

Großer Beleg: “L4Linux on L4Env”


Adam Lackorzynski <adam@os.inf.tu-dresden.de>
Dresden University of Technology
Department of Computer Science


Operating Systems Group


December 2002







2


All trademarks are the property of their respective owners.







3


Contents


1 Introduction 6


1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6


2 Prerequisites and Related Work 8


2.1 Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . 8


2.2 Microkernel Architectures . . . . . . . . . . . . . . . . . . . . 9


2.2.1 Available APIs on different hardware platforms . . . . 9


2.3 Inside L4Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . 10


2.3.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . 10


2.3.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 11


2.3.3 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 11


2.3.4 System Calls and Emulation Library . . . . . . . . . . 11


2.3.5 Memory Management . . . . . . . . . . . . . . . . . . 12


2.4 Drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12


2.5 Drops system basics . . . . . . . . . . . . . . . . . . . . . . . 13


2.6 L4Env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13


2.6.1 File Provider . . . . . . . . . . . . . . . . . . . . . . . 14


2.6.2 L4 Loader . . . . . . . . . . . . . . . . . . . . . . . . . 14


2.6.3 dm_phys . . . . . . . . . . . . . . . . . . . . . . . . . . 15


2.6.4 Region Mapper . . . . . . . . . . . . . . . . . . . . . . 15


2.6.5 Thread Library . . . . . . . . . . . . . . . . . . . . . . 15


2.6.6 Task server . . . . . . . . . . . . . . . . . . . . . . . . 16


2.6.7 L4IO Server . . . . . . . . . . . . . . . . . . . . . . . . 16


2.7 Other Components . . . . . . . . . . . . . . . . . . . . . . . . 16


2.7.1 Drops Console . . . . . . . . . . . . . . . . . . . . . . 16


2.7.2 DOpE Windowing System . . . . . . . . . . . . . . . . 16


2.8 History of L4Linux . . . . . . . . . . . . . . . . . . . . . . . . 16







4


3 Design 18


3.1 Internal Abstraction Layer . . . . . . . . . . . . . . . . . . . . 18


3.1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19


3.1.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . 20


3.2 Directory structure . . . . . . . . . . . . . . . . . . . . . . . . 20


3.2.1 Implementation Files . . . . . . . . . . . . . . . . . . . 21


3.2.2 Header Files . . . . . . . . . . . . . . . . . . . . . . . . 21


3.3 Using L4Env . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23


3.3.1 dm_phys . . . . . . . . . . . . . . . . . . . . . . . . . . 24


3.3.2 Task server . . . . . . . . . . . . . . . . . . . . . . . . 25


3.3.3 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . 25


3.3.4 L4IO Server . . . . . . . . . . . . . . . . . . . . . . . . 25


3.3.5 DROPS console/DOpE support . . . . . . . . . . . . . 25


4 Implementation 27


4.1 Internal Abstraction Layer . . . . . . . . . . . . . . . . . . . . 27


4.1.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


4.1.2 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . 28


4.2 Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . 31


4.3 Integration of L4Env support . . . . . . . . . . . . . . . . . . 31


4.3.1 dm_phys . . . . . . . . . . . . . . . . . . . . . . . . . . 32


4.3.2 L4IO Server . . . . . . . . . . . . . . . . . . . . . . . . 33


4.4 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33


5 Performance Comparisons 35


5.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


5.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35


5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36


5.4 Future Benchmarking . . . . . . . . . . . . . . . . . . . . . . 37


6 Prospective Work 38


7 Summary 41







5


A Glossary 42


B Bibliography 44







6


1 Introduction


Research at the Operating Systems Group in Dresden [OS02] focuses on µ-
kernel architectures, real time systems with quality of service requirements
as well as secure systems. The µ-kernel architecture is based on the second
generation L4 interface, allowing to construct a small, fast and efficient µ-
kernels. To build a useful operating system that meets the defined goals,
powerful applications on top of the µ-kernel are needed. The Drops project
is aimed to provide such applications. L4Linux is one part of the Drops
project and provides a UNIX-like interface to L4 systems. It can be used for
such basic things as developing and debugging L4 components as well as in
security architectures where crucial and important applications like financial
software run besides “Internet applications” which may come from untrusted
sources and should not, under any circumstances, interfere with the critical
applications. This separation can be achieved with the help of L4 and the
surrounding projects of Drops.


