
Großer Beleg

Development of an IDL Compiler

Ronald Aigner
Dresden University of Technology

<ra3@inf.tu-dresden.de>

January 15, 2001

1

CONTENTS 2

Contents

1 Motivation 4
1.1 Component Scenarios . 5
1.2 Communication Techniques 6
1.3 IDL Compilers . 7

2 The L4 API 7
2.1 Address Spaces . 8
2.2 Threads and IPC . 8

3 Related Work 9
3.1 CORBA IDL . 9
3.2 DCE IDL . 10
3.3 Commercial IDL Compilers 11
3.4 Mach Interface Generator . 11

3.4.1 The Mach µ-Kernel 12
3.4.2 The Interface Generator 12

4 Flick 14
4.1 New Strategies in Flick . 16
4.2 L4 Adaptation . 16

4.2.1 The IDL . 18
4.2.2 Lessons learned from Flick 19

5 Design 19
5.1 Interface Description Language 20
5.2 Interface Inheritance . 21
5.3 Compiler . 22
5.4 Optimization Strategies . 24

6 Implementation 26
6.1 The Front-End . 28
6.2 The Back-End . 28
6.3 Optimizer . 30
6.4 The Factory Idea . 31
6.5 The Context Concept . 31

7 Performance Evaluation 32
7.1 Short IPC . 33
7.2 Complex Data Types . 39

8 Conclusion, Open Topics and Future Work 41

9 Summary 42

CONTENTS 3

A Example Compilation 45
A.1 The IDL File . 45
A.2 The Front-End Representation 45
A.3 The Data-Representation . 46
A.4 Optimization . 46
A.5 The Back-End Representation 47
A.6 The Target Files . 50

B gcc Optimizations 54

1 MOTIVATION 4

1 Motivation

Most operating systems have a monolithic structure. This implies, that all
functionality, which the operating system provides to its users, is running in
kernel mode. This includes components, such as file systems, device drivers,
networking components, sometimes the graphical user interface, memory
paging etc.

This approach enables the components of the operating system to provide
their functionality to each other with low overhead, because every compo-
nent has direct access to all data and functionality by simply calling a func-
tion. Since kernel components have direct access to all kernel internal data,
they are able to accidentally or maliciously manipulate it, thus undermining
the stability of the operating system.

In contrast to monolithic operating systems, the µ-kernel approach in-
volves minimizing the kernel and implementing servers in user mode. Ide-
ally, the kernel implements only address spaces, inter-process communication
(IPC), and basic scheduling. All servers run in user mode and are treated
like any other application by the kernel. Each server can have its own ad-
dress space. They are protected from one another [16].

DROPS stands for Dresden Real-time OPerating System. We develop an
operating system with real-time capabilities on top of the L4 µ-kernel. As
described above, the whole functionality has to be implemented by separate
components, which, nevertheless, have to communicate with each other.
Such systems are also called multi-server operating systems.

Multi-server operating systems as well as distributed systems require the
components to implement communication code to call each others services.
Because this communication code often has the same structure, develop-
ment tools can be used to ease the implementation. The communication
interfaces of these components can be described by using an interface def-
inition language (IDL). Each interface is a semantically related group of
member functions. The interface as a whole represents a feature, and the
member functions in this interface represent the various exported operations
that make up the feature. The concept of an interface fully supports the
fundamental notions of object-oriented architecture: encapsulation, poly-
morphism, inheritance and reusability. The definition of such an interface
can be translated into the communication code using an IDL compiler.

My task was to adapt an IDL compiler to the L4 API (see Section 2).
The compiler has to produce code in a programming language (C) from
an interface definition which generates a message (marshaling code) and
evaluates a message (unmarshaling code). The compiler should support the
usage of standard data types (int, float, . . .) as well as complex data types
(struct, union, enum). Furthermore it should support interface inheritance,
the inclusion of target language definitions and different communication rela-
tions (client/server as well as simple message passing). The compiler should

1 MOTIVATION 5

generate methods, which can be used to deploy the interface’s functions, and
templates, which can be filled with the functionality of the server. During
the work on the new compiler the preceding work with the Flick compiler
should be taken into consideration.

1.1 Component Scenarios

Components have to be able to use the functionality of other components.
For the access to another component’s functionality four different scenarios
can be identified:

1. two communicating components reside in the same address space and
are executed in the same thread

2. these two components still reside in the same address space, but are
executed in different threads

3. two components reside in different address spaces on the same node

4. the two components reside on different nodes

The two communicating components are integrated into a client-server
relationship. The client component requests the server component to
execute some function for it (serving it). The server receives a request
from the client and eventually answers to this request after executing the
corresponding function.

If client and server code reside in the same address space and are im-
plemented in the same thread, a simple function call can be used to invoke
the server’s functionality. In this scenario the two components have access
to the same physical resources. Because the function call is executed syn-
chronously, no synchronization has to be implemented while using common
resources.

If the two components are executed in different threads, the client has
to use a communication mechanism to inform the server which functionality
should be executed. This execution can be either synchronously or asyn-
chronously. The asynchronous implementation requires a synchronization
mechanism for the access to shared data. Shared data can exist within the
address space of the components and both components have free access to
it. But thread local data must be made available to the other component.

In the third scenario, which is similar to the second scenario, the client
has to signal the server, which functionality it should execute. Relevant
parameters have to be made available to the corresponding component by a
mechanism, such as explicit memory sharing or copying. Because this sce-
nario allows synchronous as well as asynchronous execution, the access to
shared data during the latter has to be synchronized. The fourth scenario

1 MOTIVATION 6

which is again similar to the third, except that the communication mech-
anisms are different and the sharing has to be implemented in some other
way, such as distributed shared memory.

To share data, the third and fourth scenario have to use mechanisms
from the underlying layer, such as the operating system. The basis for
data sharing is virtual memory, which depends on the hardware and its
limitations. The granularity of data sharing is the page size of the hardware.
To share data, using memory shares, special communication pages could be
used or the memory page, the data resides in, is shared. Often the latter
kind of memory share is not fine-grained enough to allow access to the
shared object only. If this approach is too risky for the user the data has to
be copied.

For the copy scenarios data has to be packed (marshaled) to be send from
the client to the server, or vice versa. After the other component received
the message, the data has to be unpacked (unmarshaled). At the client
side the steps of marshaling data, which is send to the server, the message
passing, receiving the answer from the server, and unmarshaling the returned
data are combined into client stubs. At the server’s side the procedure
of receiving a message; unmarshaling the request; calling the appropriate
function; marshaling the return data; and sending the return message back
to the client are combined into a server loop. The functions, which are
called at the server’s side, implement the functionality of the server. The
IDL compiler produce function skeletons (server skeletons), which can be
filled by the developer.

In the DCE environment the client stub is called a proxy. The CORBA
environment calls the client stub proxy or stub. The name server loop does
not explicitly appear in either context. The server loop is rather separated
into the server side stubs, which are responsible for marshaling and unmar-
shaling the data, and the part of deciding which function to call, which is
unmentioned in both environments. While those server side stubs are called
stubs in the DCE environment, they are called skeleton in the CORBA en-
vironment. I refer to template code for the server’s side functions as server
skeleton.

1.2 Communication Techniques

When looking at these communication scenarios, different techniques might
be used to allow a communication between two components. In the first
scenario, the data usually doesn’t need to be copied. Often it is sufficient to
hand a reference of the data to the server. If it is necessary that more than
one component access the data simultaneously, synchronization is needed.
A alternative method to ensure data consistency is to copy the data, e.g. by
using a thread local copy.

For the other scenarios, more sophisticated and circumstantial tech-

2 THE L4 API 7

niques are required. The data can bemapped in memory into the server’s
address space. Memory shares are used to avoid copy operations for large
amounts of data. This entails the mentioned possible security breaches. The
client needs to trust the server. Because both components operate on the
same copy of the data, the access to the data has to be synchronized if
possible, though multiple components have simultaneous access.

If the client or server cannot perform any of the above techniques, they
have to copy the data. During marshaling the data is copied into a mes-
sage buffer, which is transferred to the server. At the server’s side the data
is copied from the message buffer into server local variables during unmar-
shaling. These copy operations can be numerous and time consuming.

1.3 IDL Compilers

The developer implementing the marshaling and unmarshaling code has to
take into account all of the above scenarios, decide which one he wants to use
and implement one of the communication techniques, described above. It
requires a lot of time and the written code is error-prone. To ease these steps
(writing client stubs and server loop) the developer can use an automated
code generator – a compiler. The interface of the server – the functional-
ity the server exports to clients – is described using an interface definition
language (IDL). The IDL compiler translates the definition of the interface
into the appropriate client stubs and the server loop.

An IDL compiler is supposed to hide remote invocation, which means,
that the compiler might produce stubs for all four described communication
models, depending on the required configuration. The produced stubs are
also less error-prone and easier to adapt to new environments than numerous
hand-written stubs. An IDL compiler eases the development process of
component communication and should be made available to the DROPS
community.

2 The L4 API

My task is to implement an IDL compiler available for component based
systems, which are based on the L4 µ-kernel. I will describe the L4 API in
more detail to show the specialties, which have to be taken into consideration
when building an IDL compiler for the L4 API. The L4 API described in
[15] implements three concept, which are necessary to implement a minimal
kernel: address spaces; threads and IPC; and unique identifiers.

To enable the communication between two threads, the kernel must pro-
vide some mechanism to identify either the communication partner or the
communication channel. This is done by using unique identifiers.

2 THE L4 API 8

2.1 Address Spaces

Address spaces operate on page-based virtual memory. The virtual memory
concept is used to protect different processes, where each process has it’s
own address space, by denying a process the access to another process’
memory. To allow an abstract memory management outside the kernel,
it has to provide kernel-messages to construct and manage address spaces.
The L4 µ-kernel supplies three operations grant, map and flush [14]. The
grant operation basically changes the ownership of a memory page. The map
operation establishes a memory share between two address spaces. The flush
operation revokes established memory mappings.

Using these three operations an hierarchical address management can
be implemented, which allows a user implementation to enforce it’s own
memory management.

2.2 Threads and IPC

A thread is an activity being executed inside an address space. The thread
executes code, which is loaded into the address space. Because the thread
can only access its own address space, the kernel has to provide some mech-
anisms to allow the thread to communicate with other threads (perform
Inter-Process Communication – IPC).

The L4 API provides seven system calls. One of these systems calls
is the IPC call, which is used to communicate with other threads. Two
communication primitives are sending to another thread and receiving. To
optimize performance some variations of these primitives are used, such as
concurrent send and receive (reply and wait), etc.

