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1 INTRODUCTION


1 Introduction


DROPS is a research project of the ’Operating Systems Group’ at the Dresden
University of Technology . It is an acronym for ’The Dresden Real-Time Op-
erating System Project’. The research of the ’Operating Systems Group’ aims
mainly at improvements of current micro-kernel technologies in connection
with ’Quality of Service’ requirements.


One of the biggest efforts is the port of Linux to the DROPS platform. The
so called L4Linux runs as user-level application on the top of the DROPS kernel
- namely Fiasco (an implementation of the L4 kernel API).


Up to now, the only user interface of DROPS is a console application
(’Dropscon’-server). It provides a variety of features to comfortably interact
with DROPS applications. Every application can occupy one or more ’virtual
consoles’. While only one ’virtual console’ is visible at a time, the user can
choose the currently visible ’virtual console’ by using keyboard shortcuts.


While ’Dropscon’ has sufficient functionality for the comfortable handling
of a number of applications, it can not be called intuitively usable. A lot of to-
day’s commonly used applications require more advanced user interactions.
Today’s expectations of a user interface raise beyond pure functionality - er-
gonomic aspects and visual issues tend to become very important when at-
tracting computer users. Every mainstream desktop operating system features
windowed graphical user interfaces - even on portable devices windowed user
interfaces gain more and more popularity. Consequently, a windowed user in-
terface featuring the today’s standards (and even more) would increase the
application area of DROPS dramatically.


The aim of this work is to create such a user interface while keeping the
real-time facilities of DROPS available at the user interface level.


Due to the complexity of this task, not all of its facets can be discussed
within this document. Therefore, the document is focused only at the most
interesting aspects of the windowing system, which are namely: its real-time
capability and its command interface.


1.1 Acknowlegdements


A lot of thanks have to go to Christian Helmuth for being a great tutor and
Frank Mehnert for his excellent support. Furthermore, the author of this doc-
ument wants to thank the following persons: Christin Geyer (for her techni-
cal and moral support), Prof. Dr. Hermann Härtig (for showing that great
interest in DOpE and for his valuable hints), Leon O’Reilly (for creating God-
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Pey and for checking my spelling), Michael Hohmuth (for the introduction to
the OS Group at the TU-Dresden and for maintaining the MiNT kernel in his
prior life), Lars Reuther, Adam Lackorzynski and the other members of the OS
Group at the TU-Dresden.


1.2 Declaration


I declare that all parts of this work were autonomously written by me while
using only legal resources. All resources, that were used within this work are
explicitely announced. To the best of my knowledge the content of this work
is original and was not published before by me or another author.


Norman Feske, Dresden, 02-09-26
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2 BASICS


2 Basics


This section is meant to show up the background and motivation behind the
work on the windowing system DOpE (’Desktop Operating Environment’).
Furthermore, it substantiates the given task of creating a windowing system
for DROPS.


Firstly, some terminology is introduced. Later sections of this document
will frequently refer to the term ’real-time’. Section 2.1 will clear up its mean-
ing in the context of this work.


The section 2.2 will put this work into the context of current developments
at the ’Operation Systems Group’ at the Dresden University of Technology. It
is followed by a section, presenting the living space of DOpE - namely DROPS


and points out its features and restrictions from DOpE’s point of view.
Afterwards the position of this work in the range of existing solutions in


the field of graphical user interfaces is defined.


2.1 What is ’real-time’?


The term ’real-time’ plays a very central role within this work. So it is impor-
tant to define this term in the context of a graphical user interface.


The two tasks for a graphical user interface are:


� the handling of user input events (communication from the user to the
application)


� the graphical representation of applications (communication from the
application to the user)


The term ’real-time’ is focused at the second point.
User input events, such as mouse movements or key press events, should


be handled as ’fast as necessary’ - what does that mean? The user input han-
dling is very closely related to ergonomic issues. So ’fast as necessary’ means
that response times of the user interface should allow comfortable interactions
between the user and an application.


The second point (the graphical representation of applications) is far more
complicated. Firstly, because graphical output consumes a lot of processing
time, and secondly, because there can be multiple applications, that intend to
communicate to the user at the same time.


To face the term ’real-time’, it makes sense to divide the application’s needs
into three groups:
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� dialogs: the application waits for user-events and reacts to the user’s
actions. This is the case for the majority of classic applications, such as
text editors, terminals etc.


� continuous data output: A screen area must be updated at a fixed frame-
rate to provide a fluent output. This is typical for many kinds of graphi-
cal multimedia applications, such as movie players.


� sudden data output: a graphical output must be made visible abruptly
(e.g. a very important error message) without an indeterministic delay.


’Dialogs’ can be seen as counterpart to ’user input events’. There are no well
defined constraints how ’dialogs’ should behave as long as ergonomic aspects
are met. Within this work the term ’real-time’ is focused on ’continuous data
output’ at a fixed update rate. Anyhow, a way to provide the ability of ’sudden
data output’ is presented in section 3.5.11.


An application can request a continuous update of a certain screen area
(’widget’) at a fixed update rate. When the user interface accepts the request,
it ensures that the widget is ’redrawn’ at the specified update rate.


2.2 Related work


During the introduction section the console application of DROPS - namely
’Dropscon’ - was introduced. This section provides some additional informa-
tion about ’Dropscon’ and associated applications. The long-term objective
of DOpE is to replace ’Dropscon’ completely. This can only succeed if DOpE


offers at least equal functionality:
’Dropscon’ provides a small set of functions, that can be used by client


applications to draw graphical primitives onto a virtual console screen. This
set of functions (also called pSLIM-protocol) consists of:


� ’fill’: draws a filled rectangular area using a specified color


� ’copy’: copies a specified rectangular area to another specified screen
position


� ’bmap’: paints an 1bit image (bitmap) to a specified position on screen


� ’set’: paints an image (with the same color depth as the console) to a
specified position on screen


� ’cscs’: paints an YUV-coded image to a specified position on screen
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The pSLIM-protocol was slightly enhanced by two functions to speed up tex-
tual output:


� ’puts’: paints a given string using specified fore- and background color


� ’puts_attr’: paints a given string, that features implicit color information
per character


All currently existent ’Dropscon’ applications make use of the pSLIM-protocol
to implement their graphical and textual outputs. If a windowing system pro-
vided the pSLIM-interface all console applications would be able to run hap-
pily under this windowed environment - including L4Linux.


2.3 Demands and Constraints


The primary platform of DOpE will be the DROPS operating system. This sec-
tion will show up the implications of this fact for designing DOpE.


As stated in section 2.1 the main tasks of a user interface are the handling
of graphical output and user input.


The base of the graphical output is described by the GRUB-bootloader,
which provides information about the currently selected VESA screen mode
including color-depth, screen size and the base address of the frame buffer. So
the desired screen mode must be set up via GRUB while booting DROPS. All
graphical output is done by writing data to the physical frame buffer of the
graphics card.


For the handling of user input devices, a port of the Linux device driver
concept is used. The L4-port of the device driver concept comes in the shape of
a library. The advantages of this input-library are the wide range of supported
input device hardware and a well designed generic interface to the application.


One of the most important features of DROPS is its real-time capability.
Consequently, this feature should be provided at the user interface level. This
is the reason of the big role of term ’real-time’ within this work (see section
2.1).


The usage of DROPS implies some restrictions affecting the design of the
windowing system:


� no UNIX infrastructure: the comfortable UNIX infrastructure is not
available under DROPS. This encloses file-i/o, devices, processes, stan-
dard libraries, dynamic loading etc. As shown in section 2.4 this fact
complicates the port of existing solutions, which are using a lot of the
UNIX infrastructure.
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X-Client


xlib


X-Client


toolkit


xlib


X-Server


Device Drivers


X-Client


toolkit


xlib


X-protocol


Qt, Gtk,
Xforms


etc.


Figure 1: structure of X-windows


� no file-system: Although there exists a simple file provider on DROPS the
windowing system should not depend on the existence of a file system.
Thus, DOpE should allow to link all image and font data to the main
program. Optionally, it should be possible to use a file provider to load
the desired data in runtime.


2.4 Review of existing solutions


Before starting a project from scratch it is worthwhile to take a look at existing
approaches and solutions.


If there already exists a perfect solution for the problem, the solution could
be ported to the final platform (L4). Of course, this is only possible for projects
with freely available source-codes and a suitable license. Otherwise it is still
possible to learn from existing solutions.


This section reviews existent windowing systems and rates their usability
as graphical user interface for DROPS.


2.4.1 X-windows


An early idea was to port X-windows to L4. The obvious reason is the big
amount of applications, that are available for X-windows.


X-window’s popularity gains from a great feature: its network trans-
parency allows to run clients on a remote computer while displaying the
client’s user interface on the local machine. Figure 1 shows the general struc-
ture of X-windows. Technically, a X-windows terminal provides a comprehen-
sive set of drawing primitives via the X-protocol. A remotely running program
can draw its output by sending the corresponding X-protocol commands and
parameters (via xlib) to the displaying terminal. The X-server has a passive
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nature and has no knowledge about the ’meaning’ of the displayed data. It
just executes graphical operations.


