
Diplomarbeit

Development of an IDL Compiler for Micro-Kernel

based Components

Ronald Aigner
<ra3@inf.tu-dresden.de>

Dresden University of Technology
Operating Systems Group

September 25, 2001

2

Contents

1 Introduction 9

2 Related Work 15
2.1 Terminology . 15

2.1.1 Communication Scenarios 15
2.1.2 Compiler Chain . 15

2.2 IDL Compilers . 17
2.2.1 Mach Interface Generator - MIG 17
2.2.2 Devil . 18
2.2.3 Flick . 19
2.2.4 Summary . 19

2.3 Message Passing Introduction 20
2.4 Language Integration . 21

2.4.1 Message Passing Interface Library 21
2.4.2 Rendezvous Concept in Ada 21
2.4.3 Synchronous C++ . 22
2.4.4 Signals and Slots in the Qt Library 23
2.4.5 Summary . 24

2.5 L4 Communication Basics . 24
2.6 Optimization . 25

2.6.1 IDL4 . 26
2.6.2 Summary . 26

3 Design 27
3.1 Message Passing . 27

3.1.1 Communication between System Components 27
3.2 Design Options . 32

3.2.1 Message Passing in the Target Language 33
3.2.2 Client/Server Scenario 34
3.2.3 Message Passing in the IDL 35

3.3 Data Semantics . 36
3.3.1 Copy Semantic . 36
3.3.2 Live Span of Data . 37

3

4 CONTENTS

3.4 Representation of Kernel-Specifics 37
3.5 Optimizer . 38

3.5.1 Data Sharing . 39
3.5.2 Indirect String IPC . 39
3.5.3 Short IPC . 40
3.5.4 Copy Optimization . 40

3.6 Summary . 40

4 Implementation 43
4.1 IDL . 43

4.1.1 Message Passing in the IDL 44
4.1.2 Flexpages in the IDL 44
4.1.3 Indirect Strings in the IDL 45

4.2 Target Language Representation 46
4.2.1 Message Passing . 46
4.2.2 Flexpages . 46
4.2.3 Indirect Strings . 47

4.3 Memory Management at Receiver’s Side 48
4.3.1 Indirect Strings . 49
4.3.2 Sparse Strings . 51

4.4 Optimization . 52
4.5 Side-Effects . 53

4.5.1 Test Suite . 53
4.5.2 Flick Compatibility Mode 54
4.5.3 Pre-Processor . 55

4.6 Adaptability and Maintainability 55

5 Performance Evaluation 57
5.1 Message Passing vs. RPC . 57

5.1.1 Region Manager . 57
5.1.2 Thread Library . 57
5.1.3 DSI . 58

5.2 Flexpage vs. Indirect vs. Direct 58
5.2.1 Numbers . 58
5.2.2 Comparison . 60

5.3 Performance Overhead for Message Passing 61
5.4 Memory Footprint . 62

5.4.1 Common Memory Usage 62
5.4.2 Internal Variables for Short IPC 63
5.4.3 Internal Variables for Long IPC 63

6 Future Work 65

7 Conclusion 67

CONTENTS 5

A Sample Code 73
A.1 Message Passing . 73

A.1.1 The IDL Specification 73
A.1.2 The Client’s Code . 74
A.1.3 The Component’s Code 74
A.1.4 Usage of the Generated Code 75

6 CONTENTS

List of Figures

2.1 Communication Scenarios . 16
2.2 An Example Compiler Chain 16
2.3 The minimal Parts of a Compiler 17
2.4 Example of Active Class in Synchronous C++ 23

3.1 A Simple Message . 28
3.2 Synchronous RPC . 28
3.3 An Synchronous RPC with Receive Loop (Client/Server Se-

mantic) . 29
3.4 Asynchronous RPC . 29
3.5 An Asynchronous RPC with Reply sent to another Thread . 30
3.6 A synchronous RPC with Reply from another Thread 30
3.7 A asynchronous RPC with Worker-Thread and Reply-Point . 31
3.8 Example of a Server Loop using Message Passing functions . 35

5.1 A Comparison of direct IPC, indirect string IPC, and flexpage
IPC . 61

A.1 Sample IDL file . 73
A.2 A Sample Client Side Header File 74
A.3 The IDL Service Helper Structure 74
A.4 A Sample Component Code Header File 75

7

8 LIST OF FIGURES

Chapter 1

Introduction

The development of software evolved over the last few years from a proce-
dural and modular approach towards object-oriented and component-based
concepts. These concepts allow the optimization of the software develop-
ment process by replacing monolithic systems with a composition of compo-
nents, which provide appropriate functionality for applications. The clean
separation of components makes it very easy to exchange or separately test
them. Applications can be extended by modifying single components with-
out the need to change the whole code which uses the component.

A component has to provide an interface by which other components
can communicate with it. An interface specifies the functions a component
is able to execute. The component can be thoroughly tested, because its
interface and the supposed behaviour is known. When a component uses
the functionality of another component it can also be called the client of
this particular component.

If the functions to be executed are in a different thread, address space,
or even in a different node than the calling component, the parameters of
the function have to be made available to the called component. This prop-
agation of data is also called a message. The transfer of a message consists
of multiple steps. First the data to be transmitted has to be packed into
the message buffer – marshal data –, then the message buffer is transferred
from the sender to the receiver and last, the receiver has to unpack the data
from the message buffer – unmarshal data. The message is transported to
the called component by communication mechanisms of the underlying plat-
form. Thus we can say an interface specifies the messages a component will
accept. Such an interface can be described in multiple ways, reaching from
natural language in a product description to a rather abstract description in
a separate, computer readable language – an interface description language
(IDL).

If a developer intends to use a component, he would have to write com-
munication code, to send a message, which has a format supported by the

9

10 CHAPTER 1. INTRODUCTION

communication mechanism. This results in writing similarly structured code
over and over again. A computer readable description of the interface can
be translated by a software tool – the IDL compiler – into communication
code and can, to some extend, be verified. The IDL compiler simplifies the
development of components, because it relieves the developer of writing the
communication code by hand. This repetitive task may easily introduce
errors to the communication code, which are hard to find. Because the
compiler can be trusted to produce code without typing errors and volatile
errors, a developer can focus on the development of the component rather
than looking for errors, which might have slipped into his communication
code.

An IDL compiler simplifies the development of components in a sig-
nificant way, by “hiding” the communication barrier between components.
The compiler can make it almost transparent for the developer, whether
he is using the component across a network, address space boundaries or
within the same thread. Thus a changing communication interface of the
underlying platform has no effect on the generated interface, which is used
by other code. This also introduces portability of the components across
changing communication interfaces, because the interface is independent of
the communication interface.

There are several IDL compilers available for different communication
APIs, such as the Mach Interface Generator (MIG) [WT89], Flick [EFF+97],
rpcgen [Mic88], and many others. All these compilers implement the tradi-
tional semantic of procedure calls. This means, a caller uses the functionality
of a component by calling one of its functions. This involves a message sent
from the caller to the component and a message back to the caller.

This is often more than the caller wants to do. Sometimes the caller
simply likes to signal the component to start working on something. The
caller is not interested in any outcome of the call. To fit this concept into the
remote procedure call (RPC) mechanism, some IDLs have a keyword, such
as OMG IDL’s oneway, to tell the compiler that no answer is expected. An-
other approach to generalize the RPC mechanisms is to use message passing
instead and include RPC as a special case implementation. Message passing
does not imply a function execution at the component’s side, but simply
says: here is a message of a specific type for you, you will know what to do.
RPC semantic can easily be replicated using message passing. It also allows
the client to receive messages from the component and therefore the client
has to be ready to receive the message from the component. The mechanism
of message passing is well suited to provide a more general approach to com-
munication between components, which only implement signaling messages.

The IDL compiler of this work is embedded in the Dresden Real-Time
Operating System (DROPS) project, which focuses on building components
for real-time applications [BBH+98]. This work includes implementing the
functionality of a monolithic operation system as separate servers running

11

on top of the L4 µ-kernel [HBB+98, GJP+00]. These servers, which provide
operation system functionality to application, I call system components. Be-
cause these system components use each other’s functionality, they have to
communicate with each other across address space boundaries. The genera-
tion of the necessary communication code is a typical application area for an
IDL compiler. It not only eases the separation of the system components but
also provides a level of portability to these components. Because the com-
munication code is represented by the interface description, a component
can be moved to another platform by recompiling the interface description.

When writing applications, more than one system component can be
used frequently. This entails a lot of communication between components,
which means a lot of copy operations. Because copy operations are expensive
it is a goal of the IDL compiler to minimize copy operations in the generated
code. Some of the parameters can be excluded from packing, for instance if
it is a constant value, known at compile time of the code. It is also possible
to optimize the performance of copy operations when using appropriate copy
mechanisms for different data types.

One strategy of the L4 µ-kernel is to “tolerate [a concept] inside the
µ-kernel only if moving it outside the kernel, i.e. permitting competing im-
plementations, would prevent the implementation of the system’s required
functionality.” [Lie96]. E.g. does L4 leave “memory management and pag-
ing outside the µ-kernel; only the grant, map and flush operation are retained
inside the kernel.” [Lie96]. These operations can be initiated by sending a
specially formatted inter-process communication (IPC) message.

In order to build communication code for system components, it is nec-
essary for the IDL compiler to know about these special semantics and to
provide some way for developers to use them. The compiler also needs to
know how to make the µ-kernel interpreted normal data as specially for-
matted data – kernel data – which influences the semantics of an IPC. Such
kernel data is e.g. a flexpage, which describes a memory region. It can be
used with a specially formatted IPC to grant or map the memory region
into another address space.

This work continues early research of the DICE project [Aig01]. DICE
supports the simple client/server structure of communication. It knows
about the flexpage data type and optimizes some of the messages using
indirect strings. This work concentrates on the implementation of message
passing, special kernel semantics and enhanced optimization into DICE –
the IDL compiler of the DROPS project.

Structure of this Work

The paper contains the following chapters. Chapter 2 – Related Work –
introduces the reasons to implement an IDL compiler for µ-kernels at all. It

12 CHAPTER 1. INTRODUCTION

also introduces some of the topics and related work concerning the paper.
Chapter 3 discusses the design decisions made when incorporating the ideas
of message passing and kernel-data structures as well as optimization into
the IDL compiler. Following some details on implementation in Chapter 4,
such as the IDL with included support of the mentioned ideas. Chapter 5
contains the measurements of the generated communication code to show
the overhead of the communication across address space boundaries. There
is a comparisons to hand-written code as well as to code produced by other
IDL compilers, such as Flick. Which kind of future work has to be done
and a summary and conclusion of the work done up to now can be found in
Chapter 6 and 7, respectively.

13

Acknowledgements

I like to thank everybody, who supported my work on this IDL compiler.
Especially my coaches Prof. Dr. H. Härtig and Lars Reuther. I like to
thank Volkmar Uhlig for the endless discussion and his advise. I also like
to thank the staff of the Operating Systems Group at the Dresden Univer-
sity of Technology and the System Architecture Group at the University of
Karlsruhe. Thank you for the discussions and incitations.

I also like to thank the users of DICE. Without their adventurous spirit
the compiler would lack important parts of its functionality.

I like to thank my parent for supporting me all the time. Last but
certainly not least I like to thank my wife Zilly. Thank you for your patience
and love.

Declaration

I hereby declare that this submission is my own work and that, to the best
of my knowledge and belief, it contains no material previously published or
written by another person nor material which to a substantial extent has
been accepted for the award of any other degree or diploma of the university
or other institute of higher learning, except where due acknowledgement has
been made in the text.

Date: September 25, 2001

Author:
Ronald Aigner

14 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This work has the title “IDL compiler for µ-kernels.” Thus we have to
find out what is so special about an IDL compiler designed for µ-kernels.
Therefore, I looked at several other IDL compilers which produce code for
µ-kernels. I also looked at IDL compilers tailored to low-level tasks, such as
device driver support.

2.1 Terminology

2.1.1 Communication Scenarios

To simplify the understanding of the following sections, a short introduction
of some communication scenarios is necessary. Figure 2.1 shows three kinds
of scenarios. The classic, synchronous RPC scenario is shown under a). It
involves a sender (or caller), which sends a message to the receiver – another
component –, which executes the called function and returns a message.
Until the sender receives the reply its execution is blocked.

The configuration under b) represents an asynchronous RPC. The caller
sends a message to the other component, but instead of blocking, continues
its execution. Later it enters a wait state and blocks until it receives the reply
from the called component. The two components may execute in parallel.

The picture under c) shows a simple send message scenario. The caller
is not interested in any outcome and thus does not wait for a reply message
from the called component.

2.1.2 Compiler Chain

Whenever an IDL file is translated into communication code and the gen-
erated code is integrated and translated by another compiler, the various
compilers form a compiler chain. This compiler chain is described in Figure
2.2. At first the IDL file is translated using the IDL compiler into the target
language of the IDL compiler. The generated communication code is then

15

16 CHAPTER 2. RELATED WORK

synchronous RPC asynchronous RPC send message

a) b) c)

Figure 2.1: Communication Scenarios

translated by the target language compiler into its target language, which
is usually executable code. Each compiler consists of multiple stages. These
include at least a reading and a writing stage – see Figure 2.3. The reading
stage usually performs some validation and eliminates unnecessary input,
such as comments. This is also called pre-processing. When writing the
target code, each compiler does some optimization to generate reasonable
target code.