An L4-IPC can contain three different data types. One of these data
types is essential to allow the described memory management. It is the
description of memory pages (fpage). A message may also contain several
32 bit values (dword). The third data type to be transmitted is indirect
string. An indirect string (refstr) describes a memory region by specifying
it’s start address and the size of this region in bytes. The kernel copies the
content of the region into a specified target memory location, which must
be big enough to hold this region.

To optimize IPC, L4 implements a special case IPC. If an IPC should
transmit only two dwords and no fpages nor refstrs, these two dwords can
be transmitted using registers. Therefore this special case IPC is also called
Register-IPC or Short-IPC. Because no memory copy operation is involved
during the IPC, it has major performance advantages to the normal or Long-
IPC.

Eventually the L4 µ-kernel will be improved or further developed. Every
change involves an adaptation of existing applications to the new API. One
goal of the IDL compiler should be, to hide these changes from the user.

3 RELATED WORK 9

Th L4 API specifies indirectly requirements the compiler has to fulfill.
These requirements are the support of different data types, which can be
transmitted, and the special case implementation Short-IPC.

3 Related Work

To develop an IDL compiler available to the Dresden development team, I
needed to know which IDL compilers exist, what they can achieve and what
their limitation are. The following chapter describes the research.

Because IDL compilers need a language which can be used to describe
an interface, I compared different interface description languages. The focus
was on the most popular ones, the OMG IDL and the DCE IDL, which are
described below. Because the OMG IDL is used to describe components
of the Common Object Request Broker Architecture (CORBA), I use the
name CORBA IDL to describe the OMG IDL.

3.1 CORBA IDL

CORBA is an object-oriented middleware, developed by the Object Manage-
ment Group (OMG). In contrast to DCE, CORBA has been object-oriented
from the beginning, and it has always been platform and language indepen-
dent. The CORBA IDL has been selected by the International Standards
Organization (ISO) as a ”universal” language for describing interfaces to
software components [1].

An interface definition file might contain several components. The type
declarations are used to define additional simple or complex types. Constant
declarations are used to declare alias names for constant integer expressions.
Other components can be exception declarations, module declarations and
interface declarations. An exception declaration defines an exception which
can be thrown by any function of the following interfaces or modules. A
module is a collection of interfaces, types, constant expressions, exceptions
and other modules. By using modules an hierarchical name-space can be
established [11].

The interface declaration may contain type declarations, constant decla-
rations, exception declarations (which are all valid only in the scope of the
interface), attribute declarations and operation declarations. The attribute
declarations specify data values, which are members of the interface. Each
attribute specification generates four separate codes: two for reading and
two for writing the value of the attribute. An attribute in the CORBA IDL
is different from an attribute in the DCE IDL. The CORBA IDL specifies
an attribute to be a data member of an interface, whereas the DCE IDL
specifies an attribute to be an annotation to a member of the specification.

An operation declaration consist of the optional operation attribute
ONEWAY, the return type, the name of the operation, the parameter list,

3 RELATED WORK 10

exceptions, which can be raised by the operation, and a context expression.
The CORBA IDL has an integrated support for exceptions, which can be
easily mapped into target languages, which support exceptions [17]. The
parameter list consist of comma separated parameters, where each param-
eter has an attribute (in, inout, out), a type and a name. Because these
three attributes are not sufficient for our requirements, we would have to add
attributes to the IDL or extend the compiler to use additional annotation
files.

CORBA IDL supports the ANY type parameter. This type permits the
value of an arbitrary type to be transmitted between client and server. The
value carries a code which identifies its type [2]. The drawback of such an
ANY type is that the marshaling and unmarshaling code must be supplied
by the user.

3.2 DCE IDL

The DCE IDL is based on the C programming language but is extended by
attributes. The original DCE IDL did not implement some of the features,
which are supported today, such as interface inheritance or exceptions.

An IDL file contains type definitions, constant declarations, imports and
interface declarations. Type definitions allow the developer of an interface
to specify additional user defined types. Constant declarations can be used
to define readable aliases for recurring constant integer expressions. The
import keyword specifies the names of one or more IDL or C header files to
include. The import directive is similar to the C include directive, except
that only data types are assimilated into the importing IDL file.

An interface declaration consists of an interface header and an interface
body. The interface header contains attributes of the interface and the name.
It also contains the optional names of the base interfaces, the interface is
derived from. The interface body, which is enclosed in braces (’{’, ’}’),
contains the data types that will be used in remote procedure calls and
prototypes for the functions that will be executed remotely. An interface
body can contain imports, constant declarations, type declarations, and
function declarations.

A function declaration consist of the function attributes, the return type,
the name, a parameter list and an exception list. A function can have several
attributes (IDEMPOTENT, REFLECT_DELETIONS, ONE_WAY, etc.), which specify
the behavior of the function. The compiler can use all these attributes to
generate highly optimized target code for this function. The exception list
includes the exceptions, which this function might throw. The compiler
transparently transmits exceptions if they are thrown. A parameter has a
attribute list, which is enclosed by ’[’ and ’]’, a type and a parameter
name. Parameter attributes specify the direction of transmission for the
parameter and field attributes, which are used if the parameter is a field, to

3 RELATED WORK 11

allow the compiler to optimize the transmission of the field.
The Component Object Model (COM) is based on the DCE IDL. From a

commercial perspective COM has been very successful, having spawned the
industry’s largest commercial market in reusable binary components [17].

3.3 Commercial IDL Compilers

The first IDL compilers have been developed to generate stubs for network
communication. These compilers supported the development of distributed
application, which operated on different nodes. Depending on the network’s
characteristics, the stubs did not have to perform well. The networks were
the performance bottlenecks of the communication and thus the compilers
had no need to optimize the generated stubs. Communication over networks
transfers the data in network packages, which are arrays of bytes. Therefore
no differentiation of data types, which should be transmitted had to be
made.

Most of the work to be done, was to hide the remote invocation of the
server, which mostly meant, that platform dependent data formats were
automatically converted1.

As Eide, Ford et.al. described in ”Flick: A Flexible Optimizing IDL
Compiler”[5]:

Performance of IDL-generated code, however, has tradition-
ally not been a priority. Until recently [1997] poor or mediocre
performance of IDL-generated code was acceptable in most ap-
plications: because inter-process communication was generally
both expensive and rare, it was not useful for an IDL compiler
to produce fast code.

As communication became faster – either networks themselves became
faster or the components were moved onto the same node – the performance
bottleneck of the communication shifted from the pure communication mech-
anisms towards the stubs [3, 10].

3.4 Mach Interface Generator

One of the first µ-kernels was Mach. The corresponding IDL compiler is
the Mach Interface Generator. In the following I will describe the Mach
kernel, especially its communication mechanisms, and the corresponding
IDL compiler.

1e.g. little-endian to big-endian and vice versa

3 RELATED WORK 12

3.4.1 The Mach µ-Kernel

MACH is a communication-oriented operating system kernel, which sup-
ports the following basic abstractions: a task, which is an execution en-
vironment and has a paged virtual address space and protected access to
system resources; a thread is the basic unit of execution, which consist of the
hardware state necessary for independent execution; a port is a communica-
tion channel, which is implemented as a message queue, which is managed
and protected by the kernel; a port set is a group of ports, which can be
used to send messages to any of several ports; a message is a typed collection
of data objects used in communication between threads; a memory object,
which is mapped into a task’s virtual address space.

Message-passing is the primary means of communication, both between
two user level tasks, and between tasks and the operating system kernel
itself. The only functions implemented by system traps are those directly
concerned with message communication; all the others are implemented by
messages to a task’s task_port.

The MACH kernel functions can be divided into the following categories:

• basic message primitives and support facilities,

• port and port set management facilities,

• task and thread creation and management facilities,

• virtual memory management functions,

• operations on memory objects.

MACH and other server interfaces are defined in a high-level remote
procedure call language called MIG; from that definition, interfaces for C
are generated.

3.4.2 The Interface Generator

The Mach Interface Generator (MIG) generates remote procedure call
(RPC) code for a client-server communication. MACH servers execute
as separate tasks and communicate with their clients by sending MACH
inter-process communication (IPC) messages. The Mach IPC interface is
language-independent and fairly complex. MIG is designed to automati-
cally generate procedures in C to marshal or unmarshal the IPC messages
that are used to communicate between processes. The user must provide a
specification file defining parameters for both the message passing interface
and the procedure call interface [4].

MIG generates three files from the interface specification: a file contain-
ing the client’s side code to send and receive messages; a client header file,
which defines the types and routines needed during compilation time; and

3 RELATED WORK 13

another file containing the code for the server to unpack a message, to call
the appropriate function and pack a return message.

The specification file may contain the following elements:

• Subsystem identification which defines a name prefix for all gen-
erated files, and a message identification number, which is the start
number to enumerate the methods

• Type specifications which I will explain in more detail below

• Import declarations which define the files to be included into the
client and/or server files

• Operation descriptions specify the functions of the interface, which
I will describe in more detail below

• Options declarations change the values of default specifications (see
Operation descriptions), such as wait time outs or name suffixes

The Type specification defines the types, which are used to declare
parameters of operations. Types can be simple, structured, pointer or poly-
morphic types. Simple type specifications introduce an alias name for a
defined number of bits of a specific type. For instance does the following
instruction:

type my_string = (MSG_TYPE_STRING,8*80);

specify a type my_string, which is 80 bytes long and of type char* or
char[].

The structured types are arrays or structs of n elements of simple
or structured types. Whenever an array or struct of variable size is de-
fined, an additional parameter is included into an operation’s parameter list,
which contains the actually transmitted size. Pointer types define param-
eters which are sent as out of line data. They should be used for large or
variable amounts of data. A polymorphic type allows the user to transmit
different types using the same function. An additional parameter defining
the transmitted type is added to the operation’s parameter list. The poly-
morphic type is similar to the CORBA type ANY.

There are five different kinds of operation descriptions, which de-
scribe the way a client’s call to a server function is implemented. The first
description does not expect an answer from the server and returns an er-
ror code if the function fails. The second does not expect an answer from
the server either, but does not return an error code. If this function fails a
formerly specified error function is called. The third and fourth do expect
an answer from the server. The third returns an error code, whereas the
fourth description specifies an error function. The fifth description waits for

4 FLICK 14

an answer from the server and returns a value, which is not the error code.
It too has to specify an error function as well.

The parameters of a function consist of the type, which is one of the
previously defined types, a name, and multiple optional specification. A
specification defines whether the parameter is an in, out or inout param-
eter. It might also be a wait time out, which defines how long the client
waits for an answer from the server. The specification can also contain a
parameter which is the request or reply port for the message.