Common applications use additional ’toolkits’ (such as Qt, Gtk, GnuStep,
Tcl/Tk or XForms) as an abstraction layer between the application and ’xlib’.
While ’xlib’ provides only functions to draw graphical primitives a ’toolkit’
provides the management of more abstract user interface elements (buttons,
frames, pop-ups etc.). So the look, feel and functionality of X-windows appli-
cations highly depend on the used toolkits. Due to the number of available
’toolkits’ there is no established common look and feel among X-windows ap-
plications.


When it comes to the porting of X-windows to DROPS some heavy
weighted problems appear:


� source-code complexity: It would be much more work to dive into the
depths of an X-server such as XFree86, than to create a completely new
windowing system. The central point of this work is to create a concept
for a user interface, which reflects the real-time capabilities of the un-
derlying OS. It would be a very hard and doubtful work to modify an
existing X-server to meet the needs of a real-time concept.


� missing infrastructures on L4: without a real file-system it makes only
limited sense to port X-windows/XFree. It uses the file system for a lot
of things, such as config files, fonts, pixmaps etc. Beside the file-system
X-windows also needs other parts of a UNIX-infrastructure, that is not
available under L4.


� The main design criterion of X-windows is its network transparency -
this plays only a minor role for our needs.


There are real-time-solutions which use X-servers. One example is IRIX, the
operating system of Silicon Graphics. The IRIX-kernel features real-time facil-
ities. As graphical user interface a X-server is used. Due to the fact that IRIX is
closed-source a port to L4 is impossible.


2.4.2 EmbeddedQt


The argument for EmbeddedQt is very similar to the argument for X-windows:
There already exists a wide range of applications for Qt. Qt-applications can
be ported to EmbeddedQt just by recompiling. EmbeddedQt is designed to be
used on portable devices running Linux.


There are some arguments against the usage of EmbeddedQt:
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� It requires a Linux-infrastructure.


� Not real-time capable: Real-time aspects had to be implemented into an
already existing concept. It would be much easier to address real-time
issues, when freely designing a new concept.


� source code complexity: Quoted from Trolltech website: "Qt offers the
functionality you need to create professional applications. There are
around 250 C++ classes in the Qt API. Most of these classes are GUI spe-
cific; however, Qt also provides template-based collections, serialization,
file and a general I/O device, directory management, date/time classes,
regular expression parsing and more."


� It is a commercial product. When developing a commercial application
using EmbeddedQt license fees must be paid to Trolltech.


� Not secure: The frame-buffer is not handled by a server.


Even so, there exists already a port of Qt 2.3 for L4 by Simon Kagstrom. This
port does not include the implementation of real-time facilities into Qt. It aims
rather at getting existing Qt applications to run under L4 than at creating a
graphical environment for real-time applications.


2.4.3 GtkFB


As for Qt there exists an embedded version of Gtk. Sadly the drawbacks of
both embedded solutions are similar. Additionally, GtkFB runs only one ap-
plication at a time, which is not sufficient for our needs.


2.4.4 Microwindows


Microwindows is a small windowing system, running under DOS or Linux.
Sadly, the windowing system gets really slow with just a few windows. While
testing Microwindows it tended to produce redraw errors or even crashed. Its
speed makes multimedia applications unviable.


2.4.5 QNX


QNX is a closed source real-time operating system featuring a windowed user
interface called ’Photon’. It deals with nearly the same problems as a window-
ing system under L4. Sadly, the available documentation does not cover how
’Photon’ solves the real-time demands. Due to the fact that QNX deals with
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the same problems as we do, its widget set is a good orientation for the needs
of a graphical user interface in general.


2.4.6 Artifact


Artifact is an experimental real-time windowing system. This windowing sys-
tem solves the real-time demands in a way that is discussed in more depth in
the section 3.5.2. Artifact does not provide a complete user interface concept,
which would make it usable in ’real life’.


2.4.7 Consequence


Most of the existing solutions lack either of platform independence or simplic-
ity. Implementing real-time facilities into an existing project can be a difficult
task, because it is a fundamental design criterion.


Since the author of this work had already some experiences in program-
ming user interfaces on small platforms, it was easier to start a new project
from scratch than digging in existing source codes. This also gave the chance
to give DROPS a unique user interface.
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3 Concept


3.1 Conceptual design criteria


3.1.1 Real-time capability


The most interesting aspect of the DROPS operating system is its real-time ca-
pability. Thus, this aspect need to be constantly kept in mind during the design
process. A description of the term ’real-time’ can be found in the section 2.1.
At the end, the user interface shall reflect the advantages of the real-time abil-
ities of DROPS for the end user (e.g. when playing an animation at a constant
frame rate).


3.1.2 Small interfaces


Interfaces are mostly designed with a concrete application in mind. While
these interfaces work perfectly with such kind of applications, they show their
weakness in future use. A good example is the X-protocol. It consists of a
number of graphical primitives to draw user interfaces. When this protocol
was defined, nobody imagined that hardware could support 3D acceleration
features, alpha transparency etc. So the protocol was not sufficient for modern
needs anymore and had to be expanded.


Another approach is the definition of generic protocols without predefined
limitations. A good example is Tcl/Tk, where the script language Tcl can be
considered as ’protocol’. It has a very clean and generic structure and does not
limit itself to a set of predefined functions. The way in which commands can
easily be added, ensures ’future compatibility’.


So the aim is to keep interfaces (especially between client and server) as
small and generic as possible.


Another important reason to keep interfaces small is to verify its functions.
In contrast, a highly complex protocol is difficult to test thoroughly.


3.1.3 Expandability


At the time of software planning the developer is hardly be aware of all the
needs that could pop up in the future. Expandability is the keyword to give
the new ’baby’ a shiny future. This point is very closely related to the previous
one (section 3.1.2). Only generic interfaces can handle slight changes of the
application field. The whole application should be based on a modular concept
while allowing functionality to expand by adding new modules transparently.
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Practically, expanding functionality often means the expansion or introduction
of communication protocols.


All this must be possible without harming the relationship of the user in-
terface to its clients (keeping up compatibility).


3.1.4 Security


As denoted in [9] security requirements can aim at three aspects:


� confidentiality: This aspect comes into play when running user inter-
faces via network (like X-windows). Since this is not the primary aim of
this work, confidentiality plays no major role here. When considering
the use of this concept via network, encryption mechanisms should be
implemented at RPC-level.


� availability: While speaking of graphical user interfaces, availability
means accessibility. The concept has to ensure the users ability to control
the applications whenever he wants. Depending on the used applica-
tions, this aspect concerns ergonomy or security. Of course, accessibility
can not be guaranteed for every single application. But the user interface
can make sure that no application can harm the accessibility of any other
running application.


� integrity: This is surely the most interesting security aspect. As stated
in [8] thrust-worthy user interfaces have to assure the perfectly identifi-
cation of the user’s ’communication partner’ - meaning the application
he interacts with. Applications must not be able to draw on screen ar-
eas, that do not belong to the application. If this was possible, it would
smooth the way for Trojan horses. As a consequence the access of clients
to the physical frame-buffer must be absolutely restricted.


3.1.5 Ergonomic aspects


As indicated in the introduction of this document, ergonomic issues are argu-
ments to attract potentially new users.


Generally it is no problem to include fancy and colorful user interface ele-
ments - but this is not meant with the term ’ergonomy’. A lot of today’s graph-
ical user interfaces offer exchangeable skins - but the buzzword ’look&feel’
consists of two parts. While the look of other user interfaces can be perfectly
emulated the ’emulation’ lacks mostly of the corresponding ’feel’.
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Figure 2: exemplary scenario of the component architecture


So the stated long term goal of DOpE is the offering of a unique ’feel’ of the
user interface while providing an appealing look.


3.2 General design


3.2.1 Component architecture


As expandability is an important design goal the windowing system is struc-
tured in a component based way. A component is a functional entity, that
provides a well defined interface. Each component holds an unique identifier
and a version number.


As shown in figure 2 the central role of this concept plays a ’compo-
nent provider’. Components can register their existence at the ’component
provider’ and export their interfaces with their associated identifiers. In re-
turn - components can request interfaces of other components. Thereby, the
’component provider’ knows exactly which component makes use of which
other components. The aim of this construction is that components can eas-
ily be added to the whole system through a simple interface. Components
could be exchanged even in runtime by other ones, that feature the same inter-
faces. Since all depencies between components are known by the ’component
provider’ it can force a reinitalisation if the affected components.
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A simple version management shall avoid problems caused by chang-
ing interfaces. Each component provides its current version number and the
version number of the earliest version with the same interface. When an-
other component requests a certain version of this component, the ’component
provider’ can check the compatibility of the requested and available compo-
nent, easily.


There are no limitations of what a component can be and what functional-
ity it offers. Despite of that, the components of the windowing system can be
categorised into three groups:


� ’Integral parts’ are components for the handling of memory, threads,
client-server communication, input- and output devices. They are fun-
damental for the overall work of the windowing system. Most of them
are platform dependent because they implement hardware abstraction
layers. Porting the windowing system to another platform means ex-
changing the platform dependent components while keeping their inter-
faces.


� ’Widgets’ represent the basic elements of the user interface as described
in the following section. The application of the windowing system ap-
points which widgets are needed. That means that the source code com-
plexity depends on the desired functionality. While a minimalistic user
interface for security applications requires only a very basic set of wid-
gets, a windowing system for the usage on a desktop computer can fea-
ture much more complex widgets. The majority of widgets are platform
independent. Anyway, it is possible to implement platform dependent
widgets for taking over non-ordinary tasks for a special application.