IDL compiler

target language compiler

target language

interface specification

executable code

Figure 2.2: An Example Compiler Chain

2.2. IDL COMPILERS 17

Compiler

Pre−Processor

Writer and Optimizer

Figure 2.3: The minimal Parts of a Compiler

2.2 IDL Compilers

2.2.1 Mach Interface Generator - MIG

The Mach Interface Generator is provided to “produce a remote procedure
call interface to IPC message passing” [WT89] for communication in a multi-
tasking system. The interface definition language, MIG uses, is specific to
MIG. It defines an interface of a server in much the same way as other
IDLs do. An interface description specifies a component with functions
and some user-defined types. The close interaction with the Mach kernel
is based on the fact that “the first unspecified parameter in any operation
statement is assumed be the RequestPort unless a RequestPort parameter
was already specified.” [DJT89]. The MIG interface description language
has, besides other types, a special type for Mach ports (RequestPort), the
Mach communication identifier.

The port concept entails a lot of information specific to Mach, which
has to be represented in the IDL. This restricts MIG to be used with Mach
only. No port to other kernels, which do not follow the Mach specifica-
tion, or even µ-kernels, is possible. Communication on Mach has another
implicit semantic: because Mach buffers messages inside the kernel, commu-
nication, which interacts directly with the kernel, is always asynchronous.
Of course exist algorithms, which can simulate synchronous behaviour using
asynchronous communication, but the natural communication mechanism
of Mach is asynchronous. There also exists a type representing access right
for ports – the basic security mechanism of Mach –, which MIG must un-
derstand and translate appropriately.

This deep interaction shows that the Mach ports have such a special
semantic that they cannot be mapped straight forward onto simple data
types. Instead, these features with special semantics were integrated into
the IDL and its compiler to provide simple access to these features for the
users of the interface.

Nevertheless, the specification of a communication partner in the IDL is
arguable. If it is done in the same way as with MIG, it is hard to port the

18 CHAPTER 2. RELATED WORK

compiler and the IDL to another platform using different specifications. But
the integration of the communication partner into the IDL showed practical
for Mach, because the transfer of rights is handled using ports and port
rights and thus it is essential to implement system components.

2.2.2 Devil

To find abstractions for kernel specific data types I looked at Devil, a descrip-
tion language for hardware, especially for devices [MRC+00, RM01, MM01].
Until now we used the term communication as exchange of message between
two software components. Because Devil is a description language for de-
vices the terminus communication describes the access of a driver to the
hardware device. Thus one of the components is the device driver and the
other one the device itself. A device description in Devil can be translated
using the taz compiler into C code, which accesses the device. This C code
can be understood as the communication code.

Because the description of hardware devices is different to a software
component description, a new IDL was created. The compiler has to gen-
erate the “communication code” unique for the specified device. To be able
to create the correct communication code the compiler needs to know how
the component can be accessed. This is usually done reading or writing bits
or bytes from registers of the device or its memory.

Therefore a description of the registers and memory available on the
device has to be included in the interface description. Also does the descrip-
tion of the functional interface has to contain the number and sequence of
manipulated registers and memory in order to execute the expected function-
ality. The IDL compiler generates “communication code”, which performs
the specified manipulations.

Devil Data Types

Devil’s most basic data type is a port. “A port hides the fact that, depend-
ing on how the device is mapped, it can be operated via either I/O or memory
operations.” [MRC+00, Sc. 2]. All ports are addressed relative to a base
address, which is specified in the device’s constructor. The specification also
contains valid offsets from the base address to enable verification of ports.
When using a port in register definition, the port is specified using the base
address and a constant or range offset. E.g. register reg = base @ 0,
which specifies the register reg to use the port with the offset 0 from the
base address.

The next level of abstraction is the register. “A register defines the
granularity of interaction with a device. Thus the size of a register (number
of bits) must be explicitly specified.” [MM01, pg. 7]. There are usually
two ports associated with one register. One port to read from and one to

2.2. IDL COMPILERS 19

write to. Or only one port if the read and write operation share the same
port. To specify the bits of the port, which are interesting for the access, a
register can be declared with a bit mask. The bit mask is a string, which
has as many characters as the port has bits. The character ’.’ denotes a
used bit. The characters ’0’ or ’1’ denote an unused bit, which is set to the
zero or one respectively if written. ’*’ denotes an unused and undefined bit.
This way every single bit can be defined as used, not used or preset when
reading or writing it.

The top level of abstraction are device variables. “In order to minimize
the number of I/O operations required for communicating with a device,
hardware designers often group several independent values into a single re-
gister. Accessing these values requires bitwise operations.” [MM01, pg. 7]
Therefore Devil abstracts values as device variable, which are a sequence
of register bits. These variables are of simple types, like boolean, signed or
unsigned integers. When accessing the device, this is done by using these
variables.

These are not all of the features of Devil, but the most interesting ab-
stractions of basic data types. There exists no abstractions for interrupts in
Devil.

2.2.3 Flick

When talking about IDL compilers for the L4 IPC interface the Flick [EFF+97]
compiler has to be mentioned. The concepts behind Flick and its L4 adap-
tation by Volkmar Uhlig are explained in [Aig01] and [Uhl99].

Flick generates communication stubs consisting of macros, which imple-
ment the marshaling and unmarshaling code. Thus most of the adaptation
could be done by changing these macros. The manipulation of the mar-
shaling sequence of the parameters caused problems, because the code of
Flick is hard to adapt. This flaw was overdone by selectively marshaling
parameters and executing the marshaling code multiple times. Flick gener-
ates communication code, which is not as efficient as it could be if using a
properly implemented IDL compiler.

2.2.4 Summary

The Devil example shows, that IDL compilers operating at low programming
levels, such as device programming or system service development, have to
support low-level data types to be able to provide a support to the developer.
These data types have to be presented in the IDL in a way, which makes
the easy to identify, but they have to be translated into a target language
representation, which makes them usable across platforms.

When any kernel or communication specific implementation detail should
be hidden from the user, the integration into the target system must be

20 CHAPTER 2. RELATED WORK

invisible to the user. The compiler must present an abstract view at the
usage of the kernel internal data structures. The MIG compiler is an example
of too much integration into the target platform. It includes too much of
Mach to enable any migration to another platform.

These two examples show that the representation of platform specific
semantics in the IDL is necessary to allow the user of the IDL to utilize
these semantics. But the representation should be as abstract as possible to
be portable to other platforms. The Flick adaptation showed that a tool,
which has to be adapted to support new target platforms, has to be designed
and written to allow an easy and fast adaptation.

2.3 Message Passing Introduction

Former IDL compilers almost always implemented procedure call semantics
as depicted left-most in Figure 2.1. These IDL compiler do mostly generate
client/server scenarios, where the component (or server) receives messages
from clients, calls the appropriate functions and eventually sends a reply
with the return values. This strict synchronous communication coupled
with the complex server-loop is a very confined way to implement the com-
munication between two components. Sometimes the reply is superfluous
and sometime the server-loop only waits for a single message. Thus it is
necessary to think about a more general approach to communication than
the remote procedure call (RPC). This general approach is message passing.

When using the classical client/server approach, only the synchronous
RPC communication semantic (as introduced in Figure 2.1) can be mapped
to this approach. The other two semantics can also be implemented using
the client/server approach, but without justifiable effort. If using message
passing, the asynchronous RPC as well as simple send message can be im-
plemented easily. Of course does message passing support the synchronous
RPC as well.

Message passing is widely used in multi-processor facilities. It differs
from the RPC semantics by not depending on synchronous processing of
the procedure. A single message initiates a procedure. The caller continues
its processing after sending this message. Thus the developer might rather
implement a flow of control following data then a flow of control following
instructions.

Strictly speaking, a Remote Procedure Call is a special implementation
of message passing. First a message starting the procedure is sent to the
component and eventually a reply message arrives. Thus a RPC can be
regarded as a pair of messages, and is fully contained in message passing.

When looking at existing IDL compilers they incorporated the ideas of
message passing to some extend. The CORBA IDL allows message passing
by using a keyword, which signals the compiler to produce a message from

2.4. LANGUAGE INTEGRATION 21

the caller to the component without a return message. This keyword allows
only message passing from clients to the component, but not back from the
component.

To include the concepts of message passing into an IDL compiler provides
its user with more possibilities to implement components. It will make it
more convenient to use simple messages. This feature is another step towards
making the development of multi-server operating systems easier.

2.4 Language Integration

Communication between different processes or threads can be implemented
in different ways. The developer may use the communication primitives of
the underlying platform directly. He also may specify an interface and let
an IDL compiler translate it into communication code. Or the program-
ming language or other tools provide other ways to write a communication
invocation.

2.4.1 Message Passing Interface Library

The Message Passing Interface (MPI) Library [JT99, JT00] is a library which
provides functions, that allow the easy implementation of communication be-
tween processors. The MIP library is mainly used in distributed computing
environments. The MPI functions send messages to different processors and
receive messages from those processors. These functions have parameters
specifying the processor(s) to send to or accept messages from, the type of
the data (integer, float, etc.), the starting address of the data, which might
be the starting address of a array of data values, the size of the data (e.g. the
array’s size or 1 if it is a single value), and some other status information,
e.g. the number representing the position of the message within a series of
messages. There are also many other functions for communication (e.g. a
broadcast call) which make it easy for developers of distributed programs
to use communication code.

The advantages of the MPI library are, that the use of these functions
directly inside the target language, instead of specifying an interface descrip-
tion. The developer does not have to mess around with the details of the
communication. Because the basic mechanisms of message passing – send
and receive – are provided, a simple message passing application as well as
synchronous function calls can be implemented (the latter is not an issue of
distributed computing, but possible).

2.4.2 Rendezvous Concept in Ada

Ada implements multitasking using tasks. A task is an active object, which
implements functions. In a single-task application functions are called just

22 CHAPTER 2. RELATED WORK

like in C or C++ – by specifying the function to be executed and its pa-
rameters. In a multi-task application the functions are called just the same.
It is transparent to the developer whether the function is in another task
or in the same. A task definition in Ada contains statements to execute
functions, if they are called from another task. As described in [Bur01],
the main body of the task, can contains a accept statement followed by
the function declaration. This statement specifies, that the task will accept
requests from other tasks to execute this function.

Because request may appear in any order, Ada has the keyword select,
which allows to specify multiple functions, which can be received in parallel.
Not all at once, but any one of the specified functions can be received. If
requests for functions must be executed in a defined sequence, the accept
statements are specified in the appropriate order, without a select state-
ment. To allow the arrival of a request only under a certain condition,
guards can be associated with an accept statement. Only if the expression,
specified for the guard, evaluates to true the request will be accepted.

2.4.3 Synchronous C++

Synchronous C++ is an extension to the C++ programming language which
allows the definition of active objects besides the already existing passive
objects. “An active object may contain an internal activity, which runs
in parallel with the activities of other active objects.” [Pet98, p.65]. The
Synchronous C++ extension implements the rendezvous concept of Ada
into C++ using similar keywords and source code layout. The difference is
that only active objects may send or accept messages, but it is not possible
to integrate these messages into the normal source code of existing passive
objects.

The declaration of an active object in Figure 2.4 includes the definition
of three functions a, b and c. The function with the @ in front of it is
the body of the active object, which carries out the internal activity. The
body includes an infinite loop (for(;;)), which includes a select statement
similar to the select statement of Ada. The delimiter between the choices
is the “||” string. The accept statement has as parameter, which is the
function to be executed in case respective message is received. The above
code can be expressed using BNF like this:

([a,b]c)+.
Similar to Ada a message is send when the respective function is called.
To send the message a to the instance instA of the object ActC1, the call
instA.a() would be sufficient.

2.4. LANGUAGE INTEGRATION 23

act ive c l a s s ActC1 {
publ ic :

v i r t ua l void a () { pr i n t f (”a\n”) ;}
v i r t ua l void b () { pr i n t f (”b\n”) ;}

5 v i r t ua l void c () { }
pr ivate :

@ActC1() {
for (; ;) {

s e l e c t {
10 accept a ;

| |
accept b ;

}
accept c ;

15 }
}

} ;

Figure 2.4: Example of Active Class in Synchronous C++

2.4.4 Signals and Slots in the Qt Library

“Qt is a cross-platform C++ GUI application framework. It provides appli-
cation developers with all the functionality needed to build state-of-the-art
graphical user interfaces.” [Tro00a]. When using the Qt libraries a devel-
oper might also use the integrated communication facility of Qt. Because
Qt is designed to develop user interfaces it provides constructs to exchange
messages between different interface objects. Qt introduced two concepts
into the programming language of Qt (C++): signals and slots. Implemen-
tations of these concepts can be associated with an interface object [Tro00b].

Signals represent messages, which the object (or an instance of it) may
send. Slots represent points, where an object can receive messages. When a
developer writes objects, which should communicate with each other using
the signals and slots, he has to connect the signal of the one object with the
appropriate slot of another object. This is done using macros and special
reserved words.

A pre-processor used with Qt, called Meta Object Compiler – moc, re-
places the used macros and reserved words with function declarations and
calls. The message handling is done using meta object, which contain the
references to the appropriate slots for a signal. Whenever a signal is released
by calling the signal function, this call is redirected to the meta object, which
checks the types of the message and directs the message to the appropriate
slot. This mechanism only works inside one thread, because the signal-slot
mechanism is a simple redirection of a function call.