This IDL is tightly coupled to the Mach kernel. It defines kernel specific
types, such as ports and brings many attributes into the IDL, which do not
belong into a pure interface description, such as wait time-outs. The types,
which can be defined with this IDL are very simple and are closely tied to
the C target language and the platform (specify the size of a type in bits).
Finally it can be said, that the MIG IDL and MIG itself are very strict, very
simple and not suited to be adapted to another target platform.

The Mach Interface Generator does produce, nonetheless, efficient code
for the Mach µ-kernel. This can be achieved through the deep knowledge
of the target API. This example shows, that a compiler, which is designed
for one specific target language and communication API, can generate very
efficient target code.

4 Flick

As already mentioned in Section 3.3, Eide, Ford et.al., from the University
of Utah, realized that the performance of IDL-compiler generated code was
very poor. Inter-process communication became fast enough to be no longer
the performance bottleneck of a communication relationship between a client
and a server.

They stated, that ”IDL compilation must evolve from an ad hoc pro-
cess to a principled process incorporating techniques that are already well-
established in the traditional programming language community.” Although
IDL compilation is a specialized domain, IDL compilers can be greatly im-
proved through the application of concepts and technologies developed for
the compilation of common programming languages.

To achieve this, Utah incorporated different practices to generate opti-
mized target code. Some of these strategies are code inlining, discrim-
inator hashing and careful memory management. I’ll describe these
features in more detail in Section 4.1. They incorporated their strategies
into ”The Flexible IDL Compiler Kit (Flick)” [5].

The Flick compiler has a modular design, as illustrated in Figure 1. It
consist of three modules. The first module is the front-end, responsible for
reading the IDL input and converting it into an abstract representation,
called Abstract Object Interface (AOI). The AOI is considered to be the

4 FLICK 15

F
ro

nt
 E

nd
B

ac
k

E
nd

Transport independent

L
ibrary

CORBA IDL File ONC RPC IDL File MIG IDL File

Target Language independent

Target Language specific

Transport specific
PRES_C File

AOI File

.c, .h Files .c, .h Files .c, .h Files .c, .h Files

G
en

er
at

or
P

re
se

nt
at

io
n

L
ibrary

L
ibraryFront End

CORBA

Back End
CORBA IIOP

Back End

CORBA
Presentation

Back End

MIG
Front End

MIG
Presentation

Mach 3

rpcgen

ONC RPC

Presentation
Fluke

Presentation

ONC RPC
Front End

Back End
Fluke

Figure 1: The Flick Compiler structure

4 FLICK 16

high-level ”network-contract” between client and server.
Flick’s second module, the presentation-generator (PG), transforms the

the AOI representation of the interface into a ”programmer’s contract”,
which includes the declaration of how data is passed between client and
server. For different target languages different presentations are generated,
because each language has different ways to define data.

The third module is the compiler’s back-end. This module reads the pre-
sentation, generated by the PG, and translates it into the target languages
representation of the client stub and server side code.

4.1 New Strategies in Flick

Traditional IDL compilers used nested function calls to marshal and un-
marshal data. For example: to marshal a constructed type the marshaling
function calls a function for a constructed type and this marshaling/ unmar-
shaling function calls functions for each of its members. This methodology
implies numerous function calls which decrease the performance of the mar-
shaling stub tremendously. Flick avoids these function calls by creating
inline function (or macros). Eide et.al. qualified the effect in [5] to be (com-
pared to PowerRPC and rpcgen) about half the object code size, meaning
that Flick stubs are half the object code size of rpcgen stubs. Other com-
pilers generated even larger object codes.

Another disadvantage of traditional IDL compilers is dynamic resizing
of the transmission buffer. Whenever a new piece of data is marshaled,
the stub checks, if the buffer is big enough to hold this new value. If the
buffer is too small, it is resized. Flick optimize this strategy by checking the
total size of the transmission buffer once. This way permanent checking and
reallocation can be avoided.

When using in parameters (parameters send to the server) at the server’s
side, Flick uses the following techniques to avoid additional memory alloca-
tion. It uses these parameters directly from the transmission buffer. This
technique can be applied, whenever the parameters have the same memory
layout in the client’s and server’s address space. This also implies, that
the buffer cannot be used to receive further requests, if the server still uses
references to it in one of his service functions.

Flick optimizes the marshaling of fixed sized portions of the message
(chunks) by addressing the buffer using the start-address of a chunk and a
constant offset. Thus the target language compiler has the chance to further
optimize these instructions.

4.2 L4 Adaptation

The L4 adaptation of Flick has been done by Volkmar Uhlig during his
master thesis [18]. My work is mainly based on his and draws a lot of

4 FLICK 17

experience from it. To adapt Flick to the L4 API, the back-end of the
compiler had to be changed, specifically the methods and classes, which
write the target code.

Flick’s class structure is very flat and made it harder to adapt it to the
L4 API than expected. The adaptations were restricted to the functions,
which print the target code. These files can be found in the Flick directory
at

c/pbe/l4/client.cc and c/pbe/l4/server.cc

These files create stubs, which mainly contain macros, which do the message
buffer handling, sending and receiving messages, and error handling.

All of these macros had to be changed to work with the L4 message
structure. They had to handle the L4 message specific buffer and the special
types (see below) defined for L4. Because these macros are used everywhere
throughout the stubs, this included macros for declaring buffers or variables
as well as macros for initializing buffers and macros which marshal scalar
values (or other data) into the message buffer.

The back-end files also contain functions, which can be used, if the stubs
should be manipulated manually. E.g., the server loop always has to be
written by hand, and these functions are convenient for this task. They
manipulate the message buffer, thus hiding the message internals from the
developer.

Major problems occurred when we tried to incorporate the different data
types, which the L4 message structure supports. Because restriction apply
to the order in which parameters have to marshaled, we had to change the
internal behavior of the compiler. The compiler usually writes data right
into the message buffer. We had to implement multiple runs, checking each
time which data type the parameter is and whether it can be marshaled
in the current run or not. I will avoid these multiple runs in a new IDL
compiler by sorting the parameters prior to marshaling.

Because no abstraction about fpages and no abstractions for indirect
strings (see Section 2) existed in the CORBA IDL, we had to include these
types directly into the IDL. This contradicts the idea of using the IDL as
target independent interface description. The data type of indirect strings
could have been implemented using some kind of annotation, which tells the
compiler, that a string should be treated as a refstring, but the CORBA
IDL has no possibility to annotate an interface definition.

Other adaptations were the manipulation of the error-handling code to
work with the new back-end and the L4 specific types, such as l4_fpage_t
or l4_threadid_t.

One drawback of this adaptation is, that whenever the L4 API might
change, all the code changes have to be repeated. Even though we collected
experiences on how to adapt Flick to a L4 API, we think that the changes
would comprise almost everything we already changed.

4 FLICK 18

To really exploit all features of the compiler, we would have to change the
structure of the compiler. The optimization only takes an untyped message
buffer into account. As soon as different data types can be transmitted,
further optimization cannot be applied.

Furthermore, Flick’s structure did not allow to integrate a optimization
for short and long IPC during compile time. A Flick generated stub decides
whether to use a Short- or Long-IPC during run-time. It marshals all data
into the message buffer (which has to be allocated) and after marshaling
checks whether it has only two dwords in it’s buffer. In that case it uses a
Short-IPC.

4.2.1 The IDL

One of the applications of the IDL compiler and thus the IDL, should be
the usage of existing data structures, written using the C programming
language. These data structures exist in code, which we like to reuse for
the development of components. Therefore the support of existing C data-
structures by the IDL had to be checked. Because the CORBA IDL is
platform independent, a C data structure cannot be copied to the IDL, but
has to be redefined in the IDL. Different approaches are possible.

When porting existing C code into an skeleton or framework, which has
been generated by an IDL compiler, the existing data structures have to
be adjusted. When using the CORBA IDL to describe an interface and
existing C code will be wrapped by the interface’s framework, it is very
hard to describe the existing data structures using the CORBA IDL. As
Eide describes in [7] it is necessary to reverse-engineer the CORBA IDL
description of the protocols, which implies a lot of work.

The CORBA IDL supports existing data structures, no matter which
language they are written in, as native types. A native type can be used in
the interface specification, but the marshaling and unmarshaling routine for
this type have to be specified manually by the user. These user defined types
cannot be used for optimization algorithms, because their layout is unknown
to the compiler. Does the communication API change, the marshaling and
unmarshaling routines have to be adapted as well.

Another approach could be the usage of the structures, which are pro-
duced by the compiler from a CORBA IDL specification. To further use the
existing data structure for internal handling, the internal structure must
be copied to and from the compiler generated message structure. Doing
this, another unwanted copy operation is inserted into the communication
path. To avoid the copy operation the compiler generated structure should
be used instead of the existing. This implies a major code change which is
time-consuming and might introduce new errors into the existing software.

An alternative could be the incorporation of the native C structures into
the IDL. But this results in a rewrite of the compiler, because internals

5 DESIGN 19

data flow and structures of the compiler might not work properly without
adaptation.

4.2.2 Lessons learned from Flick

Opposed to the proposal of having a modular design, which allows the easy
adaptation, the Flick compiler has to be severely changed if a new IDL or
target language has to be incorporated. Not only the front-end, which is
responsible for generating an abstract description of the IDL, has to be re-
implemented, but also a new presentation generator is needed, when chang-
ing the IDL. The same problem arouses, if a new target language or com-
munication API should be supported. In that case not only the back-end
has to be replaced, but - again - the presentation generator.

Flick does not support typed messages. It assumes, that all data, which
will be transmitted, has to be copied into one linear buffer. Flick only dif-
ferentiates the sizes of the data. Because L4’s communication primitives
support multiple data types, an incorporation of this support into Flick
requires major changes. To allow Flick to optimize different data types,
most of the infra-structure has to be changed, which is similar to a com-
plete rewrite. The current L4 adaptation of Flick has rather been a quick
implementation to make these different data types possible, but permits no
optimization.

5 Design

As described in earlier sections, we ran into a lot of difficulties while trying to
adapt the Flick IDL compiler to the L4 API. The most problems occurred
when incorporating the different message types supported by L4. These
entailed the lack to optimize these types and the violation of abstract nature
of the interface definition language.

The code generated by the Flick IDL compiler still inserts overhead into
the marshaling and unmarshaling code. We think we can eliminate the
overhead using a better compiler design. Especially run-time optimization
of a short IPC reduces performance. Detailed analysis of the Flick stubs is
described in Section 7 as a cost analysis.

In a previous work ([18]) the Flick compiler has been adapted to be used
with the DROPS environment, described in Section 1. One of the goals
was to build wrappers for component servers around existing code, which
we took from a Linux distribution, e.g. device drivers, IP stack and similar
modules. Thus a lot of our code has to be integrated into server skeletons
generated by Flick.