As the L4 interface itself is quite lean and simple, an environment called
L4Env is developed in Dresden to help programmers in common tasks and
unify the different existing µ-kernel implementations to one interface. L4Env
places an abstraction layer between the µ-kernel itself and its applications.
There is still research work to be done on these components but parts of
L4Env can already be used in applications without problems. The main
goal of the work was to add L4Env support to L4Linux which promises sev-
eral advantages such as µ-kernel independence over the traditional approach
working directly on the µ-kernel. Besides that several other issues like the
code breakup and cleanup were pursued.


1.1 Overview


In this document I will give an overview of L4Linux-2.4 and the prerequisites
that are needed for L4Linux to run. The next chapter will give an introduc-
tion to operating systems and µ-kernels in particular. Following this, the
µ-kernels I work with are explained. The Drops system and the L4Env en-
vironment is explained along with all the modules needed for L4Linux. The
chapter is completed with an overview of the history of L4Linux. The third
chapter devotes to the design and will focus on the L4Linux internal abstrac-
tion library, the proposed directory structure of the source tree and L4Linux
on L4Env. The following chapter will explain some implementation details,
focusing on the library with special regard to L4Env, the directory layout
and finally a small additional project, the tracing of L4Linux. Following this,
a few preliminary benchmarking results will be presented to allow a first
evaluation of L4Linux/L4Env within the other version of L4Linux. Chapter 6







7


describes some issues for the future which still need to be done in L4Linux.
Finally, this document is completed with a summary.







8


2 Prerequisites and Related Work


This chapter gives an introduction to operating systems in general and to
the µ-kernel architecture in particular. Following this, the Drops [DRO02]
project and the relevant parts to L4Linux will be introduced. Furthermore
L4Linux in general is not a new project so that already available work will be
shown as well. Readers familiar with some or all sections presented in this
chapter may safely skip those sections or go straight to the next chapter.


2.1 Operating Systems


An operating system manages the resources of the hardware it runs on and
provides an interface to applications to use the resources of the system. Be-
sides that, it has to ensure that the programs running on the system are
protected from each other so that no program can interfere with others. The
resources available on the system need to be shared reasonably among the
programs. Currently two major paradigms exist in the operating systems
design. The first and mostly used one is the monolithic-kernel approach
where the kernel-provided functionality like hardware drivers or file systems
are run in kernel mode with all privileges accessible on a particular hard-
ware. As a consequence, a faulty file system implementation can harm the
whole system, for example by overwriting some important data structure in
memory, as no protections mechanisms exist inside the kernel. Additionally,
mostly due to their size, monolithic kernels have disadvantages in the areas
of security, maintainability and flexibility.


In contrast to the monolithic approach, the µ-kernel approach only runs
the absolutely necessary parts of an operating system in kernel mode at
the highest privilege level. These parts are usually handling of different
address spaces and threads, management of the physical memory and inter-
rupt handling. All other functionality like file systems or hardware drivers
are provided by programs running non-privileged in separate address spaces.
This way it is not possible that a faulty driver or file system implementation
can harm the system as a whole. For communication purposes between dif-
ferent address spaces the kernel provides an IPC mechanism. Additionally,
µ-kernels are easier to handle and maintain from a software-architectural
point of view as they are much smaller than traditional monolithic kernels
and much less prone to errors. The biggest penalty of µ-kernel based sys-
tems, compared to traditional monolithic kernels, is their performance. All
the modules have to communicate with each other by using IPC, which is
slower than communication in a single address space, but the additional
benefits in security and maintainability outplay the small performance im-
pact [HHL+97].







9


2.2 Microkernel Architectures


The µ-kernel paradigm is not new in itself. First steps where done within
the Mach project [ABB+86] at Carnegie Mellon University. Although Mach
did not have much success in the past it is used in some places like in the
Hurd project or in Mac OS X. It basically failed because the architectural
improvements could not outplay the dramatically poor performance of Mach
compared to other available systems.


In 1996, Jochen Liedtke developed a second generation µ-kernel [Lie96]. In-
stead of stripping down an existing kernel like it was done with Mach, he
designed a new µ-kernel interface, called L4, and provided the first imple-
mentation on the x86 architecture. The interface provides the minimally
required functionality only and allows to construct highly efficient and opti-
mized µ-kernels. Since then the original L4 API was developed further and
new APIs were created. The oldest version still in use is the V2 version of the
API. It is implemented in the original version developed by Jochen Liedke
and in the Fiasco [Fia02] µ-kernel developed by Michael Hohmuth [MH] and
others in Dresden.


