loss for the ported USB subsystem matches with the call overhead in Ta-
ble 6.1. Although thousands of test loops were performed, the impreciseness may be caused by
the average value approach and different test environments.

All tests achieved the same frame rate of 15 Hz, which is limited by the chosen capture
resolution and the web-cam hardware. Resolutions up to 320x240 would allow frame rates of
30 Hz.

Measurements in configurations that not made use of the deceit bit (see Section 5.2.1) brought
unacceptable results. In worst cases, completion calls stalled the USB core for more than 1 ms.

Visual impression

To assure real-time performance DOpE does not allow applications to access the frame buffer
memory directly. Instead the application writes in a hidden buffer that is drawn by DOpE to the
screen periodically. This period is determined at compile time. Currently the reasonable value
of 25 Hz is standard.

The frame-rate delivered by the OVCam driver depends on the resolution and varies between
3 and 40 Hz. As result, the window frame rate and the capture frame rate are not synchro-
nized to each other and the time a frame is shown varies by one frame. This may explain the
slightly smoother animation in L4Linux, where the video stream is directly copied to the frame
buffer. The measured results presented in Figure 6.2 do not show any significant performance
differences of the OVCam driver in both environments.

49

7 Conclusions and Future Work

The result of this work is a nearly 100% Linux USB-API compatible USB stack for DROPS.
Only the way to handle the transfer buffer management had to be changed. Linux USB stack’s
asynchronous callback mechanism makes the current implementation vulnerable for unpleasant
delays caused by inappropriate thread scheduling. All remaining USB bandwidth can be used
up by L4Linux.

Altogether, to port further Linux USB device drivers should be easily feasible as the OVCam
driver port shows. The ported drivers demonstrate again the usability of DDE and DSI.

Future Work

There is a need for using USB mass storage devices (hard disk, USB key) in DROPS. Mass
storage devices will be handled by a single class driver and only support bulk transfers, which
are not designed to meet real-time constraints by the standard and the current Linux implemen-
tation. A USB-to-serial adaptor device would allow debugging in cases where a serial interface
is missing or already used. For instance, the DOpE mouse pointer can get its input by a USB
mouse.

The support of USB 2.0 compliant EHCI host controllers seems to be possible even with the
current implementation, but has not been tested yet. With a current market share of 50%, USB
2.0 will dominate in the future.

The OVCam driver may be used as data stream source for the upcoming DROPS video
recorder application. If more Linux device drivers that provide the V4L-API will be ported
in the futures, the demand for a V4L registrar application will increase.

The current Linux kernel development version (2.5.) introduces small USB-API changes but
no completely new mechanisms. Thus, an update seems to be present no difficulties. The further
development of the L4 USB stack depends on the Linux kernel versions supported by DDE and
L4Linux.

50

Acronyms

ABI Application Binary Interface

API Application Programming Interface

CPU Central Processing Unit

DDE Device Driver Environment

DMA Direct Memory Access

DOpE Desktop Operating Environment

DROPS Dresden Real-Time Operation System

DSI DROPS Streaming Interface

EDF Earliest Deadline First

EHCI Enhance Host Controller Interface

HC Host Controller

HCD Host Controller Driver

IDL Interface Definition Language

IPC Inter Process Communication

IRP I/O Request Packet

L4 Second generation micro-kernel interface

L4Env Library collection providing operating system primitives for DROPS

OHCI Open Host Controller Interface

OVCam Web-cam driver for the OmniVision OV5xx series of chips

PCI Peripheral Component Interconnect

RMS Rate Monotonic Scheduling

SMP Symmetric Multiprocessing

51

Acronyms

URB USB Request Block, Linux USB stub analog of IRP

USB Universal Serial BUS

UHCI Universal Host Controller Interface

V4L Video for Linux

52

Bibliography

[ALE
�

01] Mohit Aron, Jochen Liedtke, Kevin Elphinstone, Yoonho Park, Trend Jaeger, and
Luke Deller. The SawMill Framework for Virtual Memory Diversity. January
2001.