5 DESIGN 20

5.1 Interface Description Language

To find an appropriate IDL for the problems described in Section 4.2.1, I
defined four goals, which should be met by the IDL:

1. easy to learn,

2. no rewrite of existing code should be necessary and

3. it should be possible to annotate the IDL to give the compiler more
information to optimize the stubs.

Because an IDL is always a very small language – it only declares an
interface and contains no instruction code – it is also fairly easy to learn.
I consider DCE’s IDL easier to learn if you are familiar with C or C++,
because the syntax is almost the same. The CORBA IDL is easy to un-
derstand and, if you are not familiar with C or C++, it should be equally
simple to learn both languages.

Integration of existing code requires a close syntax of the IDL to the
target language. Because the syntax of the DCE IDL is closely related to
the C syntax, it is possible to include C header files, containing type defini-
tions, right into the IDL. The compiler understands and uses these C types
when generating the marshaling stubs. It also can fully incorporate these
types into its optimization algorithms. The compiler can generate wrap-
pers for existing code, which use the code’s data structures, thus avoiding
unnecessary copy operations.

Stated by Ford in [9, 8] annotated interface definitions can result in
faster stubs. This improvement is achieved by specifying information in the
annotation, which regards the communication. This additional information
is essential when generating stubs to apply the right optimization strategy.
The annotation is usually placed into an extra file, which clearly separates
the abstract description from the implementation specific optimization in-
formation.

Some of these optimization techniques can already be incorporated into
the IDL, if they are abstract enough. For example, it is important for the
optimizer to know which size a variable-sized array actually has. This can be
achieved by using an attribute, which describes the exact size of the array.
The DCE IDL has such an attribute, called size_is. The compiler might
then decide, depending on the value of this attribute, which marshaling
technique is the best. If the value is only known during run-time, it might
still enable the stub to decide which mechanism to use to achieve better
performance results.

But sometimes the general attributes, specified in the IDL, are not spe-
cific enough to allow the compiler to further optimize the stubs. For these
cases it is necessary to specify attributes, which are specific for a certain
target platform. These annotations regard the transport of the data, not

5 DESIGN 21

the interface. To be able to specify annotations outside the interface def-
inition file, an additional file can be used. The DCE IDL calls these files
Application Configuration Files (ACF).

The ability to annotate an IDL and to add attributes in a sufficient
manner are clear advantages of the DCE IDL over the CORBA IDL. The
disadvantage of the DCE IDL is it’s close relation to C, which is adequate if
the target language is also C, but becomes inadequate if the target language
is different from C.

I decided to use the DCE IDL, because the CORBA IDL did not satisfy
the given IDL goals and an extension of the CORBA IDL or the development
of a new IDL would have been too time-consuming.

5.2 Interface Inheritance

The concept of inheritance is known from object oriented programming using
classes. A class can be derived from a base class, inheriting the base’s
classes methods. The derived class may add functionality or change the
functionality of the base class by overloading it’s functions. This way the
behavior of the functions is changed.

The difference between class and interface inheritance is the not existing
implementation of the interface’s functions. At least not within the scope of
the interface’s definition. Thus overloading of functions is impossible. The
only reason to overload an interface is to add functionality – functions – to
the interface’s definition. This can also be done using multiple inheritance
to collect the functionality of multiple interfaces into one interface.

As Hamilton showed in [13], interface inheritance is a good instrument
to address the software evolution of, for instance, device drivers. Thus, it is
necessary to integrate this feature into the IDL.

The integration of interface inheritance into the IDL compiler let some
problems occur. For a single interface, four files are generated.

• The client header, which contains the client function’s declarations

• The client implementation file, which contains the client stubs

• The server header file, which declares the function skeletons and the
server loop

• The server implementation file, which contains the server skeleton
functions and the server loop.

When adding a derived interface, the compiler has to generate these files
for each interface. Does the compiler generate the code for all interface in
the mentioned four files, the developer has to separate these functions by
hand to use a subset of them. But this solution produces an own server loop
for each interface. The developer must combine these server loops by hand

5 DESIGN 22

to obtain one server loop, which can server all interfaces in the inheritance
chain. One server loop should be created. Thus, I removed the server loop
from each interface’s files and created one instance of a server loop for one
compilation run and inheritance chain. (We have four to five files now.
Actually it’s even one more, which is described in Section 6.2)

5.3 Compiler

Compilers are generally constructed with two parts, the front and back end.
The front-end reads the file, which is compiled, and the back-end writes
the target code. Common language compilers include additional, optional
modules to optimize the generated code and generate intermediate data
(such as assembler code, etc.).

When a compiler translates an input file into a target file, it passes
several compiler stages. These stages are similar to the modular design and
represent the steps taken to generate the target code. The first stage reads
the input files, the second stage usually contains the analysis of the parsed
code, which checks the data flow and tries to optimize it. Flick has been the
first free IDL compiler which paid some attention to this stage. Even more
emphasis has to be put on this stage to accomplish the generation of fast
target code. The third stage writes the target code.

From the lessons learned from the adaptation of Flick, I defined three
compiler goals.

1. it should generate fast target code – this is the main goal of the
compiler, and the reasons for implementing a new compiler at all

2. it should be easy to maintain – meaning that bugs can easily be
found and fixed, or changes can be incorporated fast

3. it should be easy to adapt – this describes the idea to change major
parts of the compiler easily and quickly. For instance, to implement a
new communication API.

I designed an IDL compiler, named IDL42, with a similar structure to
the Flick architecture. The compiler is separated into three modules, as
shown in Figure 2 and described above. This modular design should enforce
the easy adaptation to new IDLs or target languages.

During the first stage the compiler also generates a data representa-
tion. This data representation contains all data, which is transferred using
a message. Meta-information, such as attributes are kept in the front-end
classes, to clearly separate the actual data from the annotated data. The
data-representation is analyzed and manipulated by the second stage – the
Optimizer.

2The IDL compiler developed at the University of Karlsruhe is also called IDL4. Please
see this name as project name, which still might change.

5 DESIGN 23

Figure 2: The IDL4 Compiler structure

5 DESIGN 24

Goal of the optimization stage is to manipulate the data- representation
in a way, which allows the back-end to write fast target code. Steps which
might be taken during optimization are described in Section 6.3.

The third compiler stage is the back-end. It is responsible to produce
the target code. Opposite to the Flick approach – to write macros into the
target files and define the macros in separate header files – IDL4 writes the
code directly into the target files. This approach allows the compiler to
generate better code, because the structure of a client stub, for instance, is
different if different kernel calls are used. E.g. no message buffer has to be
created, initialized or filled if a short-IPC is used.

Eide describes in [6] how stubs have to be divided to be suitable for differ-
ent models of distributed communication. The reasoning in the paper ([6])
is to allow asynchronous communication by queuing messages and to receive
multiple replies to one request. He separated the stubs into ”decomposed
stubs”. These decomposed stubs consist of:

• pickling stubs, to marshal requests and reply messages;
• unpickling stubs, to unmarshal requests and reply messages;
• send stubs, to transmit pickled messages to other nodes;
• server work functions, to handle received requests;
• client work functions, to handle received replies; and
• continuation stubs, to postpone the processing of messages.
I incorporated these ideas into my IDL compiler using the described

modular design. The back-end should support the writing of these ”de-
composed stubs”. The Implementation Section contains a more detailed
description of the ways to incorporate these designs into my compiler.

One application of the decomposed stubs could be to selectively write
the parts of these stubs. The compiler could, for instance, write only the
marshaling and unmarshaling parts (pickling and unpickling stubs). The
developer could then use these parts to implement simple message passing.

5.4 Optimization Strategies

During the work with the Flick IDL compiler I researched some optimiza-
tion strategies Flick incorporates and found some disadvantages in the code
generated by Flick, which are due to Flick’s design, and which we like to
avoid.

The most important enhancements used to generate fast target code are
described in Section 4.1. These are the strict inlining of code to avoid the
overhead of function calls; allocating the message buffer once and avoiding

5 DESIGN 25

Figure 3: Minimize copy operations using direct stack transfer

frequent size checks and resizing; avoiding copy operations by using the
message buffer directly wherever possible; aligning data during marshaling.

To incorporate the first technique, the compiler writes stubs as pure C
code, without any function calls, macros, etc. To enforce the idea of static
sized buffers the compiler analyzes the data, which will be transmitted. It
is possible to use static sized buffers and constant offsets in the buffer more
intensively, thus allowing the target language compiler to optimize the code
better than using variable sized buffers and offsets.

The third optimization technique has been highly optimized by the Sys-
tem Architecture group in Karlsruhe, as described in [12]. To avoid ad-
ditional copy instructions, the specialized compiler generates a client stub,
which transfers the client stub’s stack directly to the server (with slight
modification, e.g. insert the server’s address). At the server’s side the
appropriate server skeleton function is called using the message buffer as
stack3. The steps are illustrated in Figure 3. This way copy operations into
and from the message buffer can be avoided. But this optimization can only
be applied if the target language compiler uses this scheme to call functions
(push parameters on the stack) and only for a few parameter constellations
(no use of pointers or references).

I have to follow one of the major restrictions, which are implied by these
optimizations. The IDL compiler generates code for the target language
compiler (in the DROPS project the gcc compiler). I compiled some C code
examples with gcc and tested the resulting object code. Sometimes gcc can
produce shorter object code from C code, which has more instructions than

3The message buffer is actually located in the server’s stack in such a way, that the
function call can easily be performed.

6 IMPLEMENTATION 26

other C code. Some examples can be found in Appendix B.
Another strategy which can be implemented into the compiler is to opti-

mize copy operations for complex data types. Instead of copying every single
element into and out of the message buffer, the whole data structure can be
copied as one piece of data. Again, this allows the following compiler to op-
timize this operation more efficiently. This optimization technique can only
be used if the memory layout of the complex structure is the same in the
client’s and the server’s address space. If the complex structure contains
pointers to other data, these pointers have to be adapted to the server’s
memory layout.

To use the provided space in a message buffer more efficiently, multiple
values might be compressed into one value in the message buffer. A possible
scenario for packing multiple values into one dword is the usage of sub-byte
types. A sub-byte type is a data types, which uses less than 8 bits to contain
its values (e.g. the boolean type, which uses only one bit).

Again, this optimization strategy is based on the knowledge of the target
language, the following compiler and the target communication API.

To conclude, I would like to define the following goals for optimization
algorithms and strategies for IDL compilers:

• minimize copy operations

• a consolidated knowledge of the target language’s compiler

• a expertise knowledge of the communication API and it’s special cases

• try to optimize as much as possible during compile time

Other optimization strategies have to be found, tested and implemented into
the compiler to further enhance the code generation process.