Over the years a lot of experiences with the V2 API were gathered and L4
was ported to new hardware platforms. As the V2 API was initially devel-
oped for the x86 platform, it is not well suited for other platforms, as it puts
restrictions on the API which would not be necessary on newer platforms.
For example, newer platforms provide significantly more registers which can-
not be used reasonably by the V2 API as it is tailored to the few registers of a
x86 platform. Furthermore, research showed that some constructs in the L4
µ-kernel paradigm needed to be changed to overcome conceptual problems.
Consequently, new versions of the L4 API were developed. The successor of
the V2 API is the VX0 API and currently the VX2 API is being designed
and implemented. The VX0 API is implemented in the Hazelnut [Haz02]
kernel and the VX2 API will be implemented in the Pistachio [Pis02] ker-
nel. Both versions are developed by the Systems Architecture Group at the
University of Karlsruhe [L4K02].


Although the main development of L4Linux is done on Fiasco, L4Linux runs
on Hazelnut and Pistachio as well.


2.2.1 Available APIs on different hardware platforms


The µ-kernel s mentioned above were ported to or developed for different
hardware platforms. The current situation, which is interesting in the con-
text of L4Linux, is displayed in Table 1.







10


µ-kernel API Platform
Fiasco V2 X86, (IA64, StrongARM)
Hazelnut VX0 X86, StrongARM
(Pistachio) VX2 (X86, IA64, Power4, StrongARM)


Table 1: µ-kernels on different platforms interesting to L4Linux.


The platforms or µ-kernels in parentheses are currently planned or in an
early implementation phase and not yet available.


For a complete list, please refer to [L4I02].


2.3 Inside L4Linux


This section describes how L4Linux works internally but it will not go into
too much detail. For a deep coverage of the internals please refer to [Hoh96b].


L4Linux is an L4 application running in user space, providing a binary com-
patible environment where unmodified Linux applications can be run in.
However, L4Linux needs more privileges then an ordinary user space appli-
cation, mainly with respect to hardware access.


2.3.1 Hardware Interrupts


In the Linux kernel, interrupt handling is divided in two parts, top halves and
bottom halves. The top half is executed when an interrupt arrives, acknowl-
edging it and marking the corresponding bottom half for later execution.
The bottom half then does the actual work. This scheme ensures that inter-
rupts are blocked only for a short time, the execution time of the top half.
Furthermore, to ease synchronization, top halves can only be preempted by
other top halves, not by any other code (including bottom halves). Addi-
tionally, bottom halves can only be preempted by top halves, not by any
other code.


In L4, interrupts are delivered through IPC messages. To receive such a
message, a thread needs to wait for a specific interrupt by invoking the
appropriate IPC call. It is only possible to wait for one interrupt at a time.
Consequently, one thread per interrupt is used. The criteria which code can
be interrupted, can be solved easily by using static priorities of the L4 system.
In this case the L4 scheduler ensures that higher prioritized processes cannot
be interrupted by lower ones. This mechanism will not work unmodified on
SMP systems but as no stable multiprocessor capable µ-kernel exists up to
now the lack of SMP support is tolerable.







11


2.3.2 Scheduling


In a native Linux system the scheduler is invoked regularly. When it is
executed it decides which Linux process to run next. This decision includes
several factors like the priority of the process, the amount of previously
granted timeslices and its interactivity. L4 systems also have a scheduler
using static priorities. In L4Linux, all Linux processes have the same L4
priority and are scheduled by the L4 scheduler. The internal Linux scheduler
is only used when a task enters the L4Linux server. This approach has the
disadvantage that the Linux specific scheduling scheme (e. g. interactive vs.
long running job) cannot be emulated. “Preemption Handlers” are supposed
to solve this problem but unfortunately they are not implemented in any
µ-kernel at this time. If they get implemented, the usage in L4Linux will be
evaluated. Another approach to emulate the Linux scheduling would be to
continuously adjust the priorities of the tasks in such a way that the Linux
scheduling strategy can be enforced. Unfortunately this technique has not
been evaluated in detail nor implemented up to now.