� Helper functions such as font handling, graphical primitives, cache han-
dling, hash table handling etc. are mostly used by widgets to keep them-
self small and handy. These components usually work ’on the top’ of
’integral parts’ and are implemented in a platform independent way.


A further advantage of the components architecture is the easy revisability of
the overall system. Since each component has a well defined interface and its
desired functionality it can be individually tested.
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WIDGET


general attributes:
* it’s size and position (relative to parent)
* reference to it’s parent
* reference to a context
* state information


general functions:
* create/destroy itself
* draw (via framebuffer or sub-widgets)
* update (sizes, positions of itself or its sub-widgets)
* react on user activity
* (drag&drop, context help...)


widget type specific functions


Figure 3: general attributes and methods of widgets


3.2.2 Widgets


Widgets are the building bricks of which a user interface is made of. Each
widget takes care of a certain rectangular region of the screen. Within this
region there is a graphical representation of ’data’ or ’protocols’.


Figure 3 provides an exemplary overview over the general attributes and
methods of widgets.


The term ’data’ refers to static elements ranging from simple labels (rep-
resenting text strings) over buttons (representing states) to more complex ob-
jects, such as images. Even other widgets can be considered as data by ’layout’-
widgets, which organise a number of ’child’-widgets within itselfs. All ’data’-
widgets represent static information. When it comes to the representation of
dynamic information ’protocol’-widgets come into play.


While a ’data’-widget handles an associated data type, a ’protocol’- widget
handles an associated protocol providing a specific communication interface
to the users application. In this way certain screen areas can be assigned to
different protocols. Examples for such protocols are VT100, pSLIM, X-protocol,
Glx or PostScript.


The option to transparently add new protocols or data types to the win-
dowing system fulfills the design criterion ’expandability’.


A widget does not only take care about the graphical representation of its
associated data or protocol - it also handles user interactivity. The way which
a widget reacts to users activity is primary defined by the widget itself - not
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by the application. This ensures a consistent way of how widgets appear and
behave across different applications.


The advantages of this approach are:


� There is a high degree of independence between the application and its
user interface. Since the windowing system has the information of how
a certain widget is represented on the screen it can handle its redraw
without interacting with the application. In contrast to other windowing
systems (e.g. X-windows) windows can be moved or resized without the
help of the applications. Consequently, the communication bandwidth
between the client and the window server is reduced to a minimum.


� The windowing system ’knows’ the data the user is working with. In
classical windowing systems only the applications have the information
about the ’meaning’ of the displayed information. When exchanging
data between applications active help of the applications is needed. If
the windowing system can interpret the represented data it can provide
basic functionality by itself. E.g. for any Image-widget the windowing
system could provide standard functions such as copy, save, drag&drop,
zoom, brightness control etc. The applications scope can be reduced to
its core functionality.


3.2.3 Structure of the window server


The central component of the windowing server is a command interpreter,
which is used by applications to control their user interfaces. Applications
can create and configure widgets and define relationships between the wid-
gets using an object oriented command language. More information about the
command language can be found in section 3.3.1.


Figure 4 illustrates an example constellation of an application, the win-
dowing server and some exemplary widgets. The application instructs the
command interpreter to create the widgets of its user interface. As seen in
the figure there are different types of widgets. The pSLIM-widget exemplifies
a ’protocol’-widget, which provides an independent communication interface
to the application. This enables the representation of dynamically changing
data. In contrast to that, the other widgets represent ’static data’ such as texts
or images. The Image-widget is a good example of what is possible when the
windowing server ’knows’ the data, the user deals with. It can provide stan-
dard operations, that can be applied to any widget of this type. This offered
functionality need not to be inevitably built in the widget - the widget can uti-
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Figure 4: relationship between an application and the windowing server


lize even an external function library, that runs in a separate address space.
The library can be assembled by the user without changing or configuring the
windowing server.


3.3 Client-server communication


This section addresses the communication concept between client applications
and the windowing server.


The client’s view on the windowing server is at a high abstraction
level. Since the server handles widgets and their topological structure au-
tonomously, clients do not need to take care about the physical representation
of widgets (e.g. type information of their attributes etc.). The only remaining
responsibility of a client is the definition of the widgets properties and how
widgets relate to each other (widget topology), leading to a layout of the user
interface. Due to the client’s abstract perception of the windowing server, an
abstract way is advisable to express the widget’s properties and topology.


The problem of a compact description of a user interface was solved al-
ready in a very elegant way by the developers of Tcl/Tk. Because of the lingual
limitations of C/C++ a script language was invented, which was optimised for
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describing user interfaces. One great feature of Tcl/Tk is the ’tag-value’ nota-
tion for specifying widget’s attributes. The following Tcl/Tk command creates
a Button-widget with its initial properties:


button .b -text "Quit" -bg red -command exit


An equivalent expression of this action would take at least 4 lines of C/C++-
code (the creation of the widget, the definitions of each attribute). Even worse:
The fact that the 4 C/C++ instructions belong to one action gets lost. Thus,
when updating multiple widget attributes, the widget’s appearance must ei-
ther be updated after each attribute assignment (although only one redraw is
needed) or explicitely by calling an ’update’ function (resulting in 5 lines of
code).


Besides the compactness, the usage of a command language for this pur-
pose implies some other advantages:


� The communication interface is very simple - it must only be capable of
transferring ASCII-strings.


� The command language can be extended without any change of the com-
munication interface. The presence of a new widget type enhances the
command language but has no effect on existing applications.


� A user interface can be designed using a command shell - a big advan-
tage of Tcl/Tk is the easiness of experimenting.


An obvious drawback of this approach is the overhead caused by the parsing
of the commands. Practically, this drawback does not come to the fore. Client-
server communication happens only during the initialisation and reconfigura-
tion of the user interface’s widgets - in contrast to X-windows, where clients
get involved in every graphics operation (e.g. when moving or resizing win-
dows).


3.3.1 Lingual scope and syntax


Each command is one entity, which can be executed completely without tak-
ing the previous and next commands into account. Thus, there are no control
structures needed. The control flow is the client’s responsibility and must be
implemented on the client’s side.


Although Tcl/Tk was mentioned as a clever way to describe user inter-
faces, its syntax is not used here. The chosen syntax reminds strongly on
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C/C++ but features advanced lingual expressions. The following syntax defi-
nitions are expressed in EBNF notation - they are not exhausting but reduced
to the essential rules.


There is only one keyword ’new’, which is always used in connection with
an assignment:


<create> := <refname> ’=’ ’new’ <type> ’(’ { <tagval> } ’)’


It is used to create a new object of the specified <type>. After the execution
of such a command, the object can be referenced using the <refname>. Both
<refname> and <type> are identifiers:


<digit> := ’0’|’1’| ... |’9’


<letter> := ’a’|’b’| ... |’z’|’A’|’B’| ... |’Z’


<ident> := <letter>|’_’ { <letter>|<digit>|’_’ }


<refname>:= <ident>


<type> := <ident>


Optionally, object attributes can be set up inside the brackets. The attributes
are specified by a sequence of tags and values:


<tag> := <ident>


<value> := <int>|<float>|<ident>|<string>


<tagval> := ’-’<tag> <value>


Tags specify the attribute the <value> is assigned to. Once an object is created
its <refname> can be used to invoke methods within the object:


<method> := <ident>


<methodcall> := <refname>’.’<method>’(’<params>’)’


The parameter sequence consists of an mandatory and optional part:


<manpar> := <value>{ ’,’ <value> }


<optpar> := <tagval>{ <tagval> }


<params> := [<manpar>] | [<optpar>] | <manpar> ’,’ <optpar>


Mandatory parts must be specified likewise function parameters in C/C++.
Additionally, optional parameters can be passed using the ’tag-value’ notation.
For each optional parameter a default value is predefined, which is used when
the optional parameter is not specified. If a method returns an object reference,
the return value can be assigned to a reference identifier.
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<invoke> := [<refname> ’=’] <methodcall>


While attributes are set via method invocations, they can be requested by us-
ing:


<attribute> := <ident>


<request> := <refname>’.’<attribute>


So a command is either an object creation, a method invocation or an attribute
request:


<command> := <create> | <invoke> | <request>


3.4 Event handling


The previous section covered the communication from the client to the DOpE-
server. This section deals with the other way: How does DOpE notifies its
clients about events?


The basic idea of the event handling of DOpE is derivated from the event
concept of Tcl/Tk. This concept allows the binding of events to individual
widgets. The kinds of events, that are notified to the application can be defined
for every widget individually.


Figure 5 shows an overview over the used event concept. After the appli-
cation created its widgets it can bind certain event types to its widgets. This
is done in step 1 using the method "bind" of the corresponding widget. This
method gets two arguments: the event-type and an associated event-message.
Both arguments are strings to prevent built-in limitations of the concept. So
the event-message can be any kind of data (identifiers, function pointers etc.).
It is up to the client to define what such a message represents. The available
event types depend on the widget, the event should be bound to. Widgets can
provide custom event types (e.g. a change of the text of an entry field, a change
of a button’s state, synchronisation message of a real-time widget etc.).