6 Implementation

During the design phase I defined three goals the IDL compiler has to meet.
The first goal – to produce fast target code – is the major goal of this
compiler. I will discuss its implementation in more detail later in this section.
The second goal – to be easy to maintain – is a prerequisite to improve
the compiler’s functionality and code generation. If a developer is not able
to change the compiler, it cannot be maintained. I tried to reach this goal
by using an object-oriented design and implementation. The third goal was
driven by the need to adapt to a changing communication interface. The
L4 specification is evolving and this evolution must be supported by the
compiler. To achieve this goal, the compiler has to be easy to adapt to
new target platforms.

6 IMPLEMENTATION 27

The second goal of the IDL compiler – to be easy to maintain – is achieved
by using an object-oriented programming language. C++ supports the object-
oriented design through the concept of classes. I organized the logical parts
of the compiler into classes. The methods of these classes represent their
functional parts. When deriving from a class a logical unit is ”replaced” or
modified. When overloading the methods of the base class, the functionality
of the logical unit changes. Whenever functionality has to be adapted, a
programmer has to search the class (logical part) of the compiler, where the
code to be changed is located. He might then either derive his own class from
this class and overload the appropriate methods, or he can directly change
the methods of the class. This separation should ease the maintenance of
the compiler.

To locate a class the developer has to find its file. A class resides in two
files: a header file and an implementation file. The header file ends on .h
and the implementation file ends with .cpp. Both files of a class have the
same name. A class’ name consist of a prefix, which shows which module it
belongs to, and a short descriptive name. All classes have the prefix C which
is followed by the module prefix. The front-end classes have the prefix FE,
the back-end classes the prefix BE and the data-representation classes have
the prefix DR. Classes with no module prefix do not clearly belong to one
of the modules but rather to the whole compiler. The class representing
an interface in the front-end would be named: CFEInterface. The file-
names to not contain the leading C, which means that the files for class
CFEInterface would be FEInterface.h and FEInterface.cpp.

The decision to use an object-oriented programming language and to
strictly follow this programming philosophy enables me and other developers
to define clean interfaces between the compiler modules and to be able to
change modules without changing the whole compiler. This can be achieved
by hiding class internal data from other classes and allowing access to it
through defined interfaces. The modular design fulfills the requirements of
the third goal by using a clean separation of the modules.

To allow the clean separation of the modules I had to define the scope
of each module. The front-end module is responsible for parsing an IDL
file, checking it’s syntax and grammar and generating an in-memory rep-
resentation of the IDL file. This in-memory representation should contain
all necessary elements to be able to exploit all features of the optimizer.
As described in Section 4 this comprises all kinds of attributes or anno-
tations. The front-end also has to generate a data-representation from the
IDL. Currently this is done during the creation of the front-end’s in-memory
representation of the IDL.

The job of the optimizer module is to manipulate the data-representation
in such a way, that the back-end can produce fast target code with it. Be-
cause additional stages, e.g. modules, might be added in the future and
these modules need a original representation of the IDL, the optimizer is

6 IMPLEMENTATION 28

not allowed to manipulate the in-memory representation of the IDL.
The back-end’s job is to write the target code to the target files. It often

writes multiple presentation of IDL elements to the target files. A method of
an interface appears in the client header and implementation file in different
ways (in the header file as declaration and in the implementation as client
stub). The same method exists also as server side declaration and function
skeleton. To be able to produce all these different presentations the back-end
produces these presentation from one original – the in-memory presentation
of the IDL. So – one might ask – if the back-end uses the in-memory pre-
sentation of the IDL, what do we need the data-representation for? The
data-representation is used to generate the marshaling and unmarshaling
stubs of the data, as described in Section 6.2.

6.1 The Front-End

As outlined above, the front-end is responsible to parse an IDL file and
generate an in-memory representation of it. The parser is created using
the Gnu tools flex and bison. I defined the IDL key words in the file
scanner.ll. The flex tool generates from this file a syntactical scanner,
which scans the input file for these keywords or tokens. The scanner is a
function, which is called by the grammar parser, and returns the value of
the next token it scanned in the file.

The grammar parser is generated from the file parser.yy by the bison
tool, which is a Gnu implementation of the yacc tool. The grammar file
contains rules how an IDL file has to look like. The grammar rules describe
the look of elements of the IDL in a syntax, which is similar to the extended
Backus-Naur Form (EBNF). The grammar parser is also a function, which
is called from the compiler’s main function.

The grammar parser generates the in-memory representation of the IDL
using front-end classes. Each front-end class belongs to an element of the
IDL file. E.g. does the class CFEInterface represent an interface. While
creating the in-memory representation of the interface the appropriate data-
representation is generated synchronously.

This shows that the whole first stage of the IDL compiler is situated
in the grammar parser function. It checks the syntax and grammar of the
IDL file and generates the in-memory representation of the IDL. The object-
oriented concept exists in the parser by creating objects as in-memory rep-
resentation of the IDL and by the clear definition of the parser’s job.

6.2 The Back-End

The back-end classes, responsible for writing the target files, are marked with
the prefix BE. They are separated into two groups. One group is responsible

6 IMPLEMENTATION 29

for the logical structure of the target files and the other group is responsible
for the elements within the files.

The logical structure basically represents the target files themselves. De-
pending on the compiler’s parameters, different classes are generated and
used. The standard configuration of the compiler generates five files. The
client header file, which contains the declaration of the client stubs. The
client implementation file, which defines the client stubs. The server header
file, declaring the server skeleton functions. The server loop file, which con-
tains the server loop function. And a header file containing the function
identifiers. For each of these files a corresponding class is created.

Almost every class of the back-end – at least each classe, which is re-
sponsible for writing the target code – implements a Write method. The
main function calls the Write method of the back-end’s root class which in
turn calls the Write methods of all its child classes, which are the target
files. These Write methods do all the work. They check which options are
set and call the appropriate nested Write methods. The back-end’s root
class checks whether only a client header files is created (including the client
stubs as inlined functions) and then calls the Write method of either only
the client header class or both the client header and implementation classes.

I mentioned that classes are the logical units of the compiler and their
methods the functional parts. If the layout of the target files should change
(e.g. an additional #include directive should be written to all client header
files), then the appropriate Write method can be modified to accomplish
this. To be able to have a more fine-grained access to every single write
operation I introduced into every back-end class specific virtual methods.
Their behavior can be changed by either changing them directly or by over-
loading their functionality in a derived class. To add the #include directive
the method responsible for writing the #include directives in the client
header class can be modified by adding a statement writing the line into the
file.

To adapt the back-end to another target communication API a mini-
mum of back-end classes has to be exchanged. Currently the basic back-end
contains 25 classes. I overloaded 8 of them to adapt the back-end to the L4
API. Most of these changes are minor changes which, for instance, add an
#include directive into a header file or add another prefix to the written
names (for the L4 adaptation this prefix contains an additional l4). The
changes, which really affect the target code are located in three classes. To
adapt the L4 back-end to another communication API only the communi-
cation relevant methods and classes have to be adapted.

To have a very detailed control over the code generation process every
element which appears in the target file is represented by an own back-end
class – similar to the front-end representation of the IDL. Thus this class
can be specialized to write the best code for the corresponding element. The
back-end class knows best how to collect additional data and what to write

6 IMPLEMENTATION 30

to generate fast target code. For instance exists a back-end class to write
types and a back-end class to write constant declarations.

When the back-end is generated the classes draw the needed information
from the in-memory representation of the IDL and the data-representation.

I mentioned in Section 5.2 that the files, which are generated, are actually
one more than mentioned (five to six files). The additional file contains the
function identifiers as #define directives. These numbers start for the top
most base interface with one and increase with each method by one. The
top most base interface is the interface in the inheritance chain, which is
not derived from another interface. Each interface has it’s own function
identifier file. These files contain a base number, which defines the starting
number for this interface. All function identifiers are numbered relative to
this base number. If the function identifiers of an interface have to be moved
to another base this can easily be done by changing the base number.

6.3 Optimizer

As described in Section 5.4 multiple strategies have to be followed to generate
fast target code. Some of these strategies concern the general design of the
compiler, such as the optimizer module and some concern the written code.

The optimizer module currently consists of one class (and the derived
classes) which does the optimization steps. This class analyzes the data-
representation to check the parameters of a function for their size to be able
to determine whether they should be transmitted using a dword array or an
indirect string.

Most of the work currently done to generate fast code has been put
into the back-end. Because the generated code of Flick has been one of
the major performance bottlenecks I concentrated on the code generation.
The optimizations cannot be performed by only manipulating the data-
representation but also has to be taken into consideration when writing
optimized code. To enhance the special case implementation of the short
IPC, the compiler checks the data-representation whether the parameters
fit into the registers and then writes optimized code for a short IPC into the
target code.

Other optimization strategies are the handling of variables and the mes-
sage buffer. For instance can a server side implementation of a function
use the message buffer directly, if the buffer contains in data which does
not overlap with out data. The in data also has to be located entirely in
the message buffer. If complex data structures have to be restored this opti-
mization strategy might be of no concern if the costs to restore the structure
overweight the improvements of the copy avoidance. These manipulations
only concern the code generation process, not the data-representation.

We recognized major performance drawbacks whenever data had to be
copied. So one of the optimization goals is copy minimization. This opti-

6 IMPLEMENTATION 31

mization can be achieved by analyzing the data flow in the client stub and
server loop and by avoiding unnecessary copy operations.

The current basic implementation of the optimizer class implements no
real optimization strategies. Currently it can only analyze and flatten com-
plex data-structures to ease the target code generation. The L4 adapted
optimizer class does also analyze the elements for their sizes to find out if
the short IPC optimization can be applied.

Part of the optimization process is the marshaller. The marshaller writes
the code which copies the parameters of an function to or from the message
buffer. Therefore the marshaller needs a very detailed knowledge about the
communication API. It is responsible for the fast marshaling code.

6.4 The Factory Idea

I talked a lot about changing the code of the classes. Whenever code has
to be changed to adapt a class to a new target platform, a developer might
search for the appropriate method and manipulate it. But these changes
are permanent to this class and when using this class for yet another target
platform the old method’s implementation could have been useful but is lost
now. Thus it is more practicable to overload this method in a derived class.
But this class might be used in several places, which all must be found and
manipulated to use the new – derived – class.

To avoid this additional work every back-end class is created using a
central instance – the Class Factory. Whenever a specific class has to
be generated the appropriate method of the class factory is called and this
method returns the wished class. When class changes appear, the class
factory can be adapted to generate the new class. Even when the class
factory’s methods have to remain unchanged, it has to be overloaded as
well. The new class factory has to be made public.