2.3.3 Signals


In a UNIX like system signals must be delivered to user processes. Signals
are normally delivered when a user process returns to user mode after having
entered kernel mode. As discussed in the previous section, a user process only
enters the L4Linux server explicitly and not regularly in the timer interrupts
as it does under native Linux. This way it cannot be enforced that a signal is
delivered in a timely manner, furthermore it may happen that a user process
never enters the kernel. To solve this issue an additional thread within the
Linux process is introduced, which waits for signals and forces the user task
to enter the kernel to get the delivered signals. One signal thread per task is
needed since thread manipulations are restricted to threads in the same task.
The approach with the signal thread has the disadvantage that a malicious
user task could kill or modify its signal thread and so be unresponsive to
delivered signals. Nevertheless the SIGKILL and SIGSTOP signals have to
work even with these user processes and so they need special treatment.
The SIGKILL signal does not need any help of the user process and so the
process is killed straight away in the L4Linux server. The semantics of the
SIGSTOP signal is hard to achieve with the current model but will be solved
with the introduction of preemption handlers.


2.3.4 System Calls and Emulation Library


L4Linux is binary compatible to a native Linux so that Linux applications
can be run on L4Linux without modifications. When executing a system call,







12


Linux systems use an “int $0x80” call. In L4 systems this call generated an
invalid exception which is trapped by the µ-kernel and sent back to the thread
causing it. This exception is then received by a special emulation library
which is linked to every Linux program. It contains the necessary code to
enter the L4Linux kernel via IPC. This technique allows to use an unmodified
Linux user space environment with L4Linux. To avoid the exception and to
speed up system calls the user space can be modified to directly use the
L4Linux way of entering the kernel. In the usual environment only the C
library needs to be modified to enter the kernel directly via IPC.


2.3.5 Memory Management


Native Linux manages its physical memory itself, each port needs to pro-
vide an implementation if the page tables interface in Linux so that the
virtual address spaces of Linux can be managed. The L4 mechanism for
recursive address space construction is suitable to implement the memory
model needed by Linux. Pages handled by Linux need to be mapped to user
address spaces, they need to be revoked and page faults have to be handled.


On startup, L4Linux acquires a fixed amount of memory for itself and its user
processes. Then, this memory is handled by virtual memory management
of the Linux server. Additionally, in an L4 environment, every thread needs
a pager thread which deals with page faults. For L4Linux user tasks there
is a pager thread in the L4Linux server which does that. As the L4Linux
server itself uses the virtual memory management it can cause page faults
and therefore needs a proper pager as well. Because in the original version
of L4 tasks cannot map pages in their same address space a separate pager
task for the L4Linux server is needed. This task is called “ping pong task” in
L4Linux.


2.4 Drops


Drops is abbreviated for Dresden Realtime OPerating System. With the
Drops project the Operating Systems Group at the University of Dres-
den [OS02] pursues several goals. One goal is to deploy modern µ-kernel
architectures along with an environment for applications with quality of ser-
vice requirements and normal time sharing applications on the same system.
Within this scenario, L4Linux comes into play. On the one side Drops can
run native L4 applications which satisfy hard real time requirements and on
the other side has the ability to run a fully fledged UNIX environment with
unmodified Linux binaries.


The Drops system can currently be used with V2 (Fiasco) and VX0 (Hazel-
nut) µ-kernels.







13


2.5 Drops system basics


To get a Drops system up and running some prerequisites are needed. The
first is a boot loader which loads the µ-kernel and all other needed modules
into memory, preferably over a network, and finally starts the system. A
minimum of two modules are mandatory for L4 systems, the RMGR and
Sigma0. The Drops project uses a derived version of GRUB, the GRand
Unified Boot loader [GRU02]. In addition to loading and starting the system,
it sets the video mode for the Drops console (see Section 2.7.1).


RMGR, the L4 System Resource Manager, is a simple system resource man-
ager. RMGR is also used as a bootstrapper for the µ-kernel so that RMGR is
actually a two stage program. It acts as a pager for the tasks it starts and
additionally handles main memory, all interrupts and all task numbers. The
first stage loads the µ-kernel and the second one manages the resources.


The second module which is loaded besides the µ-kernel is Sigma0. Though
Sigma0 is a user task, it is an essential part of each L4 based system. It acts
as the root of the memory mapping hierarchy and firstly receives all memory
from the µ-kernel. Successive user supplied pagers implement the desired
memory management policy on top of it by getting memory from Sigma0
via the Sigma0 protocol.


2.6 L4Env


L4Env is a part of Drops and aims to provide a uniform interface to the
µ-kernel primitives used by programs. It is the goal of L4Env that programs
written for it are independent from the underlying µ-kernel. In an ideal world
it is even possible that the source codes of those applications are independent
from the underlying hardware platform as well provided they do not use any
hardware specific code. The functionality provided by L4Env is implemented
in server tasks and libraries which are linked to applications. Currently,
L4Env is available for V2 and VX0 µ-kernels.