24 CHAPTER 2. RELATED WORK

2.4.5 Summary

Beside the advantage of the target language integration the disadvantage
of the MPI library is the precompiled interface description, which allows
to send only basic data types in a uniform manner. It is not a general
integration of function calls across tasks as Ada provides, nor a general
communication interface provided by interface description languages. It is
also restricted to the communication between processors. There is no way
to communication with different tasks on the same processor or between
threads within the same address space.

Communication across task boundaries is a fundamental concept of Ada.
This integration frees the user from writing bare communication code. It
seems very convenient for a developer not to care about the communication
implementation and simply write a language statement into the code where
he wants to receive a message and which message it shall be. An stand-alone
IDL compiler will never reach this level of integration, except it is integrated
into the target language compiler and extends the target language.

The concepts of Synchronous C++ show a way to incorporate the con-
cepts of Ada into the C++ programming language. Synchronous C++ does
provide a concept to relieve the developer from implementing basic commu-
nication code.

Even though the Qt concepts to exchange messages are designed to be
used inside one thread, it shows ways to integrate communication mecha-
nisms into a target language too. Qt, as well as Synchronous C++, can
accomplish these tasks only by introducing new keywords into the target
language.

2.5 L4 Communication Basics

When writing an IDL compiler for L4 we have to be aware of the L4 com-
munication mechanisms. L4 provides threads running on top of it with a
communication API, which allows the threads to exchange messages. To ex-
change data between address spaces, data usually is copied from the sender’s
address space into the receiver’s address space. The kernel provides differ-
ent mechanisms to do so. The sender might specify a message buffer, which
contains data to be copied. The kernel will copy this data from the sender’s
message buffer (address space) into the receiver’s message buffer (address
space). This kind of transfer is called direct IPC. To copy the data fast, the
kernel establishes a temporary memory mapping of the receiver’s buffer into
the sender’s address space. Thus the costs for this direct IPC include the
establishing of the temporary mapping plus the costs for one copy operation
of the data.

The kernel skips the temporary memory mapping and copy operation if
the amount of data to be transferred fits into the registers the kernel can

2.6. OPTIMIZATION 25

spare during the IPC. These are two registers for L4 version 2 and three for
L4 version X.0. Data which fits into these registers is transferred directly
through the registers. This kind of communication is also called short IPC
and should always be preferred.

Another mechanism is the usage of “indirect strings”, where the message
buffers specify only a memory location and the amount of data to be copied
by the kernel. The intention of indirect strings is to avoid unnecessary copy
operations in and out of the message buffer.

To communicate with different threads, several kinds of IPCs are pro-
vided in the kernels API. These include a simple send operation from one
thread to another, a receive operation to accept a message from a specified
sender, a wait operation to accept a message from any thread. For conve-
nience and performance the send and receive operations can be combined.
The combination of a send-and-receive operation is called call. This call is
an atomic operation. The respective send-and-wait operation is called reply
and wait, because the send operation is to a specific thread and the wait
operation accepts any thread. This can be used in a client/server scenario
for the replies of the server to the clients. This operation is atomic as well.

Another message with special semantic is the flexpage IPC. The message
contains descriptions of memory regions and perhaps other data. The kernel
uses the information in the message buffer to either map, grant or flush a
memory region to or from the receiver’s address space [Lie96]. When sending
a flexpage the sender transfers (or revokes) the rights to access the memory
region to the receiver. An IDL compiler has to generate appropriate code
for these special messages.

2.6 Optimization

Another goal when developing system components for a multi-server oper-
ating system, is to introduce as little communication overhead as possible.
To generate fast communication code, the IDL compiler has to know the
communication primitives of the underlying platform and the specialties of
the compiler which will translate the target code (see Figure 2.2).

Even the best IDL compiler will not be used if the generated code is by
magnitude slower than hand-written code. A developer would rather take
the burden of writing the code himself and be sure it is fast, than letting
the compiler generate the code and know that the code will be too slow to
be of real help. Thus, the IDL compiler has to minimize the communication
overhead by generating fast marshaling and unmarshaling code. (Commu-
nication also involves the exchange of the IPCs, but the IDL compiler has
only indirect influence on that.)

In [Aig01], I researched different optimization strategies and found out,
that for different data types different copy mechanisms minimized the copy

26 CHAPTER 2. RELATED WORK

overhead. One example is the marshaling of a variable sized buffer using
Flick [EFF+97] compared to a simple memcpy operation. Depending on the
size of the array the memcpy operation is five to twenty times faster than the
element by element copy operation used by Flick. Constructed types may
also be copied using memcpy instead of marshaling every single member.
This example shows, that optimization of the copy operation can make the
marshaling stubs faster.

2.6.1 IDL4

Another IDL compiler for the L4 µ-kernel is IDL4 [L4K00]. It has been
implemented at the University of Karlsruhe as work towards a replacement
for Flick. The project started using the same code base as DICE did, but
diverged into a special case implementation for L4. Several optimization
strategies have been tested using IDL4.

One of the optimizations tested, is the direct stack transfer ([HLP+00]).
When calling a function in C (and the C file is translated using a compiler
like gcc) the stack has a special format, which contains the values of the
function’s parameters and other information, such as return address etc. If
the portion of the stack, containing the parameter values is copied to another
stack, the same function could start working on the other stack as it would
have with the original stack. This idea is used to call the functions of a
component. The client imitates the component’s function and copies the
relevant portion of its stack to the stack of the component. The component
can now jump to the start of the function and start working. Using this
mechanism, IDL4 could achieve a performance improvement by factor 3
in comparison with Flick generated stubs [HLP+00, pg. 6]. This example
shows that clever optimization strategies provide the developer with valuable
tools.

2.6.2 Summary

The results of [Aig01] and IDL4 show, that several strategies can be used
to minimize communication overhead. The most important one is copy
minimization. The marshaling and unmarshaling code has to copy as little
as possible. Another strategy is to deploy the features of the µ-kernel, such
as indirect strings and short IPC.

Chapter 3

Design

The Design Chapter discusses different approaches to the main goals of this
work, which are:

1. implement support for the message passing semantic into the IDL
compiler,

2. integrate support for special semantics of the underlying platform,
which is L4, and

3. use enhanced optimization strategies in the IDL compiler to generate
fast communication code.

These three goals have to be met by appropriate representations in the
IDL and the target language.

3.1 Message Passing

Since message passing generalizes the concept of transmitting data compared
to the RPC approach, the changes for message passing were a complex task.
There are several aspects to message passing, which have to be considered.
Firstly: How does the developer specify message passing in the IDL. Sec-
ondly: Which code must be generated. And thirdly: How can the generated
code be integrated into the application.

3.1.1 Communication between System Components

To find an appropriate representation for message passing in the IDL and
target language, we have to examine relevant application areas. From expe-
riences, which we collected in the DROPS project, we know that there are
numerous application areas for message passing. These experiences revealed
several, typical communication scenarios between system components. I will
introduce these scenarios and name the necessary communication primitives
and their respective message passing constructs.

27

28 CHAPTER 3. DESIGN

Communication Scenarios

Communication between system components can also be based on other
mechanisms than the exchange of message, e.g. shared memory. This Sec-
tion concentrates on different message based scenarios. These scenarios are:

1. The sending component sends a simple message to the other compo-
nent.(Figure 3.1)

sender receiver

message

simple message

wait for message

Figure 3.1: A Simple Message

2. The sending component calls a function at the other component, just
like an RPC. The sender initiates a send operation with an immedi-
ately following wait. The receiver has to wait for the message, execute
the function and eventually sends a reply. (Figure 3.2)

sender receiver

wait for message

process function

continue

synchronous RPC

reply

call

Figure 3.2: Synchronous RPC

3. After the receiver send the reply, it returns to wait for a new message.
The message contains a function identifier, which the receiver uses to

3.1. MESSAGE PASSING 29

determine which function to call. This is a classic client/server sce-
nario. This scenario is different from the second in waiting for multiple
function, whereas the former (single synchronous RPC) scenario waits
only for one function. (Figure 3.3)

wait for
message

process
function return

to wait

sender (1)

call

reply

receiver sender (2)

call

reply

Client/Server scenario

Figure 3.3: An Synchronous RPC with Receive Loop (Client/Server Seman-
tic)

4. The sender executes a function asynchronously, meaning it sends the
receiver a message, which initiates the execution of a function at the
receiver’s side. The sender does not immediately wait for an reply, but
does continue its execution and eventually waits for the reply. (Figure
3.4)

replywait for reply

continue

send wait for message

continue

process function

receiversender

asynchronous RPC

Figure 3.4: Asynchronous RPC

5. The sender executes a function asynchronously and specifies a position

30 CHAPTER 3. DESIGN

to deposit the reply at – the reply point. The receiver has to send the
reply to the reply point, after it finished the execution of the function.
(Figure 3.5)

sender reply pointreceiver

wait for messagesend

process function

reply

continue

wait for replycontinue

asynchronous RPC with reply−point

Figure 3.5: An Asynchronous RPC with Reply sent to another Thread

6. The sender calls a function , but receives the reply from a different
thread, than the original receiver. Using this mechanism, the receiver
may dispatch the function to worker threads and continue to wait for
requests. (Figure 3.6)

wait for
message wait for

message

sender receiver

continue process function

worker thread

propagate

call

synchronous RPC with propagation

reply

Figure 3.6: A synchronous RPC with Reply from another Thread

7. This actually is a mixture of some of the above scenarios. The sender
asynchronously calls a function, which is propagated by the receiver
to the worker thread. The worker thread eventually send the reply to
a reply point. The receiver may immediately return into a wait state
to receive new requests. (Figure 3.7)

3.1. MESSAGE PASSING 31

wait for
message wait for

message

process
function

propagate

send

continue

continue

continue

sender receiver worker thread reply point

reply

wait for reply

asynchronous RPC with worker thread and reply point

Figure 3.7: A asynchronous RPC with Worker-Thread and Reply-Point

Communication Primitives

To implement these scenarios, different communication primitives are nec-
essary. In the following the primitives corresponding to the communication
scenarios are listed.

1. To send and receive a simple message only send and receive primitives
are necessary. (see Figure 3.1)

2. To call a function remotely the sender needs an atomic operation to
send a message and receive the reply. At the receivers side only a
receive and a send primitive are needed. (see Figure 3.2)

3. To implement a client/server semantic we need the same primitives
as for the second scenario. But this time the receiver uses an atomic
reply-and-wait primitive, because the server will reply to a client and
is ready for the next request immediately. (see Figure 3.3)

4. To call a function asynchronously, the sender only needs a send primi-
tive and a receive primitive. The receiver can be implemented using
the respective part of the second or third scenario. (see Figure 3.4)

5. For a reply to a reply point no other primitives are necessary. The
receiver must be able to send the reply to the correct reply point. (see
Figure 3.5)

6. To receive the reply from a different thread than the original request
came, the communication primitives must be able to accept such a
reply. Because the sender often waits for a reply from the thread,
where it send the original message to, the replying thread has to fake
its identity to send the reply on behalf of the original receiver. This

32 CHAPTER 3. DESIGN

identity fake is only necessary if the sender sends and receives with an
atomic operation. (see Figure 3.6)

7. Because this scenarios is a combination of some of the above scenarios,
no additional communication primitives are necessary. The sender
needs a simple send primitive. The receiver and the worker thread
need a receive and send primitive. The reply-point only needs a receive
primitive. (see Figure 3.7)

The above scenarios only need some communication primitives, such as:

• a send operation,

• a receive operation,

• an atomic send and receive operation (call),

• an atomic reply and receive operation, and

• an atomic send and receive operation, which accepts the reply from
another thread.

The IDL compiler has to generate functions which implement these prim-
itives.

Communication Context

The last but one scenario can be modified in the following way. Instead of
sending the reply from the worker thread directly to the sender, the worker
thread replies to the receiver. The reply includes the results of the job and
a notification which job has been finished. The receiver has to associate the
job with the corresponding client, since several other request might have
arrived in the meantime. The receiver needs some sort of communication
context. After it found the correct client it sends the reply to that client.

This scenario does not require any new communication primitives. But
the IDL Compiler can be used to generate code, which eases the management
inside this scenario. The compiler may provide some sort of communication
context and management functions for it.

3.2 Design Options

Now that we have discussed the different communication primitives which
have to be supported, there are several opinions on how to implement the
IDL compiler in respect to the usability. The most obvious and formerly
followed methodology is the implementation as a separate tool. This tool
compiles an interface specification file into communication code of the target

3.2. DESIGN OPTIONS 33

language. Another method, which is much more user-friendly is the integra-
tion of communication into the target language, just like Ada or Synchronous
C++ do it.

As shown in Section 2.4.2, Ada provides language constructs to call
function of another task. The design is bare of every kind of communication
specific data, such as identifiers of the communication partner or similar.
The language provides everything necessary to communicate between differ-
ent tasks. When trying to implement this into our target language – C –
we would have to make adaptation of a target language compiler (e.g. gcc)
or a pre-processor would have to replace the communication keywords with
code of the target language (see Figure 2.2).