Similar problems occur whenever a name has to be written to the target
code. For instance: a function’s name is written multiple times. Does the
naming scheme for the target platform change, all of these places, where the
function name is written into the target files, have to be found and changed.
This can be avoided by using the Name Factory. It is, similar to the
class factory, a central place where names are generated. Does the naming
scheme change, this name factory class has to be overloaded and the new
name factory has to be made public.

6.5 The Context Concept

To make the factories public, a reference to each of these classes might be
handed to every method in need of it, or put them into some global place, e.g.
define global variables. The latter approach does violate the object-oriented
approach. Both approaches reach their limits if more or other classes as well

7 PERFORMANCE EVALUATION 32

should be handed to the methods. To avoid this, the concept of a Context
was introduced. This context is different to the ”context” used by Flick,
e.g. the CORBA IDL, which uses the name ”context” to describe the state
a client stub or server is in when sending or receiving messages.

I use the term ”context” to describe all information, necessary to write
target code. This includes, besides the two factories, the target file and the
parameters the compiler has been called with. The back-end can change the
context, e.g. the target file – it can be the client header file or the client
implementation file, etc. These changes are a reason to hand every method
a reference to the context, rather then setting a global variable. Whenever
the context changes the old value of the global variable has to be stored.
The storage of the old context is done more easily in the method which
changes the context and eventually restores it.

7 Performance Evaluation

I measured the following numbers on an intel Pentium (133MHz) computer
with 512KB of Cache and 64MB of RAM. The communication stubs were
generated for the L4 IPC communication mechanisms. I tested several client
and server components, which ran on top of the L4 µ-kernel version 2.0. To
simplify the test environment (input/output etc.) most of the components
are Linux tasks running on L4Linux (an adaptation of Linux 2.2 for the
L4 µ-kernel). Because I had no other applications running, while measuring
the different scenarios, I assume, that the times measured are the same as
the times would have been on the pure L4 µ-kernel.

The main objective of these measurements is to compare the perfor-
mance of the Flick generated stubs with the stubs generated by my IDL
compiler. Major performance gains can be seen whenever a short IPC is
used to communicate, because the Flick compiler generates stubs, which de-
cide to use a short IPC at run-time, whereas the IDL4 compiler decides to
use a Short-IPC at compile-time.

I measured different scenarios, which are the transmission of a few single
dwords, the transmission of complex data types, which are copied, and the
transmission of data types, which use the communication mechanisms of L4,
such as indirect strings.

For each of these scenarios I separated the communication into several
components to distinguish the parts with performance enhancements and
the parts which add constant overhead to a communication path. These
parts are:

• the time from the call of the client stub to the beginning of the mar-
shalling

• the time of the marshalling

7 PERFORMANCE EVALUATION 33

• the time needed to send the IPC from the client to the server

• the time at the server from receiving the IPC to the beginning of the
unmarshaling, also called the server’s switch time

• the time of the unmarshaling to the moment the real function starts
to execute

• the time from leaving the server function until the marshaling of the
return values

• the time of the marshaling of the return values

• the time needed to send the return IPC

• the time to perform error handling

• the time to unmarshal the return values

or any subsequent combination of them. The most interesting times are
the times from the beginning of the client stub to the moment the server
function starts to work. This is the overhead an inter-process function call
costs. To show whether my IDL compiler creates reasonable client stubs I
also hand-coded some of the function’s stubs, hand-optimized these stubs
and measured their times.

7.1 Short IPC

The L4 short IPC, as described in Section 2, is a special case implementation
of inter process communication. It transmits only two dwords using registers.
No memory copy operations are invoked, which makes this kind of IPC very
fast. Whenever possible it should be considered to use this IPC mechanism.

To measure the short IPC communication stubs I used the following IDL
to generate the client stubs4.

interface foo {
int bar([in]int t1) ;

}

The IDL4 compiler generates the following client stub from this IDL:

L4 INLINE int foo bar(l4 idl service t ∗ service ,
/∗ in ∗/ int t1,
l4 idl connection t ∗ connection)

{
5 l4 msgdope t result ;

int error ;
dword t return code;
dword t return;

4The CORBA IDL for Flick looks similar.

7 PERFORMANCE EVALUATION 34

error = l4 i386 ipc call (service−>server id,
10 L4 IPC SHORT MSG, test foo opcode, t1,

L4 IPC SHORT MSG, & return code, & return,
connection−>timeout, & result);

return (int) return;
}
Because this client stub is directly written into the calling code (inlined),

an optimizing target language compiler (gcc with optimization turned on)
writes the variable directly into the IPC call. This is a mov operation from a
memory address into a register. The costs are memory access costs, meaning
if the value is located in the cache, the costs are only cache access costs.
Additional to those costs might be the access cost to physical memory and
cost for TLB misses.

The Flick compiler generates the following client stub for the IDL. As
to be seen, the code is much longer than the code, generated by the IDL4

compiler. All lines starting with flick_l4_ are macros, which will be re-
placed with C code. These macros hide general tasks, which are specific
to the communication mechanism, such as marshaling a signed 32 bit value
into the buffer. Another difference to the IDL4 code is the error-handling.
The IDL4 compiler does not yet generate as much error checking code as the
Flick compiler. During the measurements I separately measured the error-
handling code to determine the differences correctly. The error-handling
code is located at the lines 25 to 27 and the macro on line 24 expands to
multiple lines of C code, which also contains a lot of error handling code.
The pure marshaling of the data is located in line 19, which writes the value
of the variable t1 into the message buffer.

The code also shows the handling of short-IPC by the Flick compiler. It
first marshals all parameters (in this case t1) into a message buffer (lines
13 through 23). It then hands the message buffer to the message invocation
macro (line 24). This macro uses the first two values in the message buffer
for the register IPC. Flick introduces unnecessary copy operations into the
short-IPC stubs. The Flick generated stubs look like the following:

sdword t foor bar(sm service t service ,
sdword t t1, sm exc t ∗ ev)

{
char ∗ buf current, ∗ buf start ;

5 l4 msgdope t rc;
dword t nr received strings ;

l4 ipc buffer t msgbuf; /∗ temporary send buffer ∗/
l4 ipc buffer t ∗ msgbuf = & msgbuf;

10 sdword t return;

return = 0;
flick l4 client start encode () ;

{
15 flick l4 encode new glob (8) ;

7 PERFORMANCE EVALUATION 35

flick l4 encode new chunk(8) ;
flick l4 encode unsigned32 (0, req test foo) ;
/∗ Begin encode phase on parameters ∗/
flick l4 encode signed32 (4, t1) ;

20 flick l4 encode end chunk(8) ;
flick l4 encode end glob (8) ;

}
flick l4 client end encode () ;
rc = flick client call (service , msgbuf);

25 if (L4 IPC IS ERROR(rc))
flick l4 decode client error (return return,
FLICK ERROR COMMUNICATION, l4, l4);

flick l4 client start decode () ;
{

30 flick l4 decode new glob (8) ;
flick l4 decode new chunk(4) ;
flick l4 decode signed32 (0, ev−> type);
flick l4 decode end chunk(4) ;
switch (ev−> type)

35 {
case exc l4 no exception:
{
/∗ Begin decode phase on parameters ∗/
flick l4 decode new chunk(4) ;

40 flick l4 decode signed32 (0, return) ;
flick l4 decode end chunk(4) ;
flick l4 decode end glob (8) ;
break;

}
45 case exc l4 system exception:

{
flick l4 decode end glob (8) ;
flick l4 decode system exception (ev , l4 , l4) ;
break;

50 }
default:
{

flick l4 decode client error (return return,
FLICK ERROR VIRTUAL UNION, l4, l4);

55 flick l4 decode end glob (8) ;
}

}
}
flick l4 client end decode () ;

60 return return;
}

The hand-coded stub uses the knowledge about the IPC implementation
directly and looks like the following:

L4 INLINE int foo bar(int t1) {
l4 msgdope t result ;
int error ;
dword t return code;

7 PERFORMANCE EVALUATION 36

Flick IDL4

client stub marshal 71 0
IPC send 326 315
server switch 96 33
server unmarshal 32 25
server function in 41 33
server function out 39 26
server marshal 94 32
IPC receive 374 352
client stub error handling 47 35
client stub unmarshal 47 0
sum 1167 851

Table 1: Measurements of Performance of Short IPC (in cycles)

5 dword t return;
error = l4 i386 ipc call (server id ,
L4 IPC SHORT MSG, test foo opcode, t1,
L4 IPC SHORT MSG, & return code, & return,
L4 IPC NEVER, & result);

10 return (int) return;
}

Because the IDL4 generated code does not yet contain general error-
checking code, the hand-coded stub and the IDL4 generated stub look very
similar. Another improvement, which I did not write down, is to use the
assembler code for the IPC call directly, thus avoiding the use of the C-
bindings of the IPC calls.

All generated client stubs are inline functions, which allow the compiler
to include their code directly into the calling environment and to optimize
the client stub’s code in the surrounding context (registers etc.). Thus un-
necessary copy operations to and from the stack are avoided.

I measured the client stub times and the times needed at the server
side. The numbers can be seen in Table 7.1. First I needed to know, which
overhead is introduced to the call of a function by using an IPC. Then it has
been interesting, which parts of the total overhead are unavoidable (IPC)
and which can be optimized by the compiler (marshaling, unmarshaling,
etc.).

As the measurements show, it is possible to optimize the marshaling
and unmarshaling code of the stubs for the short-IPC even further. The
difference between the IDL4 stub and the Flick stub is 316 cycles, which
is about 25% performance enhancement. The numbers for the hand-coded
stub are not listed, because they are very similar to the IDL4 generated
stubs. A hand-coded stub can perform better, if the developer uses special
knowledge about the client and server (he can make assumption the compiler

7 PERFORMANCE EVALUATION 37

Figure 4: A comparison of the performance of the stubs parts for a Short-
IPC.

cannot make) and writes the communication code as pure assembler code.
To see the differences in between the single parts of the whole stub, I

visualized the numbers in Figure 5 and Figure 6. The single parts are named
on the right and start in the figure at the top (twelve o’clock) and continue in
clockwise direction. It can be seen, that the management code (marshaling,
unmarshaling, server switch statements, etc.) make up a larger portion in
the Flick stub, than in the IDL4 stub. This difference becomes very clear,
when looking at the Figure 4.

The total overhead introduced by the client stub compared to a usual
function call is about 400 cycles when entering the function and about the
same, when leaving it. Of these 400 cycles the pure IPC makes up 75% –
about 300 cycles. With the total overhead costs of about 200 cycles (100
when entering and 100 when leaving the function) we can perform an remote
procedure invocation if the parameters fit into a short-IPC.

