
Measuring Microsecond Delays
Technical Report TUD-FI03-16-November-2003

Jork Loeser

TU Dresden, Germany
contact@os.inf.tu-dresden.de

Abstract

In this paper we present a setup to synchronize the clocks
of two nodes. We especially derive bounds of the achieved
clock accuracy and examine implementation aspects.

1 Motivation

In other experiments, we want to measure transmission de-
lays for packets sent over a network between two nodes, as
depicted Figure 1. To measure these transmission delays,
we use test packets carrying timestamps. A send applica-
tion at nodeA generates the test packets and adds times-
tamps. At nodeB, a receiving application compares the
timestamps with its local clock and calculates the trans-
mission delay.

We want the delay measurement to be easy to implement
and to rely on as little hardware and driver support as pos-
sible, as the driver support in our environment is limited.
We also want the delay measurement to be efficient, thus
we do not want to rely on external clocks which are expen-
sive to read. Our experiments are done on x86-based nodes
that offer atime stamp counter (TSC), a counter running at
CPU speed counting the cycles of the CPU [4]. The TSC
can be read within 80 cycles on an Intel P4 1.7GHz, this is
about 47ns, and in 32 cycles on other Intel x86 machines
(P3, P2). Intels SpeedStep technology, when used, influ-
ences the TSC, however in our experiments we do not use
SpeedStep.

Due to different CPU speeds and fabrication tolerances the
CPU clocks of different nodes run with different speeds1.
To calculate the delay based on nodeA’s timestamps and
nodeB’s time, both nodes must be synchronized. For our
experiments we expect packet transmission delays in the
order of microseconds to a few milliseconds, and thus the
synchronization accuracy has to be a few microseconds.
This accuracy can not be achieved by the network that con-
nects nodesA andB. Therefore we connect nodeA andB
by an additional parallel cable and use this for the synchro-
nization process.

1A 1% deviation of CPUs with the same nominal speed is quite usual.

Node A Node B
parallel cable

network

Figure 1: NodesA andB connected to a network. Additionally,
they are connected by a parallel cable for synchronization.

25
141

13

D1

SELECT

NACK
D3

D3
NACK

25
14 1

13 SELECT

D1

Figure 2: Wiring of the parallel cable (used data pins only)

This paper describes

• how the synchronization procedure works
• how nodeB convertsA’s timestamps toB’s local time
• what accuracy can be achieved
• what resources are consumed by the synchronization

process

2 Parallel Port Issues

The parallel port of a PC style computer, originally de-
signed to send data to a printer, has 12 output pins and
5 input pins. The state of the output pins can be set by
programmed port I/O, and the state of the input pins can
be read by programmed port I/O. One of the input pins
(NACK) can be programmed to raise an interrupt if the sig-
nal value changes [1].

We connect the parallel ports of both nodes as shown in
Figure 2. As a result, we can transmit 2 bits in parallel, and
one bit can be used to raise an interrupt at the remote node.

1

Node B

Node A timestamp 2

timestamp 1 timestamp 3

(IRQ)

gostart

ready time (A)

time (B)

done

Figure 3: Synchronization process

Signal delays

We did experiments to find out how long it takes that
changes at input pins can be seen after the corresponding
output pin was toggled. Therefore we used a loop-back
dongle connecting output pin D1 of one node to its own
SELECT input pin. Then we toggled D1 and measured
how long it takes for the SELECT input value to change.

We did the measurements on different PC style computers.
The observed delays are quite independent of the nodes
CPU speed, as they mainly depend on port-I/O commands
of x86 CPUs (there execution times are quite stable among
different CPUs) and on the slow internal ISA bus the par-
allel port is connected to (on modern computers this ISA
bus is emulated, but it is still slow). The observed delays
are all about 2µs.

3 Synchronization Procedure

The synchronization procedure is very similar to Cristians
internal clock synchronization or to that of the server syn-
chronization in [5] used by NTP as defined in RFC 1305:
NodeB periodically raises an interrupt atA to start the syn-
chronization process. In reaction,A sends a ready-signal
and both nodes take timestamps. Later, nodeA sends its
timestamp toB which uses it to calculate the clock differ-
ence and the clock drift.

3.1 Getting the timestamps

The synchronization process is shown in detail in Figure
3 and Table 1. The interrupt is raised byB by changing
its D3 output pin from 0 to 1. This sets theNACK input
pin at nodeA to 1 and raises an interrupt at nodeA. The
ready signal of nodeA means settingD3 at A to 1. B
polls its NACK pin waiting for theready signal. Once
B sees theready signal it takes timestamp 1 from its local
CPU timestamp counter and sets theD1 output pin to 1 (go
signal). This is observed byA polling its SELECT input
pin. A takes timestamp 2 and sends thedone signal. This
means setting theD1 output pin to 1.B polls itsSELECT
pin until it becomes 1 and takes timestamp 3 then. Finally,
B resetsD1 andD3.