The script interpreter of DOpE interprets the command (see section 3.3)
and instructs the widget to activate the desired binding (step 2). Each widget
applies a filter to incoming input events, which only allows bounded events
to be forwarded. When an input event occurs (step 3) the widget checks its
bindings and passes a ’notification’ message to the ’Messenger’-component
(step 4). The ’Messenger’-component is the communication interface to the
client application and forwards the notification to the client via an IPC call.
On the client’s side there is a dedicated thread - the ’Action Listener’ - for
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Figure 5: schematic overview over the event handling of DOpE


receiving event messages from the windowing server (step 5). The client is
responsible of what to do, when the ’Action Listener’ receives an event. Figure
5 shows one way to handle events on the client’s side by queuing them. The
main-thread can request the queued events explicitely (steps 6 and 7).


Another way to handle events on the client’s side is the registration of call-
back functions. In this case the event message represents a pointer to a callback
routine. Everytime, when the action listener receives an event it also gets the
event message and can execute the corresponding callback routine without
interfering the main thread.


Even classical single-threaded event-loop based applications are possible
by merging the action-listener and the main-thread into one thread on the
client’s side.


With respect to the design criteria "small interfaces" (section 3.1.2) the in-
terface for transferring events from DOpE to its clients is very simple and
generic. The mechanism allows the implementation of various event deliv-
ery paradigms such as callback functions, event-loops or more powerful ones
on the client’s side.
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3.5 Redraw/real-time concept


The central point of the real-time concept is the redraw handling. Since draw-
ing operations are very time consuming, it is very important to organize them
in a clever way.


Firstly, the problem of executing redraw operations within windowing sys-
tems is outlined. Secondly, a possible solution is shown and discussed briefly.
The following sections show a progress to achieve the goal of real-time capa-
bility at the user interface level.


3.5.1 Clipping


The organisation of a window based graphical user interface is based on rect-
angular areas. Every element of the user interface uses a rectangular shape as
internal representation (window, button etc.). Also redraw operations refer to
rectangular shapes. So the basic problem of (re-)drawing a part of the screen
can be described as follows:


A window can be described by using four attributes (x,y,width,height). Ev-
ery window configuration is an ordered set of windows w[0],w[1],w[2]...w[n].
The index describes the ’depth’ of a window. The index 0 represents the near-
est window (top window). The index n stands for the background window
(desktop).


Redrawing a given screen area (r_x,r_y,r_width,r_height) - called ’dirty
area’ - means firstly, to find out which window is visible at which part of this
screen area.


This is done by evaluating the intersections of the dirty area with the win-
dows - beginning with window w[0]. If there is an intersection of the dirty
area and a window w[i] the area is divided into two sub-areas:


� the intersection area, where w[i] is visible - this area can be drawn im-
mediately


� the rest, where the windows w[i+1]..w[n] are potentially visible. We have
to go on with the intersections of this area with w[i+1]..w[n] recursively.
(the remaining area is usually not rectangular and must be subdivided
into rectangles)


Obviously, the drawing operations within a window must be limited to its rect-
angular area (clipping). So every time, when a drawing operation is executed
a clipping area must be set to limit the drawing to the valid area.
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Figure 6: simplified example of using rectangle lists


The common way to assure the limiting of the drawing operations to the
clipping area is the implementation of clipping checks into the drawing rou-
tine of every graphical primitive.


3.5.2 A straight forward approach


This section discusses an idea of managing redraw operations as described in
[1]. It deals with terms like ’window’ or ’moving a window’ in the meaning of
their common senses.


For a given window configuration the windowing system determines,
which visible rectangular screen area belongs to which window and stores
this information in so called ’rectangle lists’. Every window has an associated
’rectangle list’ holding the information about the visible parts of the window.
Figure 6 illustrates an example window configuration and the corresponding
rectangle lists.


Each time, when the window configuration changes (windows are moved,
resized, they appear or disappear) the ’rectangle lists’ must be updated by the
windowing system.


When a redraw is needed it is up to the client to check the ’rectangle list’
of the affected window and draw the corresponding rectangular areas. The
client has to take care about applying clipping to its drawing routines (see
section 3.5.1).


This approach gives the clients full control about the points in time when
redraws are done. Multiple clients can update their screen areas without block-
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ing each other. It can be seen as a direct mapping of the underlying scheduling
scheme to a graphical user interface.


The biggest advantage of this method is flexibility: a client has full control
over his redraw operations. The windowing system need not to care about
’update rates’ because this is the responsibility of the clients and the scheduler.


So, is there a reason not to go for this easy solution?
Since the clients deal with the redraw operations they need access to the


physical frame-buffer and must implement drawing operations in a correct
way. The windowing system has no chance to forbid a client to paint on other
client’s screen areas. One client can mess up the whole screen. This conflicts
heavily with the security design criterion described in section 3.1.4!


Due to the assignment of a huge part of the GUI’s responsibility to the
clients they need a lot of information about the system (screen size, color depth
etc.) and grow very complex. The clients have to deal with a lot of things
(painting of elements of the user interface), that do not belong to their actual
scope.


It is hard to establish an uniform look and feel among the client applica-
tions if every client is completely responsible for its appearance and behavior.


This problem could partly be solved with a library, that provides standard
functions for the drawing and handling of the GUI’s primitives.


Still, the big security drawback remains.


3.5.3 Further demands


The previous section covered an easy way to manage multiple windowed
client applications on one screen. This surely satisfies the meaning of the term
’windowing system’ but it is far behind the needs of a modern graphical user
interface.


This section examines which demands are made to a graphical user inter-
face. it should impart a feeling about the range of problems, which must be
respected while designing the concept.


Firstly, the results of section 3.5.2 are taken into account. After that, an-
other important property of modern user interfaces - hierarchical widgets - is
introduced. Subsequently, the view on the user interface from three different
perspectives (user, real-time-application, non-real-time-application) is illumi-
nated.


Shrinking client’s responsibility


The consequence of section 3.5.2 is that drawing operations should only be
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executed by one trusted instance - the window manager. The responsibility
of the clients should be set to a minimum to meet the security and ergonomic
goals described in section 3.1.


Hierarchical widgets - clipping stack


Typically, a graphical user interface does not only features windows as prim-
itives (as done in section 3.5.2) but more advanced widgets. Widgets can be
organised hierarchically to build complex dialogs out of them. The hierarchi-
cal structure of widgets leads also to a hierarchical structure of clipping areas.
A ’layout’-widget (a widget which handles one or more ’child’ widgets) has to
limit its output to its own area before drawing its children. A child can be a
’layout’-widget again etc.


Examples for layout widgets are: Windows (a Window consists of the win-
dow elements and its content - which is a widget), Frames (where its content
can be placed independently by using Scrollbars), Scrollbars (which consists of
arrows and a slider), Grids (child widgets are organised in rows and columns
on a grid) etc.


The hierarchically clipping is done using a clipping-stack. Each stack el-
ement represents a rectangular screen area. When pushing a new area to the
clipping-stack, the current clipping area (the current top element of the clip-
ping stack) is shrunk to be the intersection of the new and current clipping
area.


Since only one instance (the window manager) is responsible for drawing
operations only one clipping stack exists. As a consequence only one redraw
operation can be executed at any one time and must be finished before any
other redraw operation can be started. (otherwise it would be hardly possible
to keep the user interface consistent during window configuration changes)


In contrast to that, classical windowing systems - such as X-windows - con-
sider the window’s content as ’flat’. The handling of hierarchically structured
widgets is the client’s responsibility. X-windows has no information about the
’meaning’ of the window’s content.


The users demands


The one, for whom all this work is primary done is the user. So what are the
most important things about the user interface from the user’s viewpoint?


� low reaction times/ergonomic issues: The usage of the user interface
should be sensed as fluently and comfortable. A user interface can only
be attractive to a user when giving him the attention he needs.
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� accessibility: Even under hard circumstances (very low free CPU time)
the user interface still needs to be usable. The user should never gain the
feeling not to be master of the system.


User generated redraws can occur at any moment because no predictions
about the user’s actions can be made. It is important to execute this kind of
redraw immediately (or at least: keep the delay of the redraw in a tolerable
range) to guarantee the accessibility of the user interface.


Demands of non-real-time processes


The only important thing about non-real-time processes concerning the user
interface is topicality. The visible appearance on the user interface must repre-
sent the current state of the running application.


The generation of redraws of non-real-time widgets is done explicitely by
the associated program. When considering ’hard’ situations (low free CPU
time) delays of redraw executions are acceptable. (either way, the user can not
decide if the client or the windowing system causes the delay - so this does not
harm his comfort)


Demands of real-time processes


The strictest conditions about redraws are made by the real-time widgets.
Their redraws must be executed in a very controlled way to make sure that
the needed service (a constant frame rate) can be guaranteed. Non-controlled
delays of redraws must be obviated.


There is one nice thing about redraw operations caused by real-time wid-
gets in contrast to the users or non-real-time redraws: They are predictable!


3.5.4 A naive way


The simplest way to let the user interface work follows the rule: first come -
first served.


A ’draw’ method inside the window manager is called each time, when a
redraw is needed. If the window manager is already busy with another redraw
the caller has to wait until the current redraw is finished (section 3.5.3).