I expect this value to approximately enlarge by the factor 1.5 as soon as
the stubs and server side functionality encloses a full error-handling facility.

7 PERFORMANCE EVALUATION 38

Figure 5: The shares of the single parts of the Flick stub.

Figure 6: The shares of the single parts of the IDL4 stub.

7 PERFORMANCE EVALUATION 39

IDL4 Flick hand-coded
client marshal 5 78 4
IPC send 500 496 511
server switch 33 86 33
server unmarshal 31 145 33
server function in 37 58 22
server function out 34 66 22
server marshal 26 144 33
IPC receive 626 669 619
error handling 26 33 29
client unmarshal 23 57 22
sum 1341 1832 1328
sum5 189 634 169

Table 2: Comparison of marshaling times of variable sized string (in cycles)

If the error handling code can be written in such a way, that it introduces
minimal overhead if the common case – no error – is executed, the error-
handling might enlarge the stubs not at all.

7.2 Complex Data Types

To measure complex data types, I chose a ”real-world example”. I used the
interface specification of a filesystem and extracted the read function. This
function is used quite often and a performance enhancement would multiply
by the times of its use. The interface description consists of the following
lines.

interface filesystem {
long read([in] handle t handle , [in ,out] long pos,

[in ,out] long len , [out, size is (len)] char∗ data);
}
The generated stubs have to send four dwords from the client to the

server and expect to receive two dwords and one data array back from the
server. The data array or byte array is transmitted using an indirect string.
To transmit an indirect string only two values have to be provided: the start
address of the array and the size of the array in bytes. The marshaling code
for indirect strings stays the same no matter which size the indirect string is.
For my measurements I send a character array with the size of twelve bytes,
containing the string ”Hello World!”. The size of the indirect string has only
effects on the time the IPC needs to transmit this byte array. Because this
time stays the same for all stubs, I did not vary the size of the byte array.
The results of the measurements are in Table 7.2.

To underline the possible performance gains with IDL4, I summarized
only the marshaling parts, without the IPC and error-handling. The dif-

7 PERFORMANCE EVALUATION 40

Figure 7: Comparison of marshaling stubs for complex data structures.

ference between the IDL4 generated marshaling code and the hand-coded
marshaling stub are negligible. The Flick marshaling code performs more
than three times slower than the IDL4 generated marshaling code. The share
of the marshaling code in a Flick generated stub is about 35%, whereas the
share of the marshaling code in a IDL4 generated stub is about 15%. I
visualized the differences between the three stub in Figure 7.

As I mentioned, does the marshaling performance not change if the byte
array has a different size. The IPC’s time increases, because it has to copy
more data from one address space to the other. Further investigations have
to be made to find alternative ways to transmit large amounts of data, such
as memory shares, etc.

Because the IDL compiler can have no direct influence on the perfor-
mance of the IPC, I did not investigate the use of variable sized arrays any
further. I rather compared the marshaling times for other complex data
types. Complex data types can be, for instance, structured types, which are
composed from other types, or array of other data types. Because arrays
with a variable size are usually marshalled using indirect strings I measured
the performance of marshaling fixed sized arrays. Flick generated stubs for
fixed-sized array, which marshal the array element by element. IDL4 gener-
ated stub copy the array as a whole into the message buffer using the memcpy
routine. In Table 7.2 the results for the measurements of marshaling stubs
for various sizes of fixed-size arrays can be found.

8 CONCLUSION, OPEN TOPICS AND FUTURE WORK 41

size Flick memcpy

1 45 2
2 54 2
4 65 2
8 84 6
16 129 15
32 326 46
64 481 82
128 805 128
256 1447 273
512 2729 563
1024 5301 719
2048 10477 998
4096 20725 1811

Table 3: Comparison of marshaling times of variable sized byte arrays (in
cycles)

Structured data types are marshaled by Flick generated stubs also on a
element by element basis. The IDL4 compiler analyzes the structured data
type to find out, whether it can copy it as a memory region at once, or if
it has to marshal it element by element. So for most cases it is possible to
marshal a complex data type using a direct memory copy operation, instead
of copying element by element.

8 Conclusion, Open Topics and Future Work

The current implementation of the IDL compiler shows, that it is possible
to use techniques, known from common programming language compilers,
with IDL compilers. This knowledge must be applied to IDL compilers to
meet the requirements for IDL compilers of today.

The IDL4 compiler is a good approach to incorporate these techniques
into an IDL compiler. The ideas have to be investigated further and strate-
gies have to be researched how to incorporate more sophisticated ideas into
this compiler.

The optimization techniques can and must be further enhanced. Mea-
surements of copy operations must be performed to incorporate a cost mini-
mization policy into the compiler. Former measurements of copy operations
can be used to implement first prototypes of cost-minimization algorithms.

The optimizer should support all data types available in the IDL in the
near future, which means that it shall be able to optimize the use of them.

Because DROPS is a component based system, it should be, for instance,
one of the goals to develop a component model based on IDL4.

9 SUMMARY 42

To have a fast and sufficient implementation of the compiler it supports
only the DCE IDL right now. To be able to reach a broader user commu-
nity, other IDLs and target platforms should be supported, which could be
the CORBA IDL or different programming languages as well as different
communication APIs, such as the L4 API version X.0.

The support of annotation files has to be pushed to be able to configure
the communication path in more detail.

9 Summary

The development of an IDL compiler today involves almost the same com-
plexity as the development of a common programming language compiler.
The interface description language is not as complex as a common program-
ming language, but the compiler’s mechanisms are the same. Today’s IDL
compilers must implement the same strategies as usual programming lan-
guage compilers do.

An IDL compiler is a necessary tool to ease the development of compo-
nent based systems. But to be of real help, an IDL compiler has to generate
highly optimized target code. It has to implement much of the knowledge
the developer would use himself, if he would hand-code the stubs.

I think I implemented an IDL compiler, which eases the development of
components and generates fast client stubs. Thus it is not simply a compiler
to straighten software design, but it is a good development tool.

10 Acknowledgements

I like to thank my professor H. Härtig, my coach L. Reuther, my fiance Z.
Tradel and all those who helped my finish this paper ”on time”. I like to
thank especially V. Uhlig for his technical assistance and all those hours of
discussion.

Thank you!

REFERENCES 43

References

[1] ISO/IEC DIS 14750, March 1999.
http://www.iso.ch/cate/d25486.html.

[2] Thomas J. Brando. Comparing dce and corba. Document MP 95B-93,
MITRE, March 1995.

[3] D. D. Clark and D. L. Tennenhouse. Architectural considerations for
a new generation of protocols. In SIGCOMM ’90 Symposium, pages
200–208, 1990.

[4] R.P. Draves et al. ”MIG - the mach interface generator”. Technical
report, Carnegie Mellon University, August 1989.

[5] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom.
”Flick: A Flexible, Optimizing IDL Compiler”. In PLDI ’97, 1997.

[6] Eric Eide, Jay Lepreau, and James L. Simister. ”Flexible and Optimized
IDL Compilation for Distributed Applications”, volume 1511 of Lecture
Notes in Computer Science, chapter Language, Compilers, and Run-
Time Systems for Scalable Computers, pages 288–302. Springer, May
1998.

[7] Eric Eide, James L. Simister, Tim Stack, and James Lepreau. ”flexi-
ble IDL compilation for complex communication patterns”. Scientific
Programming, 1999.

[8] Bryan Ford, Mike Hibler, and Jay Lepreau. ”Separating Presentation
from Interface in RPC and IDLs”. Technical Report UUCS-95-018,
University of Utah, December 1994.

[9] Bryan Ford, Mike Hibler, and Jay Lepreau. ”Using Annotated Inter-
face Definitions to Optimize RPC”. Technical Report UUCS-95-014,
University of Utah, March 1995.

[10] A. Gokhale and D.C. Schmidt. Measuring performance of communi-
cation middleware on highspeed networks. Computer Communication
Review 26, 4, October 1996.

[11] Object Management Group. Corbaservices: Common services specifi-
cation, revised edition, March 1995. 95-3-31 edition.

[12] Andreas Haeberlein, Jochen Liedtke, Yoonho Park, Lars Reuther, and
Volkmar Uhlig. Stub-code performance is becoming important. In
WIESS 2000, October 2000.

REFERENCES 44

[13] Graham Hamilton and Sanjay Radia. Using interface inheritance to
address problems in system software evolution. Technical Report SMLI
TR-93-21, Sun Microsystems Laboratories, Inc., November 1993.

[14] Jochen Liedtke. On µ-Kernel construction. In The 15th ACM Sympo-
sium on Operating System Principles, December 1995.

[15] Jochen Liedtke. L4 reference manual - version 2.0. 486, Pentium,
Pentium Pro, September 1996.

[16] Jochen Liedtke. Towards Real Microkernels. Communications of the
ACM, 39(9):70–77, September 1996.

[17] Owen Tallman and J. Bradford Kain. ”COM versus CORBA: A Deci-
sion Framework”. Distributed Computing, September-December 1998.

[18] Volkmar Uhlig. A multi-server filesystem and development environ-
ment. Master’s thesis, Dresden University of Technology, October 1999.