An extension of an existing compiler, such as gcc, would require the
developer doing the adaptation to get acquainted with the inner workings
of the compiler and integrate all of the “new” concepts of message passing
and communication into the compiler. This requires more time and work
than this Diploma could provide. To implement a pre-processor is the next
logical step when having successfully implemented a stand-alone tool. The
generated code can easily be used by the target language compiler. Com-
pared to a stand-alone IDL compiler a pre-processor has to replace code
in existing files rather than creating new files. This allows only a narrow
view onto the whole communication relationship, whereas a stand-alone tool
always knows both parts of the communication.

Because of these facts I decided to stay with a stand-alone compiler,
which translates an IDL file into the respective communication functions.
As described above, there are several communication primitives, which have
to be represented by functions in the target language.

3.2.1 Message Passing in the Target Language

Because the current target language of DICE is C, it seems necessary to talk
about design decisions regarding C. When using message passing in C we
have to check which functions need to be created to cover the whole spectrum
of possibilities. First we start by looking at a simple send operation from a
client to the component, and explain its progress using an example.

A function F1 takes the parameters p1 and p2 as arguments, whereof each
is send to the component. F is a message passing function, which only sends
to the component, but does not expect a reply. The C send function is called
send_F1, which takes the arguments p1 and p2. This function has to marshal
the arguments into the message buffer and invokes a send operation. How the
send function knows where to reach the component, is a platform specific
implementation detail and is mentioned in the Implementation Chapter.
The component signals the underlying system, that it is ready to receive the
message from the client. This can be done using a receive function, which
is called recv_F1. The receive function will execute the receive operation of

34 CHAPTER 3. DESIGN

the underlying communication mechanisms and unmarshal the arguments of
the function from the message buffer. There have to be two kinds of receive
functions: one to receive from a specified source and one to receive from any
source. We will call the latter a wait function, which is called in C wait_F1.

Further more, there is an additional function F2, which is an RPC style
function and has the parameter p3, which is send to the component and the
parameters p4 and p5, which are expected as result values from the com-
ponent. When the client initiates the RPC function it uses the C function
call_F2, which takes the parameters to send to the component as values
and the parameters received from the component as references, but only
p3 is marshaled and send to the component. The component has to wait
for the message by using one of the recv_F2 or wait_F2 function. When
the message arrives the parameter p3 is unmarshaled and the appropriate
component implementation of the function is called. It returns with values
for p4 and p5. These two parameters are marshaled and send to the client
using a reply_F2 function, which takes only p4 and p5 as parameters. If
the component wants to wait for a new message from a client, the reply
function would also contain code to wait for the next message and be called
reply_F2_and_wait.

Assuming, we want to wait for both functions, the compiler has to gener-
ate a function wait_F1_or_F2. This function needs to decide which function
is requested, and has to unmarshal the respective parameters. In C the func-
tion would have the parameters p1, p2 and p3 (by reference). But only a
subset of the specified parameters is used. If more functions are added to
the interface the compiler would have to generate for all permutations of the
functions receive and wait functions.

Because this strategy increases the target code size tremendously the
more functions an interface has, we use another approach. When analyzing
the implementation of these function, all of them have the same job: they
receive a message, check which function this message is for, and unmarshal
the respective parameters. Only the last step is specific to the separate IDL
functions. We divide the recv_F1_or_F2 function into a function which can
receive any message called recv_any, and separate unmarshaling functions
unmarshal_F1 and unmarshal_F2. The disadvantage of this strategy is,
that recv_any will also accept message for function F3, F4 and F5. The
decision, whether a message will be accepted and which unmarshaling func-
tion to use, is left with the developer. For an RPC function the C functions
unmarshal_F2 and reply_F2_wait_any are generated for the component’s
side.

3.2.2 Client/Server Scenario

The implementation of a server loop using the above functions is illustrated
in Figure 3.8.

3.2. DESIGN OPTIONS 35

opcode = wait any (&sender , & bu f f e r) ;
while (true) {

switch (opcode)
{

5 case opcode P :
unmarshal P (&buf f e r , & t1 , & t2) ;
P server (t1 , t2) ;
opcode = wait any (&sender , & bu f f e r) ;
break ;

10 case opcode S :
unmarsahl S (&buf f e r , & t3 , & t4) ;
ret = S se rve r (t3 , t4 , & t5) ;
opcode = rep ly S wa i t any (ret , t5 ,

&sender , & bu f f e r) ;
15 break ;

}
}

Figure 3.8: Example of a Server Loop using Message Passing functions

3.2.3 Message Passing in the IDL

When using an IDL file to specify interfaces using message passing we need
an IDL which enables the user to group the functions. The groups contain
functions which only send, or functions which only receive, and those which
do both. In case the IDL provides a mechanism to associate keywords with
every function this is an easy task. Such a mechanism can be the usage of
attributes. An attribute is a keyword which provides additional information
about a language construct it is associated with. The attributes in the DCE
IDL have to be enclosed by brackets ([<attribute>]). To mark a function
as a function, which only sends messages to the component, it may receive
a send attribute.

If the IDL provides no possibility to add information on a per-function
manner, as would be possible with attributes, there must be some other way
to mark the different functions. This could be done using different sections
in the IDL file, e.g. different interfaces or sub-interfaces for each kind of the
message passing types. Or the IDL may provide keywords identifying the
sections inside an interface, similar to the private, protected and public
keywords in C++.

The changes, which have to be made to the IDL compiler, are very simple
when using the first approach, because it only has to understand two or
three more attributes for the functions of an interface. When implementing
the latter strategy the changes are somewhat more complicated. The IDL
compiler would have to understand a different grammar, because the file is
structured differently. Both variants would have to adapt their back-end to
create correct message passing stubs.

36 CHAPTER 3. DESIGN

3.3 Data Semantics

Sending a message also means to transfer data. This Section describes the
various semantics associated with data. It explains the user-required seman-
tics and how they can be integrated into the IDL.

3.3.1 Copy Semantic

From procedural programming languages we know about two major ways to
transfer the values of parameters of a function. The first is known as “call by
value”. It copies the values of the parameters into the scope of the function.
Changes to these values are only visible inside this scope. They are lost if the
scope of the function is left. The other kind to transfer parameters is called
“call by reference”. Which means the function only receives a reference to
the value instead of the value itself. If the function changes the value it
follows the reference to the original location of the value. This way, the
changes survive the scope of the function.

Translated into the semantics of communication across address space
boundaries, “call by value” means, that the data is copied from the sender
to the receiver. Each component has an own copy of the data in its address
space. When the receiver manipulates the data and wants to make the
changes known to the sender, it has to copy the changes back to the sender’s
address space. This is called “copy-in-copy-out”. “Call by value” can be
implemented for the communication between components using a normal
message buffer. The parameters of a function are copied to the message
buffer, which is transferred to the receiver, which uses the values of the
message buffer. This way both components have an own copy of the data.

“Copy by reference” implies that both components operate on the same
copy of the data. If they reside in different address space they have to share
the data. Sharing data is only possible using memory shares between the
address spaces. To implement this feature, the IDL compiler has to know
which of the parameters have to be shared, and the generated communi-
cation code has to establish a memory share between the components. To
make this semantic known to the compiler, an attribute, such as share, is
used.

If data is shared between two components using memory shares, other
data, which is located in the same memory page, can also be read or even
manipulated by the other component. This is a serious security leak. If
security plays is more important than the performance advantage of shared
data, the sharing has to be implemented using explicit copy operations.
Another possibility is to copy the data into an own memory page and share
this page only.

If the call to the function is synchronous, the sharing of data can be
emulated by copying the data to the component and copying the modified

3.4. REPRESENTATION OF KERNEL-SPECIFICS 37

data back to the sender. Thus the sender has the impression that it shared
its data with the component.

3.3.2 Live Span of Data

The semantics, required by the users of an IDL compiler, regard mostly
the live-span of data. The named semantics “call by value” and “call by
reference” regarded the live span of data within the sender’s address space.
When communicating between different address spaces we have to regard
the live-span of data in the receiver’s address space, as well.

If one component invokes a function of a remote component the data is
only valid in the receiver’s address space until the function exits. It does not
matter whether the data is “call by value” or “call by reference”. To make
the data valid beyond the scope of the function the user has to specify an
attribute with the respective parameters, which signals this semantic to the
compiler. This attribute is permanent. This semantic is orthogonal to the
above copy semantics, because it involves the provision of memory to store
the data outside the functions scope.

When using a simple message, there is no live-span of a function. Thus
the data must either be “call by value” or it has to be associated with the
permanent attribute. Data which is “call by reference” and without the
permanent attribute is transferred as “call by value”.

3.4 Representation of Kernel-Specifics

Kernel-specifics are primarily special IPC semantics. Kernel-specifics also
enfold the different communication mechanisms, which will be discussed in
the Implementation Chapter. In the following some insight will be provided
into the IDL representation of these special semantics.

As could be seen with MIG in Section 2.2.1, does a deep involvement of
the kernel specifics into the IDL hinder adaptability. Thus we have to find
ways to exploit the kernel specifics, but keep their representation in the IDL
and the target code as abstract as possible. The most specific kernel data
type is a flexpage.

As described in Section 2.5 do flexpages represent the transfer of access
rights to a memory region. Because the compiler has to generate special
communication code to transfer a flexpage, we need some way to signal the
compiler which parameter represents a flexpage. This can be done using
an own data type. The advantages of the explicit flexpage type is that the
interface description language contains simple rules to identify a flexpage. It
allows the user to specify arrays of flexpages and to use flexpages as members
in constructed types. The disadvantage is similar to the involvement of ports
in the MIG IDL. The usage of an own data type hinders the portability to
a platform which does not support flexpages.

38 CHAPTER 3. DESIGN

An alternative is to specify the basic elements of a flexpage separately
using basic data types. The flexpage describes a memory region, which has
a starting address, a size, access right and is owned by a task. To transfer a
flexpage can be done by transferring these elements. The advantage is the
abstract representation of a flexpage. The disadvantage is that the interface
description language has multiple meanings for an address. It can either be
a pure address or the starting address of a flexpage. Another disadvantage
is that the user has to name several parameters to transfer a single logical
unit.

Another possibility is the usage of attribute. E.g. could the attributes
share and permanent in conjunction with a starting address (of type void*)
indicate a flexpage. The rights and ownership flags have to be represented
by individual parameters, which might be coupled to the flexpage through
attributes. Such a specification could look like this:

[a c c e s s r i g h t s (r i gh t s) , ownership (own) ,
s i z e i s (pages) , share , permanent , in] void ∗ base ,
[in] int pages , [in] f p a g e r i g h t s t r i gh t s ,
[in] fpage owner t own

But this specification is rather complex and involves a lot of detail a
developer always has to be aware of. These parameters can be combined
into a complex type, which is defined in globally available IDL file. The dif-
ficulty with both specifications is, that the compiler’s parser has to identify
these parameters as flexpage and the compiler has to generate appropriate
communication mechanisms.

Another alternative could be the usage of native types similar to the
native types of CORBA IDL. A native type is marked as such and whenever
a parameter of that type is marshaled or unmarshaled a user-defined function
is invoked. The advantage of such a native type is the independence of the
underlying communication platform. The disadvantage is that every time a
flexpage is transferred in a message a user-defined function has to be invoked.
Regarding the fact, that the whole memory management uses flexpages and
is used quite often, this could involve a major performance drawback. A
user-defined function cannot be included into the optimization of the IDL
compiler.

To develop general purpose components for micro-kernel based systems,
flexpage are not really essential. But to develop system services for micro-
kernel based systems, flexpages are essential, because memory management
is an essential part of an operating system.

3.5 Optimizer

As described in Section 2.6 the integration of an optimizer into the IDL
compiler is a mandatory task. This Section will have a look at the various

3.5. OPTIMIZER 39

tasks an optimizer would have to perform inside an IDL compiler. The
compiler does neither target intra address space IPC nor communication
across nodes. Hence we perform no in-depth analysis of these possibilities,
but mention them for completeness.

The communication inside the same address space, between different
threads, allows the optimization of the data transfer by exchanging refer-
ences to the data. These reference might be used to directly access the data.
The problem, which emerges from this mechanism, is synchronization. As
soon as it is possible that multiple threads access the same data, e.g. when
issuing an asynchronous function call, the accessed data has to be protected
to allow only one thread to access it.

A similar problem is the communication across nodes. In case data
has to be shared between two components the compiler has to either use a
distributed shared memory mechanism of the underlying platform or provide
the semantic itself. But like the above scenarios, this one is still beyond the
means of this compiler. We will now research the optimization mechanisms,
which might be exploited when communicating between threads in different
address spaces.

3.5.1 Data Sharing

As mentioned in Section 3.3, data can be explicitly shared between two
components. For performance reasons the compiler can decide to temporar-
ily share data between two components. It generates communication code,
which establishes a temporary mapping, send a message to the receiver and
revokes the mapping after the reply arrived. The message only contains the
function identifier and an address where to find the data.

Another level of optimization is to establish a permanent mapping be-
tween two components and to exchange data only through this memory
window. The disadvantage is, to copy the data into the shared memory
region. A message must also be send to signal the receiver to execute a new
function. A shared memory region also bears the risk of a security breach.

3.5.2 Indirect String IPC

Another mechanism, mentioned in Section 2.5, can also be used to optimize
the performance of the communication code – the indirect string IPC. In-
stead of copying data multiple times (into the message buffer, the message
buffer across address spaces, and the data out of the message buffer), the
communication partner only specify the memory area to copy from and to.
This way, several copy operations can be spared.