Each real-time widget has a dedicated thread running at DOpE’s user
space. It continuously produces redraw events for its corresponding widget.
So basically any desired constant update rate of a real-time widget could be
realised.


When assuming a lightening fast execution speed with redraw operations
taking only a very small fraction of the available CPU time this method could
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work well. So the user interface would only become active from time to time
to do a redraw - which is done instantly.


Sadly, such assumptions can not be made. Practically, screen drawing op-
erations are very time consuming on account to a small screen memory access
bandwidth (see also section 5.1). So multiple redraw requests can easily col-
lide with each other. Such collisions cause a delay of the redraw operation
which can have fatal consequences for concurrent real-time threads or even
the system’s overall accessibility.


Even worse - it is not predictable if the window manager can bear an addi-
tional real-time widget in a certain situation. So the only way to discover that
is just to try it out and risk a harm of real-time conditions or even a collapse of
the system. This hardly meets the understanding of ’Quality of Service’.


3.5.5 Introducing the Redraw Manager


The first idea coming in mind to outplay at least a part of the arising problems
is the introduction of priorities. They are assigned to redraw operations to
reduce the blocking of important (real-time) redraws by unimportant (non-
real-time) redraws.


Instead of performing redraw operations directly by instrumenting the
’window manager’ (as described in section 3.5.4) redraw requests have to be
registered at a dedicated component - namely Redraw Manager. The Redraw
Manager stores incoming redraw requests together with their priorities into a
’redraw queue’. Figure 7 shows an illustration of how the Redraw Manager
works. Each party (user-thread, real-time-widget, non-real-time-widget) can
register redraw requests. When executing the stored redraw requests the Re-
draw Manager can take their associated priorities into account to determine
the chronological order of the redraw request executions.


The decoupling of the creator and the executor of redraw operations leads
to a much more structured way to handle them. Since real-time widgets can
produce redraws at high priorities their needs are respected much more than
previously (section 3.5.4).


For an estimation of this strategy, the demands of the user, the non-real-
time clients and the real-time clients have to be taken into account. The fol-
lowing hassles show up:


real-time clients viewpoint:


� Each real-time widget needs a dedicated thread that constantly produces
redraw requests.
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Figure 7: Redraw Manager


� Every real-time redraw producing thread (one for each real-time wid-
get) produces redraw requests independently. No assumptions can be
made that these requests are equally distributed in time. The redraw
requests are produced in a more or less chaotic way (especially when
multiple widgets use different update frequencies). As a consequence,
unpredictable temporary hard situations can emerge.


� The core of the problem remains: A once started long running redraw
operation prevents other redraw operations from execution until it is fin-
ished. So a low priority redraw can cause unswallowable delays of high
priority redraw operations.


users and non-real-time clients viewpoint:


� A permanently too low amount of free CPU time rises the queue size and
can cause a queue overflow - this can lead to ergonomic drawbacks and
even to the loose of accessibility. There is no indication of what ’too low
free CPU time’ means.


� The effect of a newly appearing real-time widget is not predictable.
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3.5.6 An extreme approach as direction sign


One word, that immediately arises when engaging real-time operating sys-
tems is ’period’. A typical real-time application uses a fixed time to produce
or consume a fixed amount of data (e.g. a video/audio stream) during one
period. The execution of periods is clocked. The big advantage of these con-
straints is the predictability of the system’s behavior. Until now, the concept of
the user interface does not fit very well into this scheme.


As ’real-time’ was declared as an important design goal it would make
sense to let the user interface work periodically.


A simple periodically working user interface could force a redraw of the
whole screen periodically. The needed time for the redraw could be estimated
by a heuristic function dependent on the used widgets or by measuring the
drawing speed. The needed time for such a redraw could be reserved using a
real-time-scheduler.


The bad thing about this idea is the dramatical decrease of the overall sys-
tem performance because of the big amount of unnecessarily executed redraws
of passive screen areas.


Another disadvantage is the need of a global screen update frequency. This
screen update frequency sets the limit for the speed of all actions on the screen
(frames per second for animations as well as the speed of window movements
etc.). However, it could be specified by the user dependent on the performance
of the platform and the used applications to fit his needs.


Obviously, the waste of CPU time makes this construction not usable for
practical needs. But it shows the direction to go for.


3.5.7 A periodically working concept


The point of this section is to combine the ideas of the previous sections. The
result should be a periodically working concept, which respects the different
needs of the user, real-time clients and non-real-time clients.


The upper part of figure 8 displays a single period and its usage for real-
time and non-real-time operations. The condition for these operations is not
to exceed the time of the period (t_max). If this happened the execution of a
drawing operation would rise up into the beginning of the next period.


The field of duty of the Redraw Manager is shrunk to handle only the users
and non-real-time redraws. Real-time redraws are handled by a new compo-
nent, called Realtime Manager (which should actually be called Realtime Re-
draw Manager).
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Figure 8: period with a mandatory and optional part


The drawing of the real-time widgets must be done without any condi-
tions. Thus, this is done at the beginning of the period by calling a corre-
sponding function of the Realtime Manager. Since the CPU time requirements
of real-time widgets are predictable the exceed of the period’s length can be
prevented.


The remaining time of the period can be used to perform the execution of
the Redraw Manager’s drawing operations, generated by the user and non-
real-time clients. Again, an exceeding of the period’s length must be strictly
prevented. For this reason the remaining time is passed to the Redraw Man-
ager as an argument. The residual question of how the Redraw Manager en-
sures to keep the redraw operations time into the given range is covered in the
following section.


The lower part of Figure 8 shows an additional feature of modern real-
time scheduling models: optional parts. While the upper (mandatory) part
implements the essential functionality, an optional part has the task to increase
"the quality" of the functionality. In contrast to the well defined execution of
mandatory parts, optional parts are only executed sometimes to fill CPU time
gaps.


The usage of optional parts for non-real-time redraws is a good example of
how to increase the "quality" of the user interface at times, when there is some
CPU time left. E.g. section 3.5.9 will show the effect of optional parts on the
’smoothness’ of the user interface.
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3.5.8 Subdividing redraw operations


As stated in section 3.5.3 redraw operations must be completely processed at
once. A long continuing redraw operation delays other redraw requests until
it is finished. If such a redraw exceeded the length of a period (see the previ-
ous section) it would delay the real-time redraws of the next period. Such a
behaviour must strictly be circumvented.


The key is, to split large redraw requests into smaller ones before executing
them.


Firstly, a function ’Redraw_Pixels’ is introduced, that takes a number of
pixels as argument and executes queued redraw operations with the specified
number of pixels.


The function takes always the first redraw queue element and tries to re-
draw it. If the size of the redraw operation is higher than the maximum
amount of pixels to draw, it is divided into a part that fits into the left amount
of pixels to draw (this part is drawn immediately) and a part that stays at the
top of the redraw queue.


Additionally, a heuristic function is needed to determine how many pix-
els can be drawn within a given time. This heuristic needs not to be exact.
It should be chosen pessimistic to make sure that execution time of a ’Re-
draw_Pixels’ function call does not exceed the ’left time’ of the period. Al-
though, a too pessimistic heuristic function would cause an overhead by need-
less ’redraw splittings’.


The following pseudocode illustrates the idea:


WHILE ((redraw_queue_size>0) AND (left_time>0)) DO BEGIN


beg_time := Get_Time()


num_pixels := Pix_Per_Usec(left_time)


Redraw_Pixels(num_pixels)


{ determine how much time is left }


end_time := Get_Time()


left_time := left_time - (end_time - beg_time)


END


It is recommended to base the heuristic function on performance measure-
ments. Two meaningful values, that can be taken into account, are the write
access speeds to the screen memory (on the graphics card) and main memory.
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Another way to define the heuristic function can be based on real-life mea-
surements. During redraw operations of windowing system the pixel/time
ratio can be measured to influence the heuristic function dynamically.


3.5.9 Reducing non-real-time redraw operations


In order to shrink the needed CPU time for dealing with non-real-time wid-
gets to a minimum, redundant drawing operations must be prevented. The
’redraw queuing’ concept makes away free to perform some great optimisa-
tions.


The first optimisation aims at the prevention of redundant redraw opera-
tions.


The second optimisation utilises the queue length as a criterion to decide
whether redraw operations should be generated or not.


Redraw dropping


Since the execution of redraw operations is a time intensive task there is
a great chance that multiple redraw requests for a certain screen area occur
before this area is completely updated. Such a situation can even cause an
overflow of the ’redraw queue’. Consequently, the Redraw Manager has to
ensure that all redraw queue elements refer to disjoint screen areas.


The idea of redraw dropping is based on the following advisement: For
widgets, which change their state faster than redraws can be executed, only
the most recent state must be made visible on the screen. Add sub-states in
between two redraw operations can be skipped. Every time a widget changes
its state a redraw request is generated - but only some of them induce an actual
redraw operation.


For each incoming redraw request its intersections with the currently
queued redraw requests are determined. If such an intersection occurs the in-
tersection is ’cut out’ of the new redraw requests area. Obviously, new redraw
requests that are completely covered by an already queued redraw request are
completely skipped (e.g. a typical situation is a scrolling screen area).