L4Env includes a physical memory management server, a memory mapping
and thread management library, a naming service, an I/O server, an ap-
plication loader and execution system, a console and windowing system for
output, an input library and network support.


One goal of my work was to add L4Env support to L4Linux so that it can
be run as an L4Env application. This can be seen as a new API L4Linux is
ported to. As a result, L4Linux will support four different APIs, namely V2,
VX0, VX2 and L4Env.


Porting L4Linux to L4Env has several goals. Firstly, most important is the
evaluation of L4Env in the context of a large application which is intended







14


to run on different µ-kernel APIs. While working on L4Linux problems with
L4Env and its API will show up and can be discussed with the developer of
the corresponding L4Env module. Eventually, a solution needs to be found.
Secondly, once L4Linux is an L4Env application it can benefit from the L4Env
architecture, for example running on colored cache memory [LHH97], with-
out special support for these features in L4Linux itself. Thirdly, when L4Env
will finally be ported to all necessary µ-kernel APIs, support for the plain
µ-kernel APIs could be abandoned and the maintainability of L4Linux could
be improved. Further, L4Linux does not depend on a specific kernel interface
anymore, it is runnable on every system where L4Env is already working. The
downside of the L4Env approach is that it will be slower than the other ver-
sions of L4Linux since more IPC with L4Env components are needed, hence
all versions of L4Linux will probably survive. Some performance evaluations
between L4Env and non-L4Env L4Linux will be shown in Section 5.


In the next sections I will introduce some parts of L4Env which are used by
L4Linux.


2.6.1 File Provider


The file provider service is responsible for loading files from a TFTP server
off the net. It is currently implemented as a server which includes a TFTP
client and fetches the files on behalf of the clients calling the file provider. It
is used by the L4 Loader to load programs and by L4Linux to get its initial
RAM disk, if requested.


The server comes in two flavors. As a certain resource like a network card can
only be accessed by one program at a time, L4Linux with network support
and the L4 TFTP server would interfere with each other and make network
access impossible. To avoid this situation it is possible to replace the L4
TFTP server with a version running as a Linux process using the Linux
infrastructure for network access.


2.6.2 L4 Loader


The L4 Loader is a server which starts and stops programs. Programs can
be loaded at any time and not only on the startup of the system. They are
loaded into their own virtual address space and are not directly mapped to
the physical memory as it has to be done when loading programs with RMGR
only. This avoids the situation where multiple programs overlap when loaded
into the system and need to be recompiled with another link address.


Furthermore, the L4 loader provides a shared library against which the L4Env
applications are linked when loaded, avoiding that every application has
to be linked statically with the some of the basic libraries and needs to







15


be recompiled if the library changes some of its internal code. The loader
retrieves the programs with the help of the file provider mentioned above.


Old applications which are linked to certain static addresses are also sup-
ported by the loader with the same restrictions they always had. In case
such an old style application needs any additional modules the loader loads
those as well. This can be the case when a non-L4Env L4Linux needs a RAM
disk to run on. The documentation of the L4 Loader is available online
at [Meh02].


2.6.3 dm_phys


dm_phys is short for L4Env Physical Memory Dataspace Manager and man-
ages all the physical memory of a system. It is an implementation of a data-
space manager [APJ+01]. Other implementations which provide different
features such as paging or “copy-on-write” memory or use other techniques
regarding memory management may be developed in the future. Please re-
fer to the online documentation at [Reu02c] for further details. The L4Env
version of L4Linux uses dm_phys to get memory from the system.


2.6.4 Region Mapper


L4RM, the region mapper, manages the virtual address space of a task by
maintaining a region map, which contains mainly the information which
virtual memory region is managed by which data space manager. It is im-
plemented as a library which is linked to the application. The region mapper
fulfills two purposes. It is the pager for all threads within a task and handles
page faults by issuing map calls to the dataspace manager associated with
the particular page fault address. The other purpose is virtual memory allo-
cation, L4RM has to be used for to obtain virtual memory. For details please
refer to the online manual at [Reu02a].


2.6.5 Thread Library


The thread library provides a uniform interface for thread handling and
some other miscellaneous functions that are independent from the underly-
ing µ-kernel. It considerably eases the handling of threads for application
programmers, for example by implementing often used code for thread cre-
ation and stack handling. Furthermore the library makes the program more
portable across different µ-kernels. The Thread library will be used for the
kernel threads in L4Linux. For more information please consult the online
reference manual