Measuring Microsecond Delays
Technical Report TUD-FI03-16-November-2003

Jork Loeser

TU Dresden, Germany
contact@os.inf.tu-dresden.de

Abstract , parallel cable

Node A S - Node B

4

~~ o

In this paper we present a setup to synchronize the clocks
of two nodes. We especially derive bounds of the achieved
clock accuracy and examine implementation aspects.

Figure 1: NodesA andB connected to a network. Additionally,
1 Motivation they are connected by a parallel cable for synchronization.

3
3

In other experiments, we want to measure transmission de-

& SELECT .
lays for packets sent over a network between two nodes, as e D1 *
depicted Figure 1. To measure these transmission delays, °e L oslige
we use test packets carrying timestamps. A send applica-
tion at nodeA generates the test packets and adds times- Ei 1 NACK ,
tamps. At nodeB, a receiving application compares the o] SELECT_E:
timestamps with its local clock and calculates the trans- o S 40

mission delay.
) Figure2: Wiring of the parallel cable (used data pins only)
We want the delay measurement to be easy to implement

and to rely on as little hardware and driver support as pos-

sible, as the driver support in our environment is limited.

We also want the delay measurement to be efficient, thdsis paper describes

we do not want to rely on external clocks which are expen-

sive to read. Our experiments are done on x86-based nodes how the synchronization procedure works

that offer atime stamp counter (TSC), a counter running at * how nodeB convertsA’s timestamps td@'’s local time
CPU speed counting the cycles of the CPU [4]. The TSC+ what accuracy can be achieved

can be read within 80 cycles on an Intel P4 1.7GHz, this is* what resources are consumed by the synchronization
about 47ns, and in 32 cycles on other Intel x86 machines process

(P3, P2). Intels SpeedStep technology, when used, influ-

ences the TSC, however in our experiments we do not use

SpeedStep.

_ o 2 Parallel Port Issues
Due to different CPU speeds and fabrication tolerances the

CPU clocks of different nodes run with different speleds

To calculate the delay based on noils timestamps and The parallel port of a PC style computer, originally de-
nodeB’s time, both nodes must be synchronized. For osigned to send data to a printer, has 12 output pins and
experiments we expect packet transmission delays in théput pins. The state of the output pins can be set by
order of microseconds to a few milliseconds, and thus theopgrammed port I/O, and the state of the input pins can
synchronization accuracy has to be a few microseconds.read by programmed port I/0O. One of the input pins
This accuracy can not be achieved by the network that cNACK) can be programmed to raise an interrupt if the sig-
nects node# andB. Therefore we connect nodeandB nal value changes [1].

by an additional parallel cable and use this for the synchro-)
nization process. We connect the parallel ports of both nodes as shown in

Figure 2. As aresult, we can transmit 2 bits in parallel, and
1A 1% deviation of CPUs with the same nominal speed is quitalusuone bit can be used to raise an interrupt at the remote node.

Node A (IRQ timestamp 2 nodeA

nodeB |

)
ready | done time (A) start signal: B-D3:=1
"/ \ / \ A-NACK==1, interrupt
sta go ready signal: A-D3:=1
\ \ - -~ A-D1:=0
Node B timestamp 1 timestamp 3 time (B) poll: B-NACK==1
timestamp 1
Figure 3: Synchronization process gosignal: B-D1:=1
poll: A-SELECT==1
timestamp 2
Signal delays donesignaﬁ: A-D1:=1
A-D3:=0
We did experiments to find out how long it takes that poll: B-SELECT==1
changes at input pins can be seen after the corresponging timestamp 3
output pin was toggled. Therefore we used a loop-back B-D1:=0, B-D3:=0

dongle connecting output pin D1 of one node to its own
SELECT input pin. Then we toggled D1 and measured
how long it takes for the SELECT input value to change.

We did the measurements on different PC style computdt@de- Therefore we guard all poll-operations by timeouts.