Technically, the ’cut out’ is performed by creating one or multiple rectan-
gles out of the remaining area of the original redraw request. The intersection
tests with the rest of the queue must be applied for each of these rectangles.
This leads to recursive computations with branching factors ranging from 0
(new redraw request is completely covered by an existing one) to 4 (new re-
draw request contains an existing one completely - a rectangular hole of the
redraw request must be ’cut out’).
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Since overlapping drawing operations can be prevented by this technique
the maximum amount of queued ’dirty’ pixels is limited by the screen size.


On the other hand there exists a drawback due to the needed recursive
computations.


So there is trade-off between the expense of redraw operations and the ex-
pense of computations of the optimisation. Practically, the amount of recursive
operations can be held very low by assigning dedicated widgets to redraw op-
erations. Thus, the intersection tests must only be applied to queue elements
referring to the same widget.


Adaptive user input handling


The previous section dealt with optimising the ’redraw queue’ using recur-
sive computations. This optimisation only works until the queue size enlarges
to a size, where the these computations get more expensive than the redraw
operations itself.


So the aim of this section is the reduction of the amount of redraw requests.
This is done by taking the current ’redraw queue’ size into account. A high
queue size is a sign for a ’hard situation’.


The Redraw Manager handles only non-real-time redraws. So redraw re-
quests can be caused either by non-real-time application or by user actions
(e.g. the user moves a big window). The priorities in such ’hard situations’
are:


� ’Quality of Service’ - real-time redraws must not be harmed


� accessibility - the user interface must remain completely accessible by
the user


The ’smoothness’ of non-real-time redraws (e.g. the smoothness of a moving
window) plays only a minor role. So the current queue size can be used as an
indication to skip non-essential redraws caused by the user.


Naturally, this technique can be applied to limit the generation of redraw
requests of non-real-time clients, too. The execution of a non-real-time client
could even be delayed until the ’hard situation’ is over.


Optional parts (as described in section 3.5.7) can help to additionally de-
crease the ’redraw queue’ size. In return, the number of skipped non-essential
redraws decreases, too. This raises the ’smoothness’ of the user interface in
such situations.


36







3.5 Redraw/real-time concept 3 CONCEPT


t


2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
period


tmax


a)


t


2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
period


tmax


b)


worst case


1


1


Figure 9: two opposing real-time redraw strategies


3.5.10 Handling of real-time widgets


The redraw handling of real-time widgets is much straighter than the handling
of non-real-time redraws because their constraints limit the ways to handle
them a lot.


Section 3.5.7 already broached the problem of integrating real-time widgets
into the periodically working concept. The described concept shares one dis-
advantage with the ’extreme concept’ (section 3.5.6): there exist global period
parameters (frequency and duration time). The problem of supporting differ-
ent update frequencies (frame rates) for different widgets arises immediately.
A way to provide a certain degree of flexibility is, not to draw each real-time
widget at every period but leaving out a widget-specific number of periods be-
tween its redraws. E.g. when a global period frequency of 100Hz is given, real-
time widgets could be updated at frequencies of 100Hz, 50Hz, 33.3Hz, 25Hz
etc. (any whole-numbered fraction of the global period frequency). These
’frame rates’ are typical for common multimedia applications. Thus, this de-
gree of flexibility is sufficient for the applications this work is aiming at.


Given a situation, where multiple real-time widgets at different frame rates
must be handled, the windowing system must decide, which widget must be
drawn at which period. The drawing time of each real-time widget is known.
Obviously, the needed time for all real-time-redraws at a certain period is the
sum of redraw operations that become due in this period. The windowing
system has to ensure that this sum does not transcend the whole duration time
(t_max) of the period.
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Different strategies are possible to fulfill this condition. The windowing
system does not provide one predefined solution but offers a general interface
for implementing such strategies. To display the wide range of possible ways,
two opposing examples are illustrated in figure 9:


a) Any whole-numbered fraction of the global period frequency can in-
dividually be chosen for each real-time widget. New real-time widgets are
accepted as long as the sum of all real-time redraw durations is lower than
the length of the period. Even in the worst case - when all redraws must be
executed at one period - the sum of all redraws is still lower than the period’s
duration time. So the condition is fulfilled for sure. There is only one impor-
tant drawback for practical uses: The decision about new widgets acts upon a
hypothetical worst case - so the criterion to decide about new real-time wid-
gets is far too pessimistic.


b) In contrast to the previous strategy only one update frequency for real-
time widgets is allowed (e.g. 25Hz). Periods are grouped into time slots (e.g. 4
time slots when 100Hz periods are used). In this way, real-time redraws can be
executed interleaved. New real-time widgets are accepted as long as there is a
time slot, which can hold the new widget’s redraw without exceeding the pe-
riod’s length. As indicated by figure 9 this strategy is capable of handling more
real-time widgets without exceeding the period’s length than the first strategy.
The drawback of this solution is the lack of flexibility of update frequencies.


Obviously, the golden way for practical uses is somewhere in between
these two exemplary strategies.


3.5.11 The next level - multiple clipping stacks


Although the previously described concept provides enough flexibility for
common multimedia applications and fulfills the today’s needs, it is rather
limited compared to the freedom of the ’Artifact’ windowing system [1] (see
section 3.5.2).


As stated in section 3.1.3 ’future compatibility’ is a strong design criterion
- so limiting the ways to handle real-time redraws to the previously described
concept can be a stumbling block for future developments.


A way to ensure the maximum of flexibility is the support of concurrent
redraws. In contrast of the sequential processing of all redraws (as done in the
previous sections) more than one redraw operations at a time must be allowed.


In section 3.5.3 a clipping stack was introduced to handle the clipping of
hierarchical widgets. The consequence was, that only one drawing operation
can take happen at a time. The key to support concurrent redrawing opera-
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tions is the handling of multiple clipping stacks. Every thread of the window
manager, that concurrently accesses the screen has to manage one clipping
stack for its current drawing operation. Consequently, the corresponding clip-
ping stack must be passed as parameter to the draw functions of the widgets -
in contrast of the common use of one global clipping stack as done before.


Each window has to hold a semaphore to assure the consistency of the
window’s positions and sizes. It is locked during the usage of the window’s
properties (size and position). So a window can not change its properties dur-
ing its involvement in a drawing operation.


The usage of concurrent redraws by using multiple clipping stacks is nei-
ther essential for todays needs nor used by the currently available widget
types. Concurrent redraws are just a further option to provide a maximum
of flexibility for the future. Widgets, that utilise concurrent redraws have the
same degree of freedom and responsibility as applications on the ’Artifact’
windowing system.
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4 Implementation


The conceptual ideas, which were discussed in the previous sections, were
implemented in the form of the windowing system DOpE. DOpE stands for
’Desktop Operating Environment’.


This section will firstly provide general information about the implemen-
tations philosophy. Subsequently, the current state of development is sum-
marised. After that, several interesting aspects about the implementation get
outlined.


4.1 Implementation related design criteria


In section 3.1 general design criteria were discussed. When it comes to a con-
crete implementation, even more aspects arise. This section will show addi-
tional goals and criteria, that were taken into account when implementation
related decisions were made.


Often there is a trade-off between these criteria. Optimising the code to a
maximum (and taking processor types etc. into account) obviously conflicts
with the goal ’portability’.


4.1.1 Performance and memory usage


The economical usage of CPU and memory resources can be seen as a general
rule. As much as possible CPU and memory resources should be kept free for
the usage by applications.


Basic rules were:


� no multiple storage of data


� compact data structures


� very sensible use of external libraries: even libc is not used by DOpE


4.1.2 Portability


All code it written in 100% ANSI-C.
As expected, DOpE has to deal with a number of platform dependent


things, such as mouse, keyboard, screen drivers etc. All platform dependent
elements are encapsulated into separate components with sensibly defined in-
terfaces. For all platform dependent functions (memory allocation, thread cre-
ation), abstractions were created and consistently used. This makes it possible
to keep the majority of the code generic.
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All inter-process-communication interfaces were defined using IDL (’In-
terface Description Language"). So DOpE can easily be ported to platforms,
where an IDL compiler exists. Additionally, all parts of DOpE, that deal with
inter-process-communication were encapsulated into separate components.
So the communication technique can easily be exchanged by implementing
new communication components featuring the same interfaces. (e.g. to let
DOpE run over a network)


4.1.3 Object orientation - encapsulating


The code is structured in an object oriented fashion. It is consequently di-
vided into functional entities with clearly defined interfaces (components).
Originally, the modular design aimed at the runtime-exchangeability of single
modules. Only modules, that are currently needed should be kept in mem-
ory. Since L4 does not feature the needed infrastructure for this (file-system,
dynamic loader library), this functionality is not fully implemented but pre-
pared.


4.1.4 Easy client development


The acceptability of DOpE within the OS community highly depends on the
ease of client development. For this reason a library was implemented, which
features an easy-to-use interface to create DOpE-clients.


Even without this library it is no hard deal to create a DOpE client.


4.2 Current features of DOpE


� fully functional, non-blocking windowing system


� double buffered output


� font engine, that supports proportional bitmap fonts


� redraw concept supporting non-real-time and real-time widgets


� client-server communication via Flick (L4) or Orbit (Linux)


� command interpreter


� event handling concept


� keymaps to support different keyboard layouts


� a library for easy client development
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/* create buttons and label them */
conn    = new Button(-text "Connect")
disconn = new Button(-text "Disconnect")
clear   = new Button(-text "Clear")
save    = new Button(-text "Save...")