[BBH
�

98] Robert Baumgartl, Martin Borriss, Hermann Härtig, Claude-Joachim Hamann,
Michael Hohmuth, Lars Reuther, Sebastian Schönberg, and Jean Wolter, editors.
Dresden Realtime Operarting System. Dresden University of Technology, March
1998. http://os.inf.tu-dresden.de/drops/doc.html.

[CHPI
�

00] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. Universal
Serial Bus Specification - Revision 2.0, April 2000. http://www.usb.org.

[CIMN98] Compaq, Intel, Microsoft, and NEC. Universal Serial Bus Specification - Revi-
sion1.1, September 23 1998. http://www.usb.org.

[CMS99] Compaq, Microsoft, and National Semiconductor. Open Host Con-
troller Interface Specification for USB - Revision 1.0a, September 1999.
http://www.usb.org/developers/docs/.

[COM03] COMQUAD - Components with quantitative properties, February 2003.
www.comquad.org.

[Elp01] Kevin Elphinstone. Proposed L4 scheduling behavior to support real-time system
construction, February 2001.

[Fen02] Norman Fenske. DOpE - a graphical user interface for DROPS. Mas-
ter’s thesis, Dresden University of Technology, October 2002. http://os.inf.tu-
dresden.de/project/finished/finished.xml.

[Fli00] Detlef Fliegl. Programming Guide for Linux USB Device Drivers - Revision 1.32,
2000. http://usb.cs.tum.edu/usbdoc/.

[Hel01] Christian Helmuth. Generische Portierung von Linux-Gerätetreibern auf die
DROPS-Architektur. Master’s thesis, Dresden Univerity of Technology, July 2001.
http://os.inf.tu-dresden.de/project/finished/finished.xml.

[HLR
�

01] Claude-Joachim Hamann, Jork Löser, Lars Reuther, Sebastian Schönberg, Jean
Wolter, and Hermann Härtig. Quality-Assuring Scheduling - Using Stochastic Be-
havior to Improve Resource Utilization. Technical report, Dresden University of
Technology, Dezember 2001. http://os.inf.tu-dresden.de/drops/doc.html.

53

Bibliography

[Hoh96] Michael Hohmuth. Linux-Emulation auf einem Mikrokern. Master’s
thesis, Dresden University of Technology, August 1996. http://os.inf.tu-
dresden.de/project/finished/finished.xml.

[Hoh02] Michael Hohmuth. Pragmatic nonblocking synchronzation for real-time systems.
PhD thesis, Dresden University of Technology, October 2002. http://os.inf.tu-
dresden.de/drops/doc.html.

[Int96] Intel. Universal Host Controller Interface (UHCI) Design Guide - Revision 1.1,
March 1996. http://www.usb.org/developers/docs/.

[Int02] Intel. Enhanced Host Controller Interface for Universal Serial Bus - Revision 1.0,
March 2002. http://www.usb.org/developers/docs/.

[Kel01] Hans Joachim Kelm, editor. USB 2.0. Number 3-7723-7965-6. Franzis, 2001.

[LHR01] Jork Löser, Hermann Härtig, and Lars Reuther. A streaming interface for real-time
interprocess communication. Technical report, Dresden University of Technology,
2001. http://os.inf.tu-dresden.de/drops/doc.html.

[Lie96] Jochen Liedke. L4 Reference Manual - Version 2.0. Technical report, GMD - Ger-
man National Research Center for Information Technology / IBM Watson Techni-
cal Report, September 1996. http://os.inf.tu-dresden.de/L4/l4doc.html.

[LKS] Linux kernel sources. http://www.kernel.org/.

[LL73] C. L. Lui and J. W. Layland. Scheduling algorithms for multiprogramming in hard
real-time environment. 1973.

[LUP] Linux USB project home page. http://www.linux-usb.org/.

[McC] Mark McClelland. Linux OVCam Drivers. http://alpha.dyndns.org/ov511/.

[Sch02] Sebastian Schönberg. Using PCI-Bus Systems in Real-Time Environments. PhD
thesis, Dresden University of Technology, June 2002.

[SI97] SystemSoft and Intel. Universal Serial Bus Common Class Specification - Revision
1.0, December 1997. http://www.usb.org/developers/devclass_docs.

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proctocols; an ap-
proach to real-time synchronsization, September 1990.

54