The disadvantage is, that the receiver has to provide the memory for
indirect strings. Thus it has to be know which data is received before the
message arrives. This problem is discussed in more detail in Section 4.3.

40 CHAPTER 3. DESIGN

3.5.3 Short IPC

Also mentioned in Section 2.5 is the short IPC of L4. If the data to be sent
fits into two CPU word, the short IPC can be used. This kind of IPC is
much faster than an IPC transferring a message buffer. Hence this kind of
IPC should be used as often as possible.

3.5.4 Copy Optimization

Most of the generated code is marshaling or unmarshaling code. Hence we
expect the higher performance gain in optimizing this code. The marshal-
ing and unmarshaling code of the generated stubs mostly consist of copy
operations. In a straight forward implementation the data is copied into
the message buffer, the communication mechanism copies the data from
the caller to the component or the other way, and the receiver copies the
data from the message buffer to local variables. Thus the main goal of the
optimizer is to minimize the copy operations.

This can be done by simply analyzing data types, but also by using
communication mechanisms of the underlying architecture. Those are, in
the case of the L4 µ-kernel, the indirect strings or register IPC. To adjust
the data structures to these communication mechanisms the data may also
have to be reordered, meaning it is marshaled or unmarshaled in another
sequence than it is specified in the function’s parameter list.

The analysis of the data to be marshaled should also find redundant
information, or fill empty spaces in the message buffer, which appear due
to alignment differences. The optimizer should also find out which copy
operation is the fastest for specific data types. E.g., to copy an array of
values as a chunk is faster than copying every single value. If an array is
fairly large, but consist of zero values, an optimizer might also compress such
information to avoid “pollution” of the message buffer. Another method to
compress data is bit-stuffing. Assuming a function has multiple parameters,
where each parameter is only a few bits in size. In sum all parameters would
be the size of CPU word. Instead of using a CPU word for each parameter,
the optimizer should compress them into one CPU word.

3.6 Summary

The Design Chapter discussed several options to implement an IDL compiler,
which conforms to the mentioned goals. To support the semantics of message
passing the compiler’s structure has to be extended. The back-end has to
generate more C functions per IDL function than for RPC semantics.

I decided to support the kernel semantics to the following extend. Be-
cause of backward compatibility to Flick IDL files I decided to use an own
data type for flexpages. This allows the compiler to identify the semantic

3.6. SUMMARY 41

easier. To provide a more abstract representation of flexpages to the users
in the future, I will support a constructed IDL type, which represents a flex-
page as a constructed type. The support of a native type is not regarded,
because the compiler has no influence on user-defined functions.

The possibilities to optimize the generated communication code are nu-
merous. The current implementation is based on the following decision:
the compiler uses the features of the underlying platform, it minimizes the
copy operations and it uses appropriate copy operations for different kinds
of data.

42 CHAPTER 3. DESIGN

Chapter 4

Implementation

Chapter 4 describes the changes and adaptations made at the DICE compiler
to implement the concepts introduced in Chapter 3. Because the main work
was coupled to the changes for message passing, it will make up a large part
of this Chapter, as well. Other tasks have been the integration of kernel data
types and enhancement of optimization mechanisms used by the compiler.
A description of general design decisions can be found in Section 4.6.

4.1 IDL

The first interface visible to the user is the IDL file. This Section explains
the changes made to the IDL to support message passing, kernel-specifics
and optimization.

DICE does support the CORBA IDL and the DCE IDL. And because
the CORBA IDL does not support attributes to an extent needed by an
optimizing IDL compiler [FHL95], the DCE IDL is the prime language of
the compiler1. Thus all features mentioned below apply to the DCE IDL if
not explicitly stated otherwise.

The parser, generating the in-memory representation of the IDL, is cre-
ated using the GNU tools flex and bison. The parser reads the input files,
checks their grammar and syntax, and generates the in-memory representa-
tion. Further on it performs a semantic check of the IDL (whether all used
types are defined, etc.). After the compiler finishes pre-processing an IDL
file, it can be assumed, the in-memory representation of this particular file
is correct.

1The CORBA IDL can be extended to support attributes as well, but this would violate
the OMG standard. For compatibility reasons I declined changes to the CORBA IDL and
use the DCE IDL, which supports attributes naturally.

43

44 CHAPTER 4. IMPLEMENTATION

4.1.1 Message Passing in the IDL

In Section 3.1 I explained the concept of message passing being more general
than RPC. When implementing a more general concept into an IDL one
might expect the IDL to become overly complex. But when analyzing the
basic elements of message passing – sending a message to a component or
receiving one from it – the implementation becomes fairly simple.

When using RPC semantic in an interface specification, the parame-
ters of a function are associated with attributes to indicate the direction
of their transfer. The attribute in means, the parameter’s value is send to
the component. The out attribute indicates parameters returned from the
component.

Instead of only associating single parameters with a directional attribute,
the whole function may be associated with a directional attribute. Using
the attribute in means: it is a message which is send from a client to the
component. Using the out attribute marks messages the specified compo-
nent may send to other components. To further support the RPC semantic
messages without an directional attribute are assumed to follow the RPC
semantic. Thus former interface specifications will work with the new com-
piler, as well. The following is an example of an interface using message
passing:

i n t e r f a c e t e s t i n t e r f a c e {
[in] void t e s t f unc1 (int parameter1) ;
[out] void t e s t f unc2 (int parameter2) ;
void t e s t f unc3 ([in] int parameter3 , [out] int parameter4) ;

5 }
The first function – test_func1 – represents a message, which can be

send from a client to the component. Its parameter – parameter1 – is auto-
matically regarded as data to be transferred from a client to the component.
The second function – test_func2 – represents a message, which the com-
ponent might send. And the last function – test_func3 – does comply with
the RPC semantic.

4.1.2 Flexpages in the IDL

As discussed in Section 3.4 there are several strategies to implement flex-
pages into the IDL. For portability reasons the communication specifics of
the platform should be invisible in the IDL and the generated target code.
Therefore the compiler is responsible for using the right communication
mechanism for different kinds of data. But if there exists no possibility
to distinguish an array of bytes from a memory page, the compiler hardly
knows which mechanism to use in the right context.

The current implementation of DICE uses an own data type – flexpage.
The compiler’s parser can identify an explicit data type more easily than
data types with implicit semantic. Future work will provide the IDL with

4.1. IDL 45

a more abstract approach to flexpages, e.g. a constructed data type. The
translation into the target code is described in Section 4.2.2.

4.1.3 Indirect Strings in the IDL

If direct IPC is used to exchanged data, the transferred data is only valid
until the next receive operation, which will overwrite the message buffer. If
the receiver likes to use the data past this point, it has to explicitly copy
the data into a different memory area. The message buffer is provided by
the compiler generated code and can always be reused by it.

An indirect string IPC has the semantic of a receiver, providing an extra
memory area the data can be received in. Because this mechanism provides a
great optimization potential, I support it in the IDL compiler. The memory
area is fully under the control of the receiver, meaning the receiver has to
allocate and free it (see Section 4.3 for memory management details.). But
this special semantic has to be specified by the user. He has to provide the
memory management code to allocate and free the memory area (see Section
4.3).

If the compiler optimizes the data transport of normal data using indirect
strings it has to provide the functionality to manage the memory areas at
the receiver’s side, which are used to receive the data. The compiler also
has to mimic the semantics of an indirect string IPC if it actually uses a
direct data transfer, but the parameter was specified with the indirect string
attribute.

To illustrate the concept, it might be useful to introduce a short example.
The specification of the parameter, which should be transmitted using an
indirect string looks like this:

[in , ref] char∗ data
Because the communication code has to know the size of the memory

area, a parameter using the ref attribute has to specify a size_is attribute,
as well. This size attribute can be omitted, if a string attribute is used
instead. The string attribute implies the parameter of type character array
is a zero terminated string. This way the marshaling code can calculate the
size of the data itself. If only the ref attribute is specified with a character
array parameter, the string attribute is added automatically. The above
example is the same like:

[in , ref , string] char∗ data
If the type is different from a character array, the size attribute has to be used
to enable the marshaling code to asses the size of data. The specification
could look like this:

[in , ref , size is (count)] int ∗array , [in] int count
The ref attribute may also be used with any other data type:

[in , ref , size is (sizeof(complex type))] complex type ∗ t1
When writing the interface specification using the CORBA IDL the in-

46 CHAPTER 4. IMPLEMENTATION

direct string support has been implemented using an own data type —
refstring. This is a remainder of the Flick usage. The L4 adaptation of
Flick implemented indirect strings using an own data type.

4.2 Target Language Representation

Another interface, important for the users of the compiler, is the resulting
target code and how it can be employed. To allow the reuse of this code
across changing platforms, it is important to export as little kernel specifics
as possible to the target language. The current target language of the com-
piler is C. This Section shows the implementation of two of the mentioned
kernel specifics – flexpages and indirect string IPC, and support for the
message passing semantic.

4.2.1 Message Passing

The former implementation of DICE supports only the RPC semantic. To
allow the support of message passing, the back-end of the compiler had
to be extended and restructured. As described in Section 3.2.1, there are
multiple C function per IDL function. On the client’s side as well as on
the component’s side. In contrast to two C function per IDL function for
RPC semantic – one for the sender’s and one for the receiver’s side. This
proportion of multiple C functions to one IDL function has to be considered.

The message passing C functions do also contain only portions of the
former C functions. E.g does the unmarshaling function consist only of the
unmarshaling code. It uses only the out parameters of the IDL function
and a reference to the message buffer.

The wait- or receive-any functions will accept any kind of message. To
be able to identify a requested function, the function identifier has to be
extracted from the message buffer. Because it is placed into the same po-
sition for every message, the unmarshaling of the function identifier can be
done by the receive-any or wait-any function. The function identifier is the
return value of these functions.

4.2.2 Flexpages

When sending flexpages, their descriptions have to be first in the data por-
tion of the message buffer and an additional flag has to be turned on. There-
fore they have to be marshaled first. The first CPU word of the data section
of the message buffer is usually used for the function identifier. If flexpages
are stored in the data section, the function identifier has to be stored after
the flexpage descriptions. Therefore the receiver has to find out if a flexpage
arrived and use a special case implementation to find the function identifier.
The flexpages are separated from the rest of the data by an invalid flexpage.

4.2. TARGET LANGUAGE REPRESENTATION 47

To illustrate the target code representation of flexpages, I use a short ex-
ample. When sending a flexpage to the component, the specification looks
like this:

[in] flexpage page
The function to send the flexpage has a parameter which is the flexpage type
of the underlying communication system. This type is also used for porta-
bility reasons. Most of the existing memory management code uses this type
internally. Future versions of DICE will support a more abstract representa-
tion of a memory region. Drawbacks of a more abstract representation are
additional indirections, which will be introduced into the communication
code, because values have to be copied into the internal flexpage type. An
advantage is the portability of the code using the abstract representation of
a flexpage instead of the internal flexpage type.

The component has to specify a receive window where it will receive the
memory region. This receive window is basically the same as the receive
buffer for indirect strings. How this receive window can be provided is
described in Section 4.3. The receive window has to be made available to
the receive function. This is either done by using the parameter, which
contains the received memory region. It contains the receive window when
the function is called. This receive window has to be set either explicitly
by the user before calling the receive function. Or it is set implicitly by
the receive function itself, if the function has no flexpage parameter. Both
approaches have their advantages and disadvantages, which are described in
Section 4.3.

4.2.3 Indirect Strings

The specialty about indirect strings is, that the developer specifies the source
and the target location of the data and the communication code only trans-
fers the data from the source to the target. The compiler does not generate
any code to copy the data into or out of a message buffer.

There are some restrictions to the usage of indirect strings, which I
will explain using an example. The following IDL specification is part of a
message passing function, which sends data as indirect string.

[in , r e f , s i z e i s (s i z e)] char ∗ data , [in] int s i z e

The compiler generates at the sender’s side a C function, which has the
following parameters.

char ∗ data , int s i z e

At the receiver’s side a similar C function header is generated for the
receive function, but the parameters have a special semantic.

char ∗ date , int ∗ s i z e

When receiving an indirect string the receiver has to specify a receive
buffer for the indirect string. This receive buffer is handed to the receive

48 CHAPTER 4. IMPLEMENTATION

function using the parameters, which will also contain the received data.
The data parameter contains the reference to the receive buffer and size
the size of the receive buffer. (Size is a reference parameter, because the
actually received size has to be stored in it.)

The specification of a receive buffer is somewhat more complicated, if
the receiver uses a receive-any or wait-any function. These functions do not
have parameters other than the message buffer. Thus the message buffer
has to be initialized with appropriate memory areas to receive the indirect
strings. The next Section discusses the management of these buffers.

4.3 Memory Management at Receiver’s Side

Each piece of data, which is received by some component has to be copied
to a dedicated memory location. When using receive functions, which are
specific to one IDL function these memory locations can be provided by
using the “call by reference” mechanism for the parameters. For reasons,
described in Section 3.2.1, do the receive-any and wait-any function have
only the message buffer as a parameter. Thus the memory location for
specific parameters cannot be specified. These specific memory locations
are provided when unmarshaling the parameters from the message buffer.
This assumes that the data can be stored in the message buffer until the
unmarshal function is executed. Because indirect strings and flexpages do
not use the memory of the message buffer, this memory has to be explicitly
specified.