/* place buttons into a 4x1 grid */
topgrid = new Grid()
topgrid.place(conn,   -column 1 -row 1 -padx 2 -pady 2)
topgrid.place(disconn,-column 2 -row 1 -padx 2 -pady 2)
topgrid.place(clear,  -column 3 -row 1 -padx 2 -pady 2)
topgrid.place(save,   -column 4 -row 1 -padx 2 -pady 2)


/* create terminal and put it into a scrollable frame */
term = new Terminal()
termframe = new Frame(-scrollx yes -scrolly yes -content term)


/* place buttongrid and terminal into a 1x2 grid */
maingrid.new Grid()
maingrid.place(topgrid,  -column 1 -row 1)
maingrid.place(termframe,-column 1 -row 2 -rowspan 4)
maingrid.rowconfig(1,-size 25)


/* create and open window */
termwin = new Window(-fitx yes -fity yes -content maingrid)
termwin.set(-x 200 -y 150 -w 430 -h 365)
termwin.open()


buttons
arranged in a


4x1 grid


scrollable frame containing a
terminal widget


Button "conn"Button "disconn"Button "clear" Button "save"


Grid "topgrid"


Frame "termframe"Grid "maingrid"


Window "termwin"


Terminal "term"


Figure 10: example of using different widgets, corresponding source code and
widget hierarchy


4.2.1 Widget-set


The current implementation of DOpE provides a basic widget set. Due to the
modular concept new widget types can easily be added. The following sub-
sections are brief descriptions of the implemented widget types.


Figure 10 shows the user interface of an example ’terminal’ application. It
makes use of different widget types, which are provided by the current imple-
mentation of DOpE. The following subsections briefly describe the most inter-
esting widget types. Primitive widget types such as Button or Background are
not explained because they are considered as being common sense.


Window


Window-widgets are the basic elements of the windowing system. A Win-
dow consists of window control elements and its content. Window control
elements can be used to arrange windows, to resize them or to change their
stacking order. The provided elements are:
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� ’border’, that surrounds the window. It allows the resizing of the win-
dow by dragging the border with the mouse.


� ’title-bar’, which contains a window title. It is used to move the window
on the screen (by dragging the title-bar) or bring the window to top (by
only clicking on the title bar).


� ’closer’ for closing the window


� ’fuller’ for setting the windows size to its maximum


The presence of the window elements is configurable per window.


Container


A Container-widget is a ’layout’-widget, which can hold multiple ’children’
widgets. The children can be placed relative to the Container’s position by
using pixel coordinates (the origin of the coordinates is the top-left corner of
the Container).


Frame


Frame-widgets can be used to hold a ’child’-widget (content) of any size
inside a definable rectangular area. If the content is bigger than the Frame
itself the viewport at the content is freely definable. Additionally, a Frame can
provide full scrollbar functionality to let the user define the viewport freely.


Grid


Grid-widgets allow the arrangement of multiple ’child’-widgets on a grid.
The rows and columns of the grid can be configured to fixed or weighted sizes.
A ’child’-widget can not only be placed into a grid cell - it can even cover
multiple grid cells. Additionally, horizontal and vertical spaces around ’child’-
widgets can be specified. The outcome of this is a very powerful tool to layout
dialog windows.


pSLIM


The pSLIM-widget is an implementation of the pSLIM-protocol, which was
mentioned in section 2.2. It is the key to port ’Dropscon’ applications to DOpE


easily. An example for such an application is L4Linux. Each pSLIM-widget
manages a separate virtual screen buffer. The size of the widget can be chosen
independently from the size of the virtual screen buffer. In this case the output
is scaled to fit into the desired widget’s dimensions.
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PSLIM-widgets can be configured to act as real-time widget. In this case it
is periodically updated at a specified frame rate by copying the virtual pSLIM


screen-buffer to the physical screen. Otherwise a non-real-time redraw is re-
quested after each processed graphics operation.


Terminal


The Terminal-widget allows the output of text. It provides a subset of VT100
functionality. Additionally, back and foreground colors are supported (via
standard escape sequences).


4.3 Parallel development for Linux and L4


While DOpE is primary designed for L4 it also runs under Linux. This cross-
platform development is a good way to verify the portability design criterion.
The more important reason is, that the development under Linux for Linux
is far more comfortable compared to the permanent use of a test system. The
compile-test-evaluation cycle is significantly lower, because no test computer
must be rebooted.


4.3.1 Hardware abstractions under Linux


As abstraction for the real hardware ’libSDL’ was used. It provides hardware
abstractions for graphical output and user input. The graphical output prop-
erties can be freely chosen (any color depth, screen size). The screen output
appears either as normal X-window on screen or uses a full-screen mode. The
X-window mode is very comfortable for testing.


4.3.2 Thread and memory-management abstractions


The thread abstraction is also based on ’libSDL’, which provides an interface
to create and handle threads. Internally, these threads are POSIX-threads.


For memory allocation and deallocation the corresponding functions of
’stdlib’ were used.


4.3.3 Client-server-communication


Since the inter-process-communication interfaces were defined in IDL lan-
guage, a suitable IDL-compiler (Orbit) was used, to generate the client- and
server stubs for Linux.
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Figure 11: Linux running with DOpE


Sadly, the used IDL compilers Flick (for L4) and Orbit (for Linux) have a
quite different behavior when it comes to string references or the handling of
data structures.


Finally, only the intersection of the features of both IDL compilers could be
used for interface definitions.


4.4 Linux gets DOpEd


The previous section dealt with running DOpE inside a X-window. Now lets
turn it around! - Running Linux inside a DOpE-window under L4.


Figure 11 illustrates how L4Linux and DOpE are related to each other. From
DOpE’s viewpoint L4Linux behaves just like a normal application, that uses the
pSLIM-protocol to display pixel data. L4Linux deals with DOpE using a kernel
module - the L4Linux-stub. The L4Linux-stub plays the role of a DOpE applica-
tion and provides an appropriate interface to the Linux kernel. Furthermore,
the L4Linux-stub provides a ’/proc’-interface containing status information of
the pSLIM-widget such as the virtual screen size, color depth and absolute
mouse position.


The following two subsections describe the two ways of information flow:


� passing input event information into the Linux kernel
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� displaying the Linux output inside a DOpE window


They are followed by a brief description of how to run XFree86 on L4Linux.


4.4.1 Handling input events


When starting up the L4Linux-stub it initiates an ’Action Listener’ thread for
receiving mouse and keyboard events. All input events referring the L4Linux


DOpE-window are immediately forwarded to this Action Listener. For passing
the input events into the Linux kernel it provides two pseudo-device-drivers
(keyboard and mouse) to the kernel. All events, that are received by the Action
Listener are translated to corresponding Linux kernel event messages and are
reported to the Linux kernel.


4.4.2 Displaying Linux output


While initialising the L4Linux-stub a DOpE-window containing a pSLIM-
widget is created via sending the corresponding DOpE-commands to the win-
dowing server. As described in section 2.2 a pSLIM-widget provides a virtual
screen area on which a set of graphical primitives can be applied. For run-
ning Linux in text mode a Linux console driver interface is provided by the
L4Linux-stub. So the L4Linux-stub receives textual output from the Linux ker-
nel and formulates convenient pSLIM-commands to paint the textual output
onto the pSLIM-screen. For speeding up colored textual output the pSLIM-
protocol was slightly enhanced by the ’puts_attr’ command. This command
paints an ASCII-string with interleaved color information to a specified posi-
tion on the pSLIM-widget.


4.4.3 Running X-windows


Due to the open architecture of XFree4, display and input drivers can be trans-
parently added to the X-Server. For forwarding the graphical output of X-
windows to the pSLIM-widget a XFree4 display driver was implemented, that
handles a virtual screen buffer and transfers updated screen regions to the
pSLIM-widget via the ’set’-command. The thread-id of the pSLIM-widget is
requested via the ’/proc’-interface, which is provided by the L4Linux-stub.


As for the mouse driver, basically the standard XFree mouse driver featur-
ing the PS/2 protocol can be used in connection with the ’/dev/input/mice’
interface. Since the L4Linux-stub provides a mouse driver the information
about mouse input events is available at ’/dev/input/mice’. There is only one
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drawback of this solution: The ’/dev/input/mice’ interface utilises the PS/2
protocol, which deals only with relative movements. Consequently, the posi-
tions of DOpE’s mouse cursor and X-windows’ mouse cursor are not consis-
tent. Even worse - the XFree mouse driver accelerates the mouse movements.
So even the relative movements of both mouse cursors are varying.


To solve the mouse consistency problem, the XFree mouse driver was
slightly modified to read the actual absolute mouse position from the ’/proc’
device rather than using the relative movement information provided by
’/dev/input/mice’. The ’/dev/input/mice’ interface is still being used for
handling the mouse buttons and for the information about the points in time,
when mouse movements occur.
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measured on an AMD Duron 700Mhz PC equipped with a Matrox G440 graphics card


Figure 12: practical memory access measurements


5 Evaluation


5.1 Performance


Without any doubt: the transfer bandwidth from the CPU to the screen mem-
ory of the graphics card is the most limiting bottleneck of the performance of
DOpE. Figure 12 displays a table of the measured memory bandwidths on an
AMD Duron test computer. All measurements were done 16bit wise because
a 16bit value is equivalent to a pixel with 16bit color-depth - as used by DOpE.
The low transfer bandwidth to the graphics card is distinctive when compared
to the access speed to the main memory. Due to that fact, operations on screen
memory must be shrunk to a minimum. Thus, DOpE uses an offscreen render-
ing technique (double buffering). A virtual screen buffer is kept in the main
memory. All graphics operations are quickly applied to the virtual screen.
When the graphical operations are finished, the result is copied to the screen
memory only once. So the bottleneck to the screen memory must be passed
only one time per pixel.