It may happen, e.g. due to an unplugged parallel cable,
that the signals sent by one node are not seen by the other

nodeA nodeB

start signal: B-D3:=1
A-NACK==1, interrupt
ready signal: A-D3:=1
A-D1:=0

poll: B-NACK==1
timestamp 1
go signal: B-D1:=1

poll: A-SELECT==1
timestamp 2
done signal: A-D1:=1
A-D3:=0

poll: B-SELECT==1
timestamp 3
B-D1:=0, B-D3:=0

Table 1: Synchronization process

node. Therefore we guard all poll-operations by timeouts.
We choose 20µs, this is we ensure that all poll operations
together do not run longer than 20µs. It may happen, e.g.
due to other interrupts, that one node cannot react within
these 20µs. Then, the other node times out and the syn-
chronization process is aborted.

3.2 Determining Time and Frequency

3.2.1 Clock Offset

It is easy to see and explained in detail in [5] that the clock
offsetΘ from nodeA to B during the synchronization pro-
cess is given by

di f f � jitter
� Θ �

di f f � jitter (1)

with

di f f �
timestamp1� timestamp3

2
� timestamp2

and

jitter �
timestamp3

� timestamp1

2

3.2.2 Compensating different clock speeds

When doing the synchronization process twice, the differ-
ent clock speeds atA andB can be compensated. There-
fore, we define some variables. IndexX refers to values
taken from the first synchronization process, indexY refers
to values from the second synchronization process.

timeX �
timestamp1�X � timestamp3�X

2

jitterX �
timestamp3�X � timestamp1�X

2
remoteX � timestamp2�X

timeY �
timestamp1�Y � timestamp3�Y

2

2

jitterY �
timestamp3�Y � timestamp1�Y

2
remoteY � timestamp2�Y

conv �
timeY

� timeX

remoteY
� remoteX

conv allows to convert timestamps measured at nodeA to
the time metric at nodeB. If remote is a timestamp value
measured at nodeA, then the conversion toB’s time local
is done by:

local � conv � �
remote � remoteY � � timeY (2)

The timestampsremoteX (and remoteY) were taken atA
when the time atB was in the interval of lengthjitterX

centered aroundtimeX (jitterY centered aroundtimeY). We
definedri f t as

dri f t �
jitterX � jitterY

timeY
� timeX

(3)

Then, the error of equation (2) due to jitter in the measure-
ments is bound by

precision �
�
local � timeY � � dri f t � jitterY (4)

This error solely covers measurement errors due to signal
transmission times, but does not take real clock drifts due
to heating or other physical effects into account.

3.2.3 Clock drift

Real numbers on the drift of a processor clock are hardly
to find in mainboard or processor specifications. However,
quartz oscillators in general are known to drift with rates
between 10�7 to 10�10 (e.g., [3, 6]).

In an experiment we measured the drift rate of a clock in a
PC-style node against the clock in another PC-style node.
The experiment was done over multiple hours with differ-
ent load and temperature conditions at the nodes. In this
experiment we found the clocks to drift at a maximum rate
of 10�7.

We conclude, that an estimation of 10�6 for the drift of the
clock in nodeA against the clock in nodeB is a safe value.
This drift has to be added to that in equation (3).

4 Implementation Aspects and Er-
ror Bounds

We implemented the synchronization process on DROPS
[2] for measurement purposes. DROPS is based on the L4
micro-kernel offering static priorities. By giving the syn-
chronization programs a high priority we ensured that it is
interrupted rarely.

The precision is calculated and returned to the programs
as well, so they can verify at runtime that their timestamp
conversions deliver sensible results. We consider this an
important robustness issue in experimental environments:
It is too easy to use a system out of its specifications in the
heat of experiments and rapidly changing test programs.

4.1 Integer Arithmetic

An important requirement to the delay measurement is its
efficiency, and therefore we avoid floating point arithmetic.
Instead, we use 64bit fix point arithmetic, with 32bit preci-
sion for storing the scalersconv anddri f t. The timestamps
and the computed values oflocal andprecision are stored
with 64bit precision. We useconv anddrift to denote
the 32bit integer values. We uselocal andprecision
to denote the 64bit integer representations oflocal and
precision.