As indicated above, an indirect string or flexpage parameter can contain
the target memory location when the receive function for one specific IDL
function is called. This way, the user may specify the memory location
explicitly. If a receive-any or wait-any function is called, no such parameter
exists. The message buffer has to be initialized appropriately to contain
references to the memory locations. This can be done either explicitly by
calling an initialization function before calling the receive-any or wait-any
function. Or it is done implicitly by calling an initialization function from
the receive-any or wait-any function. This initialization function is a call-
back function, which is provided as skeleton by the compiler and has to be
implemented by the user.

Such a call-back function can be used to support all different kinds of
memory. These include pinned memory or memory, which can be used
for DMA. Because these possibilities are beyond the scope of the current
research, I concentrated on common, page-able memory.

The drawback of such an call-back function is the additional indirec-
tion. An advantages is the possibility to reuse memory for the next message
and thus minimizing memory usage. This call-back function also allows
an elegant and abstract way to handle the memory allocation for received

4.3. MEMORY MANAGEMENT AT RECEIVER’S SIDE 49

parameters.

4.3.1 Indirect Strings

To accentuate this problem I explain it in more detail for indirect strings.
One of the problems when using indirect strings with receive-any or wait-
any function is the provision of receive buffers. To illustrate the problems,
I will use the following sample IDL:

i n t e r f a c e foo {
void f1 ([in , r e f] char ∗ data ,

[in , r e f] char ∗ name) ;
void f2 ([in , r e f] char ∗ name) ;

5 } ;
The user intends to use the parameters as follows: the name parameters

can be received in any kind of buffer, which can be reused when the com-
ponent function2 returns. Their data is used only inside the component’s
functions. The size of such a name does not exceed 100 bytes. The data
parameter, on the contrary, has to survive the scope of the component’s
functions. Ideally the receive buffer for such data should be taken from a
special pool, which contains memory blocks of the appropriate size, which
are much bigger than the buffers needed for the names, e.g. 1 KByte.

All functions use indirect strings to exchange their parameters. As de-
scribed in Section 2.5, does the receiver of an indirect string has to provide
memory for the indirect string. The receive function wait_f1 has two pa-
rameters – data and name. These parameters are used to initialize the
receive buffers. The user has to specify a valid memory area for them when
calling wait_f1. The indirect strings are copied into these memory areas.

The receive function has only the message buffer parameter for reasons,
which are described in Section 3.2.1. Thus the wait_any function does not
have specific parameters, which contain the memory areas to initialize the
indirect string buffers. One possibility to initialize these buffers is to allocate
memory for the buffers inside the wait_any function. To enable the user
to implement a tailored memory allocation routine a call-back function is
executed to allocate the memory. This call-back function is provided as
skeleton3 by the compiler.

To implement the initialization of the indirect buffers inside the wait_any
function entails that a repetitive execution allocates memory over and over.
Even if the old buffer can be reused. The wait_any function does not have
any knowledge about the further usage of the buffers and hence cannot de-
cide which of the buffers to reinitialize and which not. The solution is to

2The component’s implementation of the specified function.
3A skeleton is a function with an empty body. Skeletons are created by the IDL

compiler to simplify the implementation of a function.

50 CHAPTER 4. IMPLEMENTATION

place the initialization of the indirect string buffers outside the wait_any
function.

If the wait_any function is used inside a receive-loop4, the message buffer
has to be initialized as well. The generated receive loop does call the call-
back function to initialize the indirect strings before it enters the very first
wait. The receive-loop does not call the call-back function again. This way,
the indirect string buffers will be reused over and over until a function’s
implementation5 initializes them with another buffer. This is done using
the call-back function again.

If the permanent attribute is specified with an indirect string, the receive-
loop initializes the indirect string buffer with a new memory area itself. The
user must not initialize this buffer himself.

The call-back function can be regarded as a “memory allocation” func-
tion to provide the buffers for the indirect strings. There are several ways
to use such an allocation function. One is to use it similar to malloc. The
function takes as parameter the size of the memory to allocate and returns
a reference to the allocated memory. Such an allocation function cannot
be used, because a function’s implementation does not know the size of the
buffer of the next indirect string. The function’s implementation receives
the parameters, which contain an indirect string as double referenced pa-
rameters. Thus the function’s implementation can assign a new memory
area to the variable. Still the implementation does not know the size of the
memory area to be allocated.

Another possibility is an allocation function, which knows the message
buffer of the receiver loop (e.g. by an global variable). The user indicates to
this function, which of the indirect string buffers to allocate a new memory
area for. E.g. does the server implementation of f1 replace the data buffer
with a new buffer by calling the allocation function with a parameter saying:
replace buffer which contains the data of the parameter data of the function
f1. This could look like this:

allocate buffer (BUF F1 DATA);
The allocation function knows by macro magic, the correct indirect string

to be initialized with a new buffer. Again the question is, which kind of buffer
to use. Because this information cannot be made available to the allocation
function (it would have to predict the future – which function will be called
next), the only solution is to use one kind of buffer for both, data and names,
and internally copy data into the special buffers.

This copy operation could be omitted if the indirect string parameter
could be grouped. This is done by extending the ref attribute to specify
the number of a group this indirect string belongs to. This would make the

4Also called server-loop. It receives request from other components, determines the
respective function, calls it and returns the result. After that it waits for the next message.

5The implementation of an IDL function at the component’s side.

4.3. MEMORY MANAGEMENT AT RECEIVER’S SIDE 51

above IDL look like this:
i n t e r f a c e foo {
void f1 ([in , r e f (2)] char ∗ data ,

[in , r e f (1)] char ∗ name) ;
void f2 ([in , r e f (1)] char ∗ name) ;

5 } ;
This option can only be used to sort the indirect strings. And sorting

can only be performed if there is more than one element. Thus if the second
parameter of f1 wouldn’t exists, these parameters could not be sorted and
thus be grouped. This way both kinds of buffers use the same indirect string
again.

Alternatively the ref attribute can be used to directly specify an allo-
cation function to be used with the parameter. The IDL specification could
look like this:

void f1 ([in , r e f (a l l o c da ta)] char ∗ data ,
[in , r e f (a l loc name)] char ∗ name) ;

4.3.2 Sparse Strings

Another strategy is to use one indirect string for every possible variable. This
would mean for the above IDL to provide a message buffer with three indirect
strings, where each one of them has to be backed by memory to receive in.
This could be a tremendous waste of memory, but if cleverly organized a
good alternative. Assuming we use the above IDL. The IDL compiler will
provide a message buffer for each function which uses indirect strings. This
message buffer has as many indirect strings as are indirect string parameters
in the interface specification (for the above example: three).

At the receiver’s side these buffers are initialized using a number to
identify each indirect string. We call an indirect string with a number a
slot. E.g. will the parameter data of function f1 be received into the first
slot; the parameter name of f1 will be received into the second slot; and the
parameter name of f2 will be received into the third slot. Now the allocation
function knows which parameter it initializes, which indirect string to use
for it and may set the correct receive buffer for it (e.g. the special kind
of buffers needed for the data parameter). If some mechanism, such as the
indirect string grouping, is used, it may also reuse buffers for indirect strings
of the same group. This means, that slot two and three reference the same
buffer.

At the client’s side, the parameters are marshaled into the message
buffer’s slots respective to their global position. The unused string iden-
tifiers are initialized to zero values. This means that for function f1 the
slots one and two are filled with data and name and slot three is set to zero.
For function f2 the first two strings are set to zero and the third is set to

52 CHAPTER 4. IMPLEMENTATION

the name parameter. This way the kernel could transfer the correct data
into the correct receive buffer.

To make the usage of indirect string buffers more efficient, the string
grouping idea could be used again. If two indirect strings are within the
same string group, they may share the same receive buffer and thus use the
same slot. This idea implies, that all indirect strings of one function have
to use a different string group. The effect is, that for the above example
we only need two slots in the message buffer. The first slot is reserved
for the data parameter and the second for the name parameters. Thus the
sender function f1 would fill slot one with the reference to data and slot two
with name. Function f2 would leave slot one empty and fill slot two with
a reference to name. At the receiver’s side we need two slots as well. The
allocation function initializes slot one with the special kind of buffer, used
for data, and the second slot with a “normal” buffer.

The restriction of such an approach is the sparse usage of indirect string6.
I don’t know whether the compiler will return an error or stop processing
when it discovers a string of size zero or simply skips it. I also don’t know if
future kernels will support this feature. And of course there is a restriction
of the number of strings to be transferred.

4.4 Optimization

The optimizer influences the generation of fast code by reorganizing the
data, which should be sent. Some examples for reorganization are:

• Use as little space as possible. As explained in Section 3.5.4, may
multiple values fit into one CPU word. If the resulting data fits into a
short IPC, the benefits outweigh the effort to stuff the values into one
CPU word.

• Use fixed values (especially indices) as much as possible. Fixed sized
data is copied into the message buffer before any variable sized data.
Thus the fixed sized data can be marshaled using fixed offsets into the
message buffer.

Optimization is not only done by reorganizing data, but also by influenc-
ing the code generation. The copy operations can be minimized if a fast copy
operation is used for each data type. Constructed data of fixed size, such
as structs or arrays, are copied using the memcpy operation. The memcpy
operation copies a chunk of data. This is faster than copying every single
element of the constructed data.

Optimization does not only consist of making the marshaling and unmar-
shaling code fast. Another part of optimization is the usage of the correct

6Hence the name – Sparse Strings

4.5. SIDE-EFFECTS 53

communication primitives. E.g. does the compiler use indirect strings for
variable sized data. The communication primitive copies the data only once.
To copy the data into the message buffer and out of it involves two to three
copy operations.

To minimize copy operations the compiler might even decide to use tem-
porary memory shares between two components. This has to be transpar-
ently to the user. The optimizer and the code generator generate code for
the target language compiler. This means that the code has to be trans-
lated another time. The IDL compiler has to know how the target language
compiler interprets different code and generate the most appropriate. Thus
the code might look awkward.

4.5 Side-Effects

This Section contains parts of the work, which have been done, because
the demand for it arouse during the implementations. The test-suite was
created to provide a way to test the generated stubs, which is easy to use and
automatic. It uncovered several bugs and has thus proved beneficial already.
Nonetheless did it take some time to implement this feature. The Flick
compatibility mode has been added due to the need to make the transition
from Flick to DICE as easy as possible for the developer. The pre-processor
is an essential part of the compiler and since a lot of work has been invested
in it, it should become reusable by others. Therefore the XML parser output
has been integrated.

4.5.1 Test Suite

The compiler generates marshaling and unmarshaling code, which is often
hard to read for the developer. If an error occurs and the developer is not
sure whether this error occurs because the marshaling/unmarshaling code
is incorrect or his own code has a bug, it is a tedious task for the developer
to check his own code and the generated marshaling/unmarshaling code.
That’s why the compiler has to generate correct code. To be able to proof
this (to some extend) the compiler is able to generate a test-suite for a
specified IDL file.

The idea to implement a test-suite has — again — been taken from the
IDL4 compiler. In meetings with Andreas Häberlen, the developer of IDL4,
he pointed out to me, that a test-suite has many advantages. With his
suggestions and an example test-suite, generated by IDL4, I could integrate
a test-suite generator into DICE within three days.

The test-suite generates an application, which launches a server-thread
to simulate the component and calls this component using the generated
stubs. To fill the parameters of the function the test-suite contains code to
assign random values to the parameters. These random values are generated

54 CHAPTER 4. IMPLEMENTATION

in a controlled way, so each error is reproducible. The client stub then
marshals and transfers these values to the server thread, which runs the
receive loop.

The receive loop unmarshals a request and calls the appropriate com-
ponent function. Inside the component function the transmitted values are
compared to globally stored reference values. If the values don’t match an
error message is printed. The return values are filled with random values and
sent back to the caller. The caller compares the values to global reference
values and prints an error message if a value does not match.

The generated test-suite uses the DROPS L4 environment to start threads
and print status output, such as the error messages, and is thus limited to
run on top of L4 version 2 kernel. Because the code generation for the test-
suite does also follow the class organization of the compiler it is very easy
to adapt the test-suite generation to the respective target platform.

It showed very helpful to implement this test-suite, because several bugs
showed up when testing example IDL files with the test-suite. Thus the test-
suite is not only a nice feature for the developer using the compiler, but also
for the developer writing the compiler. This feature allows the user of the
compiler to be confident about the generated code. Surely, it is questionable
to proof the correctness of a tool with the tool itself.

4.5.2 Flick Compatibility Mode

The Flick compatibility mode has been implemented into DICE to support
the migration from Flick towards DICE. Flick has been used widely to build
system service for L4 and it is a ridiculous thought to demand from the
users of Flick to change all their code written for the Flick stubs. The
Flick compatibility mode allows them to use their legacy code with a new
IDL compiler. DICE had to support all the features, Flick had supported.
But instead of implementing client and server stubs, which are identical
to the Flick generated stubs, DICE provides only a C function interface
compatibility.

This means that the client stubs and server functions, which have been
generated by Flick have the same parameter number and sequence as DICE
generated functions. This allows the developers to simply bind their code
against new client stub libraries. But DICE generates different code inside
the stubs than Flick does. Thus the communication protocol is quite dif-
ferent. A Flick generated client stubs will not work with a DICE generated
server loop. But this means the least effort for the users of Flick. All they
have to do, is to replace their hand-written server loop with a call to the
DICE generated server loop and a recompile.