A EXAMPLE COMPILATION 45

A Example Compilation

The described example compilation uses a very simple IDL to keep the
explanations short:

A.1 The IDL File

/∗ idl file for sample interface ∗/

// this typedef may also occur in the interface body
typedef struct {

5 int a;
int b;
struct {

int x;
int y;

10 } c;
} struct t ;

interface foo {
int bar([in] struct t ∗t1) ;

15 }

A.2 The Front-End Representation

The front-end representation consist of a tree like structure, containing all
data read from the IDL file. The root of this structure is used to collect all
top level elements of this structure. The tree for the above structure would

look like this:

· CFERoot – contains all top level elements
· CFETypedDeclarator – contains the typedef

· CFEStructType
· CFETypedDeclarator (a)

· CFESimpleType – type integer
· CFETypedDeclarator (b)

· CFESimpleType – type integer
· CFETypedDeclarator (c)

· CFEStructType – structure type
· CFETypedDeclaratpr (x)
· CFESimpleType – type integer

· CFETypedDeclarator (y)
· CFESimpleType – type integer

· CFEInterface – interface ”foo”
· CFEInterfaceHeader (contains names and attributes)

· CFEIdentifier – the name of the interface
· CFEVersionAttribute – version attribute

· CFEInterfaceBody – all elements of the interface

A EXAMPLE COMPILATION 46

· CFEOperation – the ”bar” function
· CFESimpleType – return type
· CFEIdentifier – name (”bar”)
· CFETypedDeclarator (t1 – 1st parameter)

· CFEUserDefinedType
· CFEIdentifier – name of user defined type

· CDRFunction – reference to corresponding DR function

A.3 The Data-Representation

Data-representation exist on a per operation basis. This means the
data-representation is kept very shallow and simple and belongs to a

specific operation. Because data-representations also exist for all complex
or user-defined data-types, these data-representations are kept at a central
place to allow optimizations of these data-representations in a central

place.
For the above operation, the data-representation tree would look like this:

· CDRFunction – collects all parameters
· CDRSimpleParameter – the return value
· CDRConstructedParameter (t1)
· CDRSimpleParameter (a)
· CDRSimpleParameter (b)
· CDRConstructedParameter (c)
· CDRSimpleParameter (x)
· CDRSimpleParameter (y)

A.4 Optimization

The optimization module, currently does not perform many tasks. It
flattens constructed data types and sorts parameters for their size. It

performs all these operations on the data-representation. Thus the above
data-representation would look after optimizing like this:

· CDRFunction – collects all parameters
· CDRSimpleParameter – the return value
· CDRSimpleParameter (t1.a)
· CDRSimpleParameter (t1.b)
· CDRSimpleParameter (t1.c.x)
· CDRSimpleParameter (t1.c.y)

A EXAMPLE COMPILATION 47

A.5 The Back-End Representation

The back-end representation creates the single back-end classes
dynamically and calls their Write methods. I describe the basic (”logical”)
structure of the back-end and line out the Write methods, which are called.
Each method uses the front-end’s in-memory representation to pick out the
relevant information and create the appropriate back-end classes. It uses

the back-end context, which looks like this:

· CBEContext
· nOptions – the arguments of the IDL4

· CBEFile – the current output file
· CL4BEClassFactory
· CL4BENameFactory

The order and grouping the single back-end classes appear in, could look
for the above IDL like the following one, if IDL4 is called with the

following argument: --create-inline:

· CBERoot::Write()
→ CBERoot::WriteInterfaces()
→ CL4BEClient::Write()
→ CL4BEClient::WriteHeader()

→ CL4BEClient::WriteRemarks()
· prints copyright comments to the target file

→ CL4BEClient::WriteIncludes()
· prints the #include directives

→ CL4BEClient::WriteTypeDefs()
· iterates over all typedefs of the interface
→ CBETypedDeclarator::Write()
→ CBETypedDeclarator::WriteAttributes()
· iterates over attributes of declarator
→ CBEAttribute::Write()
· prints the name of the attribute as comment

→ CBETypedDeclarator::WriteType()
→ CBEType::Write()
· because this is a struct:
- struct and the name are written
- for all members a new CBETypedDeclarator is created
→ CBETypedDeclarator::Write()

→ CBETypedDeclarator::WriteDeclarators()
· iterates over declarators

A EXAMPLE COMPILATION 48

→ CBEDeclarator::Write()
· writes the variable name

→ CL4BEClient::WriteConstDecl()
· iterates over all constant declarations
· non constant available

→ CL4BEClient::WriteFunctions()
· iterates over all functions of the interface
→ CL4BEFunction::Write()
→ CL4BEFunction::WriteInlinePrefix()
→ CL4BEFunctionHeader::Write()
→ CL4BEFunctionHeader::WriteAttributes()
· iterates over attributes
→ CBEAttribute::Write()

→ CL4BEFunctionHeader::WriteDeclaration()
→ CBEType::Write() – return type
· print the function’s name
→ CL4BEFunctionHeader::WriteParameters()
→ CL4BEFunctionHeader::WriteBeforeParameters()
· print additional parameters

· iterate over declarators
→ CBETypedDeclarator::Write()
· I’ll skip this one, because the principle should be clear now.

→ CL4BEFunctionHeader::WriteAfterParameters()
· print additional parameters

→ CL4BEFunctionBody::Write()
→ CL4BEFunctionBody::WriteClientStub()
→ CL4BEClientStub::Write()
→ CL4BEMarshaller::WritePrepareMarshalIn()
· prints the variable initialisation

→ CL4BEMarshaller::WriteMarshalIn()
· prints the marshaling code

→ CL4BEMarshaller::WritePrepareUnmarshalOut()
· prints preparation code for unmarshaling

→ CL4BEClientStub::WriteInvoke()
· prints the invocation call

→ CL4BEClientStub::WriteInvokeErrorHandling()
· prints handling code for invocation call

→ CL4BEClientStub::WriteServerErrorHandling()
· prints handling code for server errors

→ CL4BEMarshaller::WriteUnmarshalOut()
· prints unmarshaling of return parameters

· print return statement
→ CL4BEClient::WriteImplementation()

· not executed, because inline functions are generated

A EXAMPLE COMPILATION 49

→ CL4BEServer::Write()
· I’ll skip this one, because the principle should be clear now.

→ CBEOpcodes::Write()
· I’ll skip this one, because the principle should be clear now.

A EXAMPLE COMPILATION 50

A.6 The Target Files

File 1 (test_client.h): This file contains the complete client stub. The
marshaling happens on line 33.

#ifndef TEST CLIENT H
#define TEST CLIENT H

#include ”l4.h”
5 #include ”test opcodes.h”

typedef {
int a;
int b;

10 struct {
int x;
int y;

} c;
} test struct t ;

15

L4 INLINE
int test foo (l4 idl service t ∗ service ,

/∗ in ∗/ test struct t ∗t1,
l4 idl connection t ∗ connection)

20 {
l4 msgdope t result ;
int error ;
int return ;
dword t return code;

25 struct {
l4 fpage t fpage;
l4 msgdope t size ;
l4 msgdope t send;
dword t dwords[6];

30 } msg buf in;
msg buf in. size = L4 IPC DOPE(6, 0);
msg buf in.send = L4 IPC DOPE(6, 0);
memcpy(&(msg buf in.dwords[2]), t1, 4);
error = l4 i386 ipc call (service−>server id, & msg buf in,

35 test foo opcode, 0, & msg buf out, & return code,
(dword t∗)& return, connection−>timeout, & result);

if (error)
{

THROW EXCEPTION(connection, error);
40 return (int)−1;

}
if (return code)
{

// TODO: insert error handling code for server errors .
45 return (int)−1;

}
return return;

}
#endif // TEST CLIENT H

A EXAMPLE COMPILATION 51

File 2 (test_server.h): This file contains the declarations of the server
skeleton and the server loop. It also defines the structure for the server

side.

#ifndef TEST SERVER H
#define TEST SERVER H

#include ”l4.h”
5

typedef {
int a;
int b;
struct {

10 int x;
int y;

} c;
} test struct t ;

15 int test foo (/∗ in ∗/ test struct t ∗t1) ;

/∗ the server loop function declaration ∗/
int test server loop (void);

20 #endif // TEST SERVER H

File 3 (test_opcodes.h): The function identifier for the function foo is
defined here.

#ifndef TEST OPCODES H
#define TEST OPCODES H

5 #define test base opcode 1
#define test foo opcode filesystem base opcode + 0

#endif // TEST OPCODES H

A EXAMPLE COMPILATION 52

File 4 (test_serverloop.c): The server loop.

#include ”test opcodes.h”
#include ”test server.h”

int test server loop ()
5 {

dword t opcode, dw1, return code;
l4 threadid t id ;
l4 msgdope t result ;
int error ;

10 // msg buffer
struct {

l4 fpage t fpage;
l4 msgdope t size ;
l4 msgdope t send;

15 dword t dwords[6];
} buffer ;
// init buffer
buffer . size = L4 IPC DOPE(6, 0);
buffer .send = L4 IPC DOPE(2, 0);

20 // first receive
do {

error = l4 i386 ipc wait (& id, & buffer, & opcode, &dw1,
L4 IPC NEVER, & result);

} while ((error == L4 IPC ENOT EXISTENT) ||
25 (error == L4 IPC REMSGCUT));

// the server loop
while (! error) {

switch (opcode) {
case test foo opcode:

30 {
test struct t ∗t1;
int return ;
memcpy(t1, &(buffer.dwords[0]), 4);
return = test foo(t1) ;

35 return code = 0;
buffer .send = L4 IPC DOPE(2, 0);

do {
error = l4 i386 ipc reply and wait (id, & buffer ,

return code , return, & id, & buffer , & opcode,
40 &dw1, L4 IPC TIMEOUT(244,9,0,0,0,0),

& result) ;
// error handling for ”reply cancelled by another thread”
// and ”send aborted by another thread”

} while((error == L4 IPC SECANCELED) ||
45 (error == L4 IPC SEABORTED));

}
break;

}
if (error) {

50 switch(error) {
case L4 IPC ENOT EXISTENT:

// client doesn’t exist any more

A EXAMPLE COMPILATION 53

case L4 IPC SETIMEOUT:
// client does not respond to reply

55 case L4 IPC REMSGCUT:
// message cut
// set server into ready state for other clients
// first receive
do {

60 error = l4 i386 ipc wait (& id, & buffer ,
& opcode, &dw1, L4 IPC NEVER, & result);

} while ((error == L4 IPC ENOT EXISTENT) ||
(error == L4 IPC REMSGCUT));

break;
65 }

}
}
return error;

}

B GCC OPTIMIZATIONS 54

B gcc Optimizations

To be able to determine, which code is best for the target compiler to
optimize, I analyzed different code samples. One of the code sample

belongs to the optimization technique bit-stuffing. If parameters are stuffed
into one dword to be eventually transmitted as short-IPC, the bit-positions

of the parameters have to change.
Lets say we have four values of type byte (8 bits). If we like to stuff them
into a dword (32 bit), we have to shift the first byte to the highest byte of
the dword, the second byte to the second highest byte of the dword, and so
on. Then we have to perform a bit-wise OR operation to receive a stuffed

dword. The code could look like this:

dword dw;
byte b1, b2, b3, b4;

dw = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;

If we like to stuff the byte values into an array of dwords, the code could
look like this:

dword dw[];
byte b1, b2, b3, b4;
int offset ; // in dwords

5 dw[offset] = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;

Another approach to stuffing byte values into a dword array it to cast the
dword array into a byte array and then write the values into the array one

by one. This code would look like this:

dword dw[];
byte b1, b2, b3, b4;
int offset ; // in bytes

5 (∗(byte∗)(&dw))[offset] = b1;
(∗(byte∗)(&dw))[offset+1] = b2;
(∗(byte∗)(&dw))[offset+3] = b3;
(∗(byte∗)(&dw))[offset+2] = b4;

This code looks larger, not so elegant and seems to produce also a lot of
byte code. But the gcc compiler optimizes the latter code more efficiently

then the more elegant bit-shifting code.