A constantly used graphics operation of DOpE is the output of scaled im-
ages (e.g. output of a button’s background or pSLIM-widget).


Consequently, the most interesting values for this practical use are ’main
memory read’ (for reading a source image), ’main memory write’ (for writing
to the virtual screen) and ’copy main memory to screen’ (for transfering the
pixels from the virtual screen buffer to the screen memory).


The needed times for the involved memory transfer operations are (see
figure 12):


� reading a 32bit offset from a ’scale table’: 4*0,0054 usec = 0,0216 usec
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� reading a 16bit pixel from source image: 2*0,0054 usec = 0,0108 usec


� writing a 16bit pixel to virtual screen: 2*0,0057 usec = 0,0114 usec


� copying a pixel from the virtual screen buffer to the physical screen mem-
ory: 2*0,0335 usec = 0,067 usec


The sum of these values is 0,1108 usec. So theoretically 1/0,1108 = 9,025 pixels
can be drawn during 1 usec. The memory accesses for loading the CPU in-
structions are not taken into account because they are kept in the processor’s
cache.


For the real-life measurement the Redraw Manager of DOpE was enhanced
by statistical computations. The ’exec_redraw’ function of the Redraw Man-
ager determines the number of drawn pixels per redraw operation and mea-
sures the corresponding processing time. It keeps track of two values: ’average
pixel/usec ratio’ and ’minimum pixel/usec ratio’. The ’average pixel/usec ra-
tio’ is computated using a sliding mean algorithm with a constant learning
rate of 0.05. The computation is done via:


current := current*0.95 + new*0.05


The results of the real-life measurements after working with DOpE for a while
were 8 pix/usec average ratio and 4 pix/usec minimum ratio. So the average
ratio reaches nearly the theoretically possible value of 9,025 pixels. This is a
strong indication for the efficient implementation of the graphical output rou-
tines and the low overhead caused by the windowing system. The minimum
ratio occurs when multi layered widgets such as stacked ’layout’-widgets must
be drawn.


The statistical measurements are also used as heuristic function in the cur-
rent implementation of the redraw concept (see section 3.5.8).


5.2 Memory requirements


DOpE was designed to fulfill the needs of desktop computers as well as
portable systems. This fact is reflected by the low memory consumption of
both - the windowing server and its clients. The core of DOpE requires less
than 400 kilobytes of memory. The stripped binary of the windowing server
has a size of less than 250 kilobytes - fonts and other required data included!
The remaining 150 kilobytes are dynamically allocated. When clients connect
to the windowing server and create widgets, additional memory for hold-
ing the widget’s data is required. The ’terminal’ example of section 4.2.1 en-
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folds one Window, four Buttons, two Grids, one Terminal and two Scrollbar-
widgets. Anyhow, the windowing server allocates less than 10 kilobytes of
memory to handle these widgets.


When using the offscreen rendering technique (see previous section) addi-
tional memory for holding the virtual screen buffer is needed. E.g. a 1024x768
screen mode with 16bit color-depth requires 1024*768*2 = 1536 kilobytes. The
same applies on pSLIM-widgets, which store their content as raster image.


5.3 Source code complexity


When it comes to security applications - the user must be able to thrust in the
windowing server because it is the only instance with access to the screen-
buffer (see section 3.1.4). For this reason, the windowing server is structured
into independent revisable entities (components) of manageable sizes.


Altogether, the current implementation of DOpE consists of circa 9000 lines
of code.


Since the assembly of a set of DOpE’s components defines the overall func-
tionality of the windowing system it can be adapted to certain applications.
E.g. DOpE can be down-scaled to a minimalistic but full working window-
ing system with circa 7000 lines of code (without pSLIM and Grid). This low
source code complexity enables an exhausting verification of the windowing
system’s functionality.
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6 Conclusions


The concept of DOpE respects the different application’s needs, that were pre-
sented in section 2.1:


� ’Dialogs’ can be implemented using non-real-time widgets. They are
drawn by the Redraw Manager (section 3.5.7).


� ’Continuous data output’ can be displayed using real-time widgets,
which are cyclically updated at certain frame rates with the help of the
Realtime Manager (section 3.5.10).


� ’Sudden data output’ can be achieved by implementing a concurrent
drawing real-time-widget (section 3.5.11), which acts alongside the Real-
time Manager.


Both presented strategies for the handling of real-time redraws by the Real-
time Manager (section 3.5.10) are suboptimal. For practical needs, a reasonable
compromise between flexibility and efficiency must be found.


As stated in section 2.2, the long term objective of DOpE is the replacement
of ’Dropscon’. Although, DOpE implements the pSLIM-protocol completely,
this goal is not reached, yet. Still, DOpE is behind ’Dropscon’ when it comes
to the following aspects:


� DOpE is restricted to use the color depth of 16bit. The principle design
envisions the support of other color depths than 16bit but it is not im-
plemented, yet. Unlike DOpE, ’Dropscon’ can handle all hi/true color
depths that are supported by the graphics card.


� ’Dropscon’ features hardware acceleration support for commonly used
graphics cards to speed up drawing operations. Up to now, ’DOpE’ only
utilises software rendering for its graphical output. As shown in section
5.1 the transfer bandwidth to the screen memory of the graphics card is
relatively slow and limits the output speed a lot. When using hardware
acceleration functions of the graphics card the pixel transfer from the
virtual screen buffer the the graphics card can be circumvented - leading
to a rapid speed increase.


� When using pSLIM for graphical output under DOpE - as done for
L4Linux, the content of the pSLIM image buffer must be stored twice: at
the client’s address space (where drawing operations are applied) and at
DOpE’s address space (from where it is copied to screen when needed).
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Both buffers must be held consistent by copying image data from the
client to the pSLIM-widget of DOpE. A faster and more memory-friendly
way to display image data is provided by ’Dropscon’: The usage of one
shared memory block for both parties (server and client). Consequently,
no pixel data must be transfered from the client’s to the server’s address
space to keep both buffers consistent. For catching up in this ’discipline’
DOpE has to be extended by a new ’image mapping’-widget.


There are a lot of ideas for a further development of DOpE. The following
examples point out the wide range of possible future developments:


� expanding the widget set: The currently available widget types are not
sufficient to built common applications out of them. It should be ex-
panded by a variety of standard widgets such as sliders, menus, pop-
ups, group frames, radio buttons, edit fields, text fields etc.


� making widgets more intelligent: As stated in section 3.2.2, widgets can
provide standard functionality due to their knowledge of the displayed
data. So adding standard functionality and drag&drop capability to cer-
tain widgets would be a great effort for the end user.


� X-widget: A protocol-widget type, providing the X-protocol could inte-
grate L4Linux applications better into DOpE’s desktop.


� ’themes’ support: Modern user interfaces mostly support the ability of
exchanging their look. DOpE could offer a higher degree of customiza-
tion by providing a ’theme’ concept.


� hardware acceleration support: While DOpE renders all graphical out-
put to a virtual screen buffer, the hardware drawing routines of certain
graphics cards can do this job much faster. A viable concept for integrat-
ing hardware acceleration into DOpE could be developed.


� desktop environment: A graphical desktop for launching DROPS-
programs and accessing the system’s components would be a big step
forward to the practical use of DROPS for end users.
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7 Summarisation


With DOpE a slick and extensible windowed graphical user interface is avail-
able for the DROPS operating system. It is a foundation for capturing those
application fields, where comfortable graphical user interfaces in connection
with real-time demands are needed. While being extremely flexible it can be
easily tweaked to fit the needs of a wide range of different uses. Its efficient
implementation entails only a small memory footprint and a low computa-
tional overhead. This fact makes it ideally usable on small devices as well as
on desktop computers.
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Glossary


ANSI American National Standards Institute: primary organisation for defin-
ing technology standards in the United States of America.


EBNF Extended Backus-Naur Form: standard notation for the description of
the syntax of programming languages


FB Frame Buffer: the memory on the graphics card, that stores the physically
displayed image data


GLX: a protocol for transfering 3D graphics commands over an X-window’s
client-server connection


GRUB GNU GRand Unified Bootloader


IDL Interface Description Language: a standard language for describing net-
work transparent interfaces between applications


IPC Inter Process Communication: transfering data between processes run-
ning in different address spaces


PostScript: a programming language for describing printed pages. It is com-
monly used as communication interface to printers, that can execute
PostScript code.


RPC Remote Procedure Call


VT100 Virtual Terminal protocol standard: Additional to the output of plain
text, VT100 includes a defined set of commands (escape sequences) for
controlling the terminal.


YUV color encoding scheme: A color is defined by the components luminance
(Y) and chrominance (UV). While the luminance component is stored at
the full bandwidth the chrominance components are stored at a lower
bandwidth.
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