4.6. ADAPTABILITY AND MAINTAINABILITY 55

4.5.3 Pre-Processor

Because the University of Karlsruhe has a similar project – the development
of an IDL compiler for the L4 µ-kernel – it was reasonable to join forces.
First steps toward this cooperation have been the exchange of ideas, as
mentioned at the beginning of this Chapter, and the implementation of a
front-end, which both could use. Because DICE supports more IDLs than
IDL4 does, it was chosen to be the compiler to generate an intermediate
format, which both compiler could then use with their back-ends. The
format of the intermediate files is XML, because it is a standard format to
exchange data.

After DICE parsed the specified IDL files and checked them syntactically
and semantically it generates the corresponding XML file. The front-end
might be distributed separately from the rest of the compiler to be used as
syntax checker or pre-processor by other tools, such as IDL4.

4.6 Adaptability and Maintainability

The main concept of adaptability is the factory concept, introduced by Volk-
mar Uhlig. One of the factories is the name-factory. Names for functions,
types or variables are used at multiple places within the compiler. If a name
is not suitable for a target platform it has to be changed. E.g. is the word
protected a valid variable name in C, but it is a reserved keyword in C++.
Thus we might generated a variable name protected if the target language
of the compiler is C, but we have to use another string if it is C++. As-
suming we used the name in several places, we have to find and change all
these occurrences. If, instead, we use a central spot to create the names,
we would only have to change the name at a single spot. Additionally, if
introducing a new back-end, which uses a different naming scheme, by suf-
fixing every variable name, we do not have to change all names, but may
instead overload the respective function, call the base-class’ function to get
the original name and add the prefix or suffix to this name.

A similar problem arouses, when using classes in the compiler. Assuming
you would like to change the class to be used or modify its functionality,
because you implement a different back-end, you can overload the base-class
with an own implementation of its functionality. But how does the compiler
know, that it has to use your new class now. The easiest way to may this
class available is to maintain a class-factory as a central “authority”, which
creates the appropriate classes. When using a derived class the class-factory
will produce the new class.

Other ideas, concerning the design of the IDL compiler are common to
most compilers. The compiler is separated into a front-end, which reads
and checks the input files, and a back-end, which writes the target files
and optimizes the generated code. To make the optimization part easier to

56 CHAPTER 4. IMPLEMENTATION

find I inserted an extra sub-module into the back-end. It consists of the
data-representation classes, which are used to find the suiting optimization
strategy.

Chapter 5

Performance Evaluation

I measured the following performance numbers on a Intel Pentium Pro
(166 MHz) computer with 256KB cache and 64MB RAM. The IPC were
exchanged between two L4Linux task, running on L4Linux [HW97] and Fi-
asco.

5.1 Message Passing vs. RPC

The advantages of message passing over the RPC semantic can hardly be
expressed in numbers. The most significant advantage is the broader appli-
cation spectrum. I like to explain these advantages with three examples.

5.1.1 Region Manager

The region manager is currently implemented using a server loop, which re-
ceives requests (page-faults). It locates the corresponding data-space man-
ager and send a request to this data-space manager to provide the appropri-
ate memory region. This is done synchronously. If a request arrives, which
should be handled by a different data-space manager, it has to be blocked
until the former request is completed, because the region manager is still
busy waiting for the data-space manager.

With message passing the region manager can be implemented using
asynchronous request to propagate the request to the data-space manager.
Thus it can be ready to receive the next request, while the data-space man-
ager is still processing the first request. After the data-space manager fin-
ishes the first request it signals the completion to the region manager, which
can send the reply to the thread, which initiated the request.

5.1.2 Thread Library

Most of the communication code of the thread library is hand-code, because
it it mostly only sends a message. Therefore the code is very prone to

57

58 CHAPTER 5. PERFORMANCE EVALUATION

errors. If the thread library should be ported to another platform the whole
communication code has to be replaced by hand. If using an IDL file the port
can be done by recompiling the IDL file. The message passing attributes
allow the developer of the thread library to specify all the simple messages
as functions of an interface.

5.1.3 DSI

The DSI model is based on the idea, that simple messages are exchanged
between components to signal processing states. These messages may also
have to appear in a specific sequence. This cannot be done easily using
former IDL compilers. Using message passing the developer may specify,
that after a specific message arrives another message is expected. Thus he
may declare a sequence of messages.

5.2 Flexpage vs. Indirect vs. Direct

As described in Section 3.5 do several strategies to make data available in
another address space. I measured and compared three strategies on L4
to determine, which strategy is best for different kinds of communication.
These strategies are:

• share memory pages,

• use indirect strings to transfer data, and

• use copy operations and the message buffer.

I measured the performance numbers for data from 8 bytes up to 16KBytes.
These are the numbers. Because the minimum size that can be shared is
one memory page, the measurements for memory shares start with 4KByte.

5.2.1 Numbers

This Section includes the performance numbers measured for the different
communication mechanisms.

pages average minimum maximum
1 4700 3956 16346
2 5474 4717 17984
4 7107 6301 23355

Table 5.1: Number of Cycles to establish a Memory Share

If a memory share is used to exchange data between two address space,
the share may either be established before the communication starts or

5.2. FLEXPAGE VS. INDIRECT VS. DIRECT 59

pages average minimum maximum
1 1757 1652 7200
2 2497 2380 8817
4 4110 3929 10245

Table 5.2: Number of Cycles to revoke a Memory Share

it may be established for each function call. Because the first possibility
involves advanced memory management and connection handling, we ignore
this possibility in this work.

Because each function call has to establish and eventually to revoke the
temporary memory share, I added the two parts in Table 5.2.1.

pages average
1 6457
2 7971
4 11271

Table 5.3: Number of Cycles to establish and revoke a Memory Share

The numbers in Table 5.2.1 show the cycles needed to transfer one indi-
rect string of the specified size. The string is mapped in the sender’s address
space (this has been ensured by initializing it). The transfer includes the
establishment of a temporary memory mapping and copy operation inside
the L4 µ-kernel.

bytes average minimum maximum
8 5081 4265 11131
16 5052 4285 11045
32 5074 4367 11851
64 5135 4890 11204
128 5138 4893 11931
256 5298 4542 12374
512 5379 5077 11437
1024 5800 4982 12844
2048 6548 5884 12554
4096 8288 7806 14972
8192 11823 10874 26729

Table 5.4: Number of Cycles for indirect string transfer

Table 5.2.1 show the performance numbers for the transfer of data using
the message buffer. The measurements included a copy operation from the
parameter to the message buffer. At the receiver’s side the data has been
copied out of the message buffer. For the copy operations the memcpy op-

60 CHAPTER 5. PERFORMANCE EVALUATION

eration has been used. The kernel copies the data from the sender’s to the
receiver’s address space. The Table 5.2.1 shows the cycles needed for the
pure IPC. The difference is due to the additional copy operation into and
out of the message buffer.

bytes average minimum maximum
8 4466 3693 10483
16 4536 4222 10747
32 4517 3800 10394
64 4589 3822 10786
128 4738 4024 10333
256 4980 4277 10388
512 5319 4563 11529
1024 6290 5346 12099
2048 7767 6845 13758
4096 11405 10893 17209

Table 5.5: Number of Cycles for direct transfer (including copy)

bytes average minimum maximum
8 4500 4089 10472
16 4536 4176 9959
32 4503 3817 10401
64 4555 3754 10606
128 4601 4288 10651
256 4701 3965 10609
512 4852 4063 10864
1024 5373 4537 11326
2048 6003 5093 11348
4096 7349 6620 13701

Table 5.6: Number of Cycles for pure direct IPC

A short IPC needs an average of 835 cycles with a minimum of 814 cycles
and a maximum of 1246 cycles.

5.2.2 Comparison

I compared the above numbers to find out, which communication mechanism
is best suited for different data sizes. The numbers always assume that there
is only one big chunk of data to be transferred. That’s why the real-world
scenarios may differ from the above numbers.

As can be seen in Figure 5.1 does the direct IPC perform best, even
though it copies the data three times. The break even with indirect string

5.3. PERFORMANCE OVERHEAD FOR MESSAGE PASSING 61

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

4 16 64 256 1024 4096 16384

cy
cl

es

transferred bytes

direct
indirect

flexpage

Figure 5.1: A Comparison of direct IPC, indirect string IPC, and flexpage
IPC

IPC is for data with a size of 512 bytes. After that the indirect string
IPC is faster than the direct IPC. To establish a memory mapping and to
revoke it at the end of a function is constant for the size of the first memory
page. Direct IPC performs worse for data larger than 1024 bytes. Indirect
string IPC performs better than a temporary memory share until about 2
KByte. The memory share does not contain any copy operation yet. So
these numbers are only correct if the memory page, which contains the data
is directly shared with the other component. But this bears the risk of
security breaches.

5.3 Performance Overhead for Message Passing

This section contains the performance numbers for a simple send message.
This is the overhead, which is introduced when a compiler generated function
is used to exchange messages. I divided the whole communication path
into several sections to show the constant overhead, which is mandatory
for cross-address space communication, and the overhead introduced by the
marshaling and unmarshaling code.

To measure the numbers in Table 5.3 I used a simple message passing
function with two parameters. Because the function has to marshal the
function identifier too, no short IPC can be used. The code included the

62 CHAPTER 5. PERFORMANCE EVALUATION

average minimum maximum
sender marshal 65 65 87
IPC send 4524 3761 10567
receiver unmarshal 49 44 68
sum 4638 3870 10722

Table 5.7: Measurements of Performance of Simple Message Passing Func-
tion

marshaling of the two parameters the IPC invocation and the unmarshaling
at the receiver’s side. The send and receive function have been called repeat-
edly. Because the cycles to enter and leave the send and receive function
have been comparatively small I added them to the marshal and unmarshal
numbers. The main chunk of the communication is used for the IPC. The
performance of the marshaling and unmarshaling code make up only 2,5
percent of the whole message.

5.4 Memory Footprint

When writing system components it is very important to keep the memory
usage of the components low. Hence the memory usage of the communi-
cation code should be as small as possible. To allow the users of DICE an
estimation of the memory usage I wrote down the number of bytes used by
the communication code. These are number for code generated with the
current release of DICE (version 1.3). The numbers may change for new
versions of DICE.

The numbers differ between communication code using a short IPC and
communication code using long IPC. But both have some common numbers.
All number are counted without using the communication code inline. If
this option is chosen, the numbers can reduce significantly, because the
parameters do not have to be stored on the stack of the communication
function.

5.4.1 Common Memory Usage

The common memory usage consists of the standard parameters and the
function’s parameters. These are:

1. the service structure,

2. the parameters, and

3. the return value

The service structure consist of 8 bytes for l4_threadid_t plus 4 bytes
for l4_timeout_t plus 4 bytes for the exception number. Thus the service

5.4. MEMORY FOOTPRINT 63

structure uses 16 bytes on the sender’s stack. Additionally all parameter’s
and return values of this function use memory on the stack. This is for
scalar values their size and for referenced values, such as structures and out
parameters, the size of a pointer, which is 4 bytes.

5.4.2 Internal Variables for Short IPC

The short IPC does not allocate that many variables on the stack. They are
only a few variables to store status information or to variables to be used as
place-holder for return value. Keep in mind that a short IPC is only used if
the in parameters as well as the out parameters do not make up more than
two1 double words.

The variables always allocated on the stack is the result variables, which
is of the type l4_msgdope_t, which is 4 bytes in size. If the function has
a return value, a variable has to be allocated on the stack to receive the
value. (gcc might optimize this additional variable to use the stack-location
it already reserved for the return value.) On of the double word of the in
direction are used by the function identification code, so at most 4 bytes for
in variables can be added.

The out direction can contain (DICE is run with standard options) up
to 8 bytes. If at least one of the out double words is not used, there has to
be a place-holder for the return value. It can be used for both out double
words.

This is all of the memory needed by the C code. The function does
contain assembler code, which performs the actual communication. The
memory needed for that piece of assembler has to be added to the memory
footprint of the short IPC function.

This sums up to a memory footprint of 24 bytes plus 4 bytes if an in
parameter is used (if it is 4 bytes in size) plus 4 bytes if at least one out
parameter is used.

5.4.3 Internal Variables for Long IPC

To measure the memory footprint of a communication function using a long
IPC, we have to use a more complicated formula. These function always
use a message structure, which contains information about the data sent.
Additionally to the 4 bytes for the result variable the stack contains a vari-
able for the return value and the message structure. The message structure
has some default member, which are a flexpage descriptor (4 bytes), two
message descriptor (each 4 bytes) and at least two double words. The rest
of the message structure depends on the data to be transferred. Each in-
direct string data needs a string descriptor, which is 16 bytes in size. For
each flexpage two double words are used in the message buffer. If at least

1Three for L4 version X.0

64 CHAPTER 5. PERFORMANCE EVALUATION

one flexpage is marshaled, there has to be a invalid flexpage in the message
buffer as delimiter to other data. All other data is also marshaled into the
message buffer.

The above description is about the memory the parameters need. The
marshaling code uses some functions, which also might needs some memory.
If at least one of the parameters is a character array with the string at-
tribute, the strlen function is invoked to determine its size. The function
strlen of the glibc needs memory on the stack for the pointer to the string,
the return value and an additional integer variable. These three values are
on an x86 architecture each 4 bytes in size, which sums up to 12 bytes for
strlen.