The observed delays are quite independent of the nods c0ose 20ps, this is we ensure that all poll operations
CPU speed, as they mainly depend on port-I/O commar@gether do not run longer than 20ps. It may happen, e.g.
of x86 CPUs (there execution times are quite stable am to other interrupts, that one nod_e cannot react within

different CPUs) and on the slow internal ISA bus the palp- se.20gs. Then, the other node times out and the syn-
allel port is connected to (on modern computers this [SAronization process is aborted.

bus is emulated, but it is still slow). The observed delays

are all about 2ps. 3.2 Determining Time and Frequency

Table 1. Synchronization process

. . 3.2.1 Clock Offset
3 Synchronization Procedure

Itis easy to see and explained in detail in [5] that the clock

The synchronization procedure is very similar to Cristia@§Set© from nodeA to B during the synchronization pro-
internal clock synchronization or to that of the server syRESS IS given by

chronization in [5] used by NTP as defined in RFC 1305:
NodeB periodically raises an interruptAtto start the syn-
chronization process. In reactiof,sends a ready-signalyith
and both nodes take timestamps. Later, nAdgends its timestampy -+ timestam

timestamp td which uses it to calculate the clock differ- diff = ! B3 _ timestamp,
ence and the clock drift. 2

diff — jitter <@ < diff + jitter (1)

and
, ti —ti
jitter = mestamps — timestampy

3.1 Getting thetimestamps 2

The synchronization process is shown in detail in Figue2-2 Compensating different clock speeds

3 and Table 1. The interrupt is raised Byby changing

its D3 output pin from 0 to 1. This sets théACK input When doing the synchronization process twice, the differ-
pin at nodeA to 1 and raises an interrupt at nodle The ent clock speeds & andB can be compensated. There-
ready signal of nodeA means settingd3 at A to 1. B fore, we define some variables. Ind¥xrefers to values
polls its NACK pin waiting for theready signal. Once taken from the first synchronization process, indexfers

B sees theeady signal it takes timestamp 1 from its localto values from the second synchronization process.

CPU timestamp counter and sets th& output pin to 1 o

signal). This is observed by polling its SELECT input , ,
timestampy x + timestamps x

pin. A takes timestamp 2 and sends tome signal. This timex =
means setting thB1 output pin to 1.B polls its SELECT , 2
pin until it becomes 1 and takes timestamp 3 then. Finally, jittery, = timestampg x — timestampy,x
B resetsD1 andD3. , 2

remotex = timestampyx
It may happen, e.g. due to an unplugged parallel cable, . timestampy y + timestamps.y
that the signals sent by one node are not seen by the other ~ timey = : > ;

jittery = timestampgy — timestampy,y The precision is calculated and returned to the programs

. 2 as well, so they can verify at runtime that their timestamp
remotey = timestampyy conversions deliver sensible results. We consider this an
conv timey — timex important robustness issue in experimental environments:
remotey — remotex Itis too easy to use a system out of its specifications in the

heat of experiments and rapidly changing test programs.

conv allows to convert timestamps measured at nade

the time metric at nodB. If remote is a timestamp value4.1 Integer Arithmetic

measured at nod&, then the conversion tB’s time local

is done by: An important requirement to the delay measurement is its
efficiency, and therefore we avoid floating point arithmetic
Instead, we use 64bit fix point arithmetic, with 32bit preci-
sion for storing the scaler®nv anddri ft. The timestamps
The timestampsemotex (andremotey) were taken aA and the computed values lafcal and precision are stored
when the time aB was in the interval of lengthitterx with 64bit precision. We useonv anddri f t to denote
centered arourtdmex (jittery centered arouridmey). We the 32bit integer values. We ukecal andpr eci si on
definedrift as to denote the 64bit integer representationdafal and
precision.

local = convx(remote— remotey) +timey (2)

_ jitterx + jittery 3
" timey — timex (3 We assume the clock frequencies of the notlesdB to

) o be between 50MHz and 4GHz. We calculatenv as
Then, the error of equation (2) due to jitter in the measure-

ments is bound by

drift

precision = (local —timey) drift + jittery (4) cony — limey —timex) x 2% 5)
remotey — remotex

This error solely covers measurement errors due to signal
transmission times, but does not take real clock drifts d@enditions for conv With the CPU clock frequencies
to heating or other physical effects into account. in the range between 50MHz and 4GH=nnv is at least
419430, and less thar’2 It can be computed without
overflows as long atimey — timey is less than 2. For
a 4GHz node this is about 100s, for a 50MHz node this is
&\)cer 2 hours.

3.2.3 Clock drift

Real numbers on the drift of a processor clock are har
to find in mainboard or processor specifications. Howeviye calculatedr i ft as
guartz oscillators in general are known to drift with rates

between 107 to 1071° (e.g., [3, 6]).