We assume the clock frequencies of the nodesA andB to
be between 50MHz and 4GHz. We calculateconv as

���� �
�
timeY

� timeX � � 225

remoteY
� remoteX

(5)

Conditions for conv With the CPU clock frequencies
in the range between 50MHz and 4GHz,conv is at least
419430, and less than 231. It can be computed without
overflows as long astimeY

� timeX is less than 239. For
a 4GHz node this is about 100s, for a 50MHz node this is
over 2 hours.

We calculatedrift as

�	
�� �
�
jitterX � jitterY � � 232

timeY
� timeX

(6)

Conditions for drift From Section 3.1 we know that
jitterX and jitterY correspond to values less than 20µs.
With a minimum pause of 100ms between the two mea-
surements determiningtimeX and timeY the value of
drift is less than 221.

To convert a remote timestamp taken at nodeA to the time
metric at nodeB, we adapt equation (2):

���
 �
���� � �

remote � remoteY �
225 � timeY (7)

Conditions for local Using the same argumentation as
we used forconv we see that the computation oflocal
does not overflow as long as the time that passed between
measuringremoteY andremote does not exceed 100s. In

3

that case,local will be less than 239, and the numerator
in equation (7) cannot overflow.

As conv is rounded to an integer, it might be up to 1
off from the real value. Hence, the arithmetic error in
(7) due to the integer operation is bounded by

�
remote �

remoteY ��225. We adapt equation (4) to

�	��
�
�� �
�
local � timeY � � �

drift� 1�
232 � jitterY

�
�
remote � remoteY �

225 (8)

The addition of 1 todrift covers the arithmetic error in
the calculation ofdrift.

Conditions for precision We know thatdrift
�

221. Using a simular argumentation as we used forconv
we conclude thatlocal � timeY

�
239 and hence the first

numerator cannot overflow. The other terms of the sum
cannot overflow either.

4.2 Errors due to Integer Arithmetic

The error due to rounding ofconv is
�
remote �

remoteY ��225. The worst case relative error is achieved
with the remote node running at 4GHz and the local
node running at 50MHz: The relative error is bound by
4GHz� �225� 50MHz� � 2�4e � 6 then. However, on nodes
with the same speed, the relative error is 2�25 � 3 � 10�9.

The error due to rounding ofdrift is
�
local �

timeY ��232, which of course is covered by equation (8).
The relative error is 1�232 � 2�3 � 10�10.

For nodes with similar clock frequency, and more than ever
for a slower remote node, the arithmetic errors are orders
of magnitude smaller than the CPU drift. Consequently we
neglect the arithmetic error on node setups like these.

4.3 Errors due to Measurements

From Section 3.1 we know thatjitterX and jitterY are less
than 20µs, resulting in an absolute error bound of 30µs
(equations (3) and (4)). However, almost all of the mea-
surements can be finished within 2µs, and by selecting the
good values the error drops to 6µs.

We normally synchronize every 2 seconds. However, if we
have to drop a value, or if the process even aborts, we do
the next synchronization after 1 second. It turned out in
experiments that even in situations with high load no more
than 3 attempts were necessary for a successful synchro-
nization. Thus, the error bound is 4s*10�6+6µs=10µs.

5 Summary

We presented an easy-to-use implementation for internal
clock synchronization of 2 nodes. By using a parallel cable
between the two nodes we are able to achieve error bounds
of 10µs.

The synchronization runs not more than every second, and
mostly every two seconds. A synchronization does not take
longer than 20µs.

The fix-point arithmetic uses integers values scaled for
CPUs with clock frequencies between 50MHz and 4GHz.
Then, the synchronization must be executed at least every
100s, but not more often than every 100ms. The time be-
tween the last successful synchronization and the conver-
sion of a timestamp must not exceed 100s.

References
[1] Jan Axelson. Parallel Port Central.http://www.lvr.com/

parport.htm.

[2] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul. Cooper-
ating resource managers. InFifth IEEE Real-Time Technology and
Applications Symposium (RTAS), Vancouver, Canada, June 1999.

[3] P. Humenn, G. Lewandowski, and D. Zhou. Toward Assured Trusted
Time Stamping . Insixth workshop on distributed objects and com-
ponents security (DOCsec 2002), March 2002.

[4] Intel Corp. Intel Architecture Software Developer’s Manual, Volume
3: System Programming, 1999.

[5] David L. Mills. Internet time synchronization: The network time pro-
tocol. In Zhonghua Yang and T. Anthony Marsland (Eds.), Global
States and Time in Distributed Systems, IEEE Computer Society
Press. 1994.

[6] Chris Rizos. Principles and Practice of GPS Surveying.
available athttp://www.gmat.unsw.edu.au/snap/gps/
gps survey/chap1/132.htm.

4