If at least one of the parameters is of a constructed type, a variable
sized array or a fixed sized array, the memcpy function is invoked. The
function memcpy uses two pointers and one integer parameter and returns
a pointer. It has three internal integer variables. This makes seven 4 byte
variables, which sums up to 28 bytes. But the memcpy function is declared
as inline function, which allows gcc to optimize the usage of memory for
the parameters. Thus only 12 bytes are needed by the internal variables of
memcpy.

A formula for the memory usage could look like the one describe in Table
5.4.3. This formula does not include additional memory usage, which can
be introduced by the used L4 communication primitives. The above formula
does also ignores any memory usage of the parameters on the stack.

4 bytes result variable
+ 4 bytes flexpage descriptor
+ 8 bytes message descriptors
+ 8 bytes the minimum two double words
+ str x 16 bytes str is the number of indirect strings
+ fpage x 8 bytes fpage is the number of flexpages
+ 8 bytes delimiter flexpage if fpage > 0
+ other parameters all other data
+ 12 bytes (strlen) if at least one

string parameter
+ 12 bytes (memcpy) if at least one

constructed, variable or fixed
sized array parameter

= 24 bytes minimum variables
+ parameters parameters in message buffer
+ parameters parameters of function (incl. return value)
+ 4 bytes reference to service structure

Table 5.8: Memory Footprint of a long IPC communication function

Chapter 6

Future Work

A major argument for using IDL compilers is to hide changing underlying
architectures from its users. That’s why the developer of an IDL compiler
should always be a step ahead, when thinking about possible future ex-
tensions of the compiler. The compiler has to be easily adaptable to new
architectures or variations of existing architectures. Proof for this adapt-
ability is the implementation of support for two different version of the L4
µ-kernel and providing the Flick compatibility mode.

To make the integration into the target language even simpler and more
transparent the compiler should also be usable as a pre-processor to replace
“macros” with communication code. This step does provide significant ad-
vantages to the developer using the compiler but implies a lot of work to be
done, such as analyzing code and control structures of the target language
code.

When looking at the near future, the main work will be done integrating
the optimization strategies of IDL4 into DICE and searching for new possi-
bilities to generate faster stub code. On the other hand does DICE has to
provide more and more capabilities toward component based systems. The
generated code should integrate not only with the underlying platform –
L4 – but also with the generated environment. So maybe, it is possible to
extend DICE to use the L4 environment services to build stubs, which are
even easier to use. Examples for this could be to “automatically” find out
the communication partner’s address using the naming service, etc.

Other task regard the component based systems as well. E.g. does the
interface inheritance bear new problems. One of them is the version control
of the interfaces. How does a components receive loop know which version
of the component is requested and which implementation of the specified
function it has to call or if the identifier still matches the function. These
problems could partially be solved using function tables, where a receive
loop manages the different function versions using different function tables.
But this indirection will also cause a performance drawback. An advantage

65

66 CHAPTER 6. FUTURE WORK

of such a feature could be the exchange of components on the fly, by simply
inserting or removing a function table from the receive loop’s function table
list. The costs and advantages have to be analyzed.

In the near future I will also implement an abstract target language
representation of kernel specifics, which allows the integration with target
platforms other than L4.

Chapter 7

Conclusion

Writing a compiler can be a never-ending story. To make this story a bit
shorter it is necessary to ease the changes and adaptation to be included in
the future. This requires a well-designed compiler but it also requires the
writes of the compiler to think a step ahead to be ready for the next steps,
before they have to be done.

An IDL compiler may definitely be used to develop system components
for µ-kernels. It has to regard some of the specifics of the underlying archi-
tecture, but so does every compiler.

DICE can be regarded as a tool suitable to be used to develop system
components for the L4 API and its successors. To fulfill this claim a good
foundation has been laid and the basis to extend the compiler to meet future
needs has been created.

67

68 CHAPTER 7. CONCLUSION

Bibliography

[Aig01] Ronald Aigner. ”Development of an IDL Compiler”. Grosser
Beleg, Dresden University of Technology, January 2001.

[BBH+98] R. Baumgartl, M. Borriss, H. Härtig, Cl.-J. Hamann,
M. Hohmuth, L. Reuther, S. Schönberg, and J. Wolter. ”Dresden
Realtime Operating System”. In Workshop of System-Designed
Automation, March 1998.

[Bur01] Ken O. Burtch. ”The Big Online Book of Linux Ada Program-
ming”. http://www.vaxxine.com/pegasoft/homes/book.html,
July 2001.

[DJT89] Richard P. Draves, Michael B. Jones, and Mary R. Thomp-
son. MIG - The MACH Interface Generator. Research report,
Carnegie-Mellon University, November 1989.

[EFF+97] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-
strom. ”Flick: A Flexible, Optimizing IDL Compiler”. In PLDI
’97, 1997.

[FHL95] Bryan Ford, Mike Hibler, and Jay Lepreau. ”Using Anno-
tated Interface Definitions to Optimize RPC”. Technical Report
UUCS-95-014, University of Utah, March 1995.

[GJP+00] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone,
V. Uhlig, J.E. Tidswell, L. Deller, and L. Reuther. ”The SawMill
Multiserver Approach”. In 9th SIGOPS European Workshop,
September 2000.

[HBB+98] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg, and
J. Wolter. ”DROPS - OS Support for Distributed Multime-
dia Applications”. In Eigth ACM SIGOPS European Workshop,
September 1998.

[HLP+00] Andreas Häberlen, Jochen Liedtke, Yoonho Park, Lars Reuther,
and Volkmar Uhlig. ”Stub-Code Performance is Becoming Im-
portant”. In WIESS 2000, October 2000.

69

70 BIBLIOGRAPHY

[HW97] Michael Hohmuth and Jean Wolter. Prinzessin auf der Erbse
– Linux-Portierung auf den Mikrokern L4. iX, 1:94ff., January
1997.

[JT99] P.K. Jimack and N. Touheed. ”An Introduction to MPI for Com-
putational Mechanics”, pages 24–45. Saxe-Coburg Publications,
1999.

[JT00] P.K. Jimack and N. Touheed. ”Developing Parallel Finite Ele-
ment Software Using MPI”, pages 15–38. Saxe-Coburg Publica-
tions, 2000.

[L4K00] L4KA. ”IDL4 - IDL Compiler ”.
http://www.l4ka.org/projects/idl4/, October 2000.

[Lie96] Jochen Liedtke. ”L4 Reference Manual - Version 2.0”. 486,
Pentium, Pentium Pro, September 1996.

[Mic88] Sun Microsystem. rpcgen - An RPC Protocol Compiler, Sun
Microsystem, Inc., 1988., 1988.

[MM01] Fabrice Mérillon and Gilles Muller. ”Dealing with Hardware in
Embedded Software: A Retargetable Framework Based on the
Devil Language”. Research report 1391, IRISA, March 2001.

[MRC+00] Fabrice Mérillon, Laurent Révillèrre, Charles Consel, Renaud
Marlet, and Gilles Muller. ”Devil: An IDL for Hardware Pro-
gramming”. In ”OSDI 2000”, pages 17–30, October 2000.

[Pet98] Claude Petitpierre. ”Synchronous C++, a Language for Inter-
active Applications”. IEEE Computer, pages 65–72, September
1998.

[RM01] Laurent Révillèrre and Gilles Muller. ”Improving Driver Robust-
ness: an Evaluation of the Devil Approach”. Research report
1385, IRISA, March 2001.

[Tro00a] Trolltech. Qt Library On-Line Reference Documentation - About
Qt. http://doc.trolltech.com/aboutqt.html, 2000.

[Tro00b] Trolltech. Qt Library On-Line Reference Documentation - Sig-
nals and Slots. http://doc.trolltech.com/signalsandslots.html,
2000.

[Uhl99] Volkmar Uhlig. ”A Multi-Server Filesystem and Development
Environment”. Master’s thesis, Dresden University of Technol-
ogy, October 1999.

BIBLIOGRAPHY 71

[WT89] Linda R. Walmer and Mary R. Thompson. ”A Programmer’s
Guide to the Mach User Environment”. Tutorial, Carnegie-
Mellon University, November 1989.

72 BIBLIOGRAPHY

Appendix A

Sample Code

To ease the understanding of the workings of the IDL compiler I will present
some examples for some of the discussed goals.

A.1 Message Passing

For simplicity reasons I included all possible message passing semantics into
one IDL file.

A.1.1 The IDL Specification

The following IDL specification (Figure A.1) includes three different func-
tions. The first function represents a message send from the client of a
component to the specified component. The second function represents a
simple message, which is send the other way – from the component to any
receiver, which intends to receive this message. The last function – f3 – is
the function, which sends a message to the component, and receives a reply,
with the return values of the function – a typical RPC semantic.

i n t e r f a c e t e s t {
[in] void f1 (int p1 , int p2) ;
[out] int f2 (int ∗ p3) ;
int f3 ([in] int p4 , int p5 , [out] int ∗ p6) ;

5 } ;

Figure A.1: Sample IDL file

The out parameter are pointers, because the values of these parameters
are set inside the functions. Thus they have to be “copied by reference”.
To make the user aware of the fact, that he has to pass a pointer to the
respective C function, the out parameters have to be pointers.

73

74 APPENDIX A. SAMPLE CODE

A.1.2 The Client’s Code

The compiler generates these respective C functions for the client’s side –
Figure A.2.

// te s t−c l i e n t . h
#inc lude ” dice . h”

void t e s t s e nd f 1 (l 4 i d l s e r v i c e t ∗ s e rv ,
5 int p1 , int p2) ;

int t e s t r e c v f 2 (l 4 i d l s e r v i c e t ∗ s e rv ,
int ∗ p3) ;

int t e s t c a l l f 3 (l 4 i d l s e r v i c e t ∗ s e rv ,
int p4 , int p5 , int ∗ p6) ;

Figure A.2: A Sample Client Side Header File

The l4_idl_service_t parameter is added to allow the identification
of the communication partner and to return an error code, in case e.g. the
IPC failed. The structure – see Figure A.3 – is defined in the file dice.h
and included automatically into all generated C header files.

typedef struct {
l 4 t h r e ad i d t s e r v e r i d ;
l 4 t imeout t timeout ;
dword t except ion ;

5 } l 4 i d l s e r v i c e t ;

Figure A.3: The IDL Service Helper Structure

The first element – server_id – is used to find the communication part-
ner. It has to be set before calling the C function. The second specifies the
time to wait for the component to accept the message. It is set by default to
timeout never. The last element is set by the C function if an error occurred
in the server. This is meant for future use and currently not used.

A.1.3 The Component’s Code

The component’s side code contains a few more functions, as can be seen
from Figure A.4. The most obvious difference to the client code is the
declaration of a message structure. This message structure type is used by
the test_wait_any function and the unmarshal functions. Therefore it has
to be declared globally.

The function test_wait_any may receive any kind of message for the
test interface. It will store the received message buffer in the message struc-
ture and return the already unmarshal function identifier. This identifier can
then be used to determine which unmarshal function to call. Each function,

A.1. MESSAGE PASSING 75

// te s t−s e rver . h
#inc lude ” dice . h”

typedef struct {
5 l 4 f p a g e t bu f f e r ;

l4 msgdope t s i z e ;
l4 msgdope t send ;
char bu f f e r [2 6] ;

} t e s t msg bu f f e r t ;
10

unsigned int t e s t wa i t any (t e s t msg bu f f e r t ∗ msg buf f e r) ;

void t e s t unmarsha l f 1 (t e s t msg bu f f e r t ∗ msg buf f e r ,
int ∗ p1 , int ∗ p2) ;

15 void t e s t r e c v f 1 (l 4 i d l s e r v i c e t ∗ s e r v i c e ,
int ∗ p1 , int ∗ p2) ;

void t e s t s e nd f 2 (l 4 i d l s e r v i c e t ∗ s e r v i c e ,
int r e tu rn va l , int p3) ;

20

void t e s t unmarsha l f 3 (t e s t msg bu f f e r t ∗ msg buf f e r ,
int ∗ p4 , int ∗ p5) ;

void t e s t r e p l y f 3 wa i t any (t e s t msg bu f f e r t ∗ msg buf f e r ,
int r e tu rn va l , int p6) ;

25

int t e s t s e r v e r l o o p () ;

Figure A.4: A Sample Component Code Header File

which can be received at the component’s side, has an unmarshal function,
such as test_unmarshal_f1. A receive function for a message, which can
only be sent to the component is e.g. the test_recv_f1 function. It will
accept only messages, which conform to this function’s format. Function,
which represent a message which can only be sent by the component are the
send functions, such as test_send_f2. Because functions with the RPC se-
mantic are usually received with an wait-any function, they have no special
receive function, but only a reply-and-wait function. This function sends
the reply to the component, which called the function, and waits for the
next request.

A.1.4 Usage of the Generated Code

Before calling a function at the client’s side, the service structure has to
be initialized. It has to contain the identifier of the component, which can
be determined using a naming service or similar. The structure also has a
timeout member. This member is set by default to zero. This means that

76 APPENDIX A. SAMPLE CODE

the client will wait forever for a reply and the delivery of the message. If an
error occurred during the transmission the exception member is set. After
the service structure has been initialized the client functions can be invoked.

At the receiver’s side the component may implement either server loop
for the requests which can be received by the component, or it uses the
receive function within other functions. Thus, it may implement a commu-
nication mechanism different from the classical client/server approach.