. . 32
In an experiment we measured the drift rate of a clock in a arify - Jitterx+ jittery) x2 ©6)

PC-style node against the clock in another PC-style node. timey —timex
The experiment was done over multiple hours with differ-
ent load and temperature conditions at the nodes. In tEiénditions for drift

. . : From Section 3.1 we know that
expen;nentwe found the clocks to drift at a maximum raﬁ?tterx and jittery correspond to values less than 20s.
of 1077,

With a minimum pause of 100ms between the two mea-
We conclude, that an estimation of 10for the drift of the surements determiningimex and timey the value of
clock in nodeA against the clock in nod® is a safe value. dri f t is less than 2%

This drift has to be added to that in equation (3). To convert a remote timestamp taken at néd® the time

metric at nodd3, we adapt equation (2):

4 Implementation Aspects and Er-

ror Bounds local = °°“V*(re'””;’;§‘rermte”+timey (7)

We implemented the synchronization process on DROPS

[2] for measurement purposes. DROPS is based on the@a@nditionsfor | ocal Using the same argumentation as
micro-kernel offering static priorities. By giving the synwe used forconv we see that the computation lobcal
chronization programs a high priority we ensured that it #es not overflow as long as the time that passed between
interrupted rarely. measuringemotey andremote does not exceed 100s. In

that casel ocal will be less than %, and the numeratorD ~Summary

in equation (7) cannot overflow.

As conv is rounded to an integer, it might be up to We presented an easy-to-use implementation for internal
off from the real value. Hence, the arithmetic error ifloCk synchronization of 2 nodes. By using a parallel cable

(7) due to the integer operation is bounded(bsmote —
remotey) /2%°. We adapt equation (4) to

(local —timey) x (dri ft + 1)
232
(remote— remotey)
+ 225

precision

+ jittery

(8)

between the two nodes we are able to achieve error bounds
of 10us.

The synchronization runs not more than every second, and
mostly every two seconds. A synchronization does not take
longer than 20us.

The fix-point arithmetic uses integers values scaled for
CPUs with clock frequencies between 50MHz and 4GHz.
Then, the synchronization must be executed at least every
100s, but not more often than every 100ms. The time be-

The addition of 1 tadr i ft covers the arithmetic error intween the last successful synchronization and the conver-

the calculation ofiri f t .

Conditions for preci si on We know thatdri ft <
2?1 Using a simular argumentation as we useddonv
we conclude thatocal —timey < 2%° and hence the first

numerator cannot overflow. The other terms of the su[m

cannot overflow either.

4.2 Errorsdueto Integer Arithmetic

The error due to rounding oftonv is (remote —

remotey)/225. The worst case relative error is achieved
with the remote node running at 4GHz and the Iocg’ﬂ
node running at 50MHz: The relative error is bound by
4GHz/(2?5%50MHz) = 2.4e— 6 then. However, on nodes

with the same speed, the relative errori€2= 3% 10~°.

The error due to rounding ofdrift is (local —

sion of a timestamp must not exceed 100s.

References

[1] Jan Axelson.
parport.htm

Parallel Port Centralhtt p: // www. | vr. conf

2] H. Hartig, L. Reuther, J. Wolter, M. Borriss, and T. Pauooper-
ating resource managers. Hifth IEEE Real-Time Technology and
Applications Symposium (RTAS), Vancouver, Canada, June 1999.

P. Humenn, G. Lewandowski, and D. Zhou. Toward Assurecfed
Time Stamping . Irsixth workshop on distributed objects and com-
ponents security (DOCsec 2002), March 2002.

Intel Corp. Intel Architecture Software Developer’s Manual, Volume
3: System Programming, 1999.

David L. Mills. Internet time synchronization: The nedvk time pro-
tocol. In Zhonghua Yang and T. Anthony Marsland (Eds.), Global
Sates and Time in Distributed Systems, |IEEE Computer Society
Press. 1994.

Chris Rizos. Principles and Practice of GPS Surveying.
available athttp://ww. gnmat . unsw. edu. au/ snap/ gps/
gps-_survey/ chapl/ 132. ht m

(3]

(4]

(6]

timey) /232, which of course is covered by equation (8).

The relative error is 1232 = 2.3x 10719,

For nodes with similar clock frequency, and more than ever
for a slower remote node, the arithmetic errors are orders
of magnitude smaller than the CPU drift. Consequently we

neglect the arithmetic error on node setups like these.

4.3 Errorsdueto Measurements

From Section 3.1 we know thaittery andjittery are less

than 20us, resulting in an absolute error bound of 30us

(equations (3) and (4)). However, almost all of the mea-

surements can be finished within 2us, and by selecting the

good values the error drops to 6ys.

We normally synchronize every 2 seconds. However, if we

have to drop a value, or if the process even aborts, we do

the next synchronization after 1 second. It turned out in
experiments that even in situations with high load no more

than 3 attempts were necessary for a successful synchro-

nization. Thus, the error bound is 4s*18-6s=10ys.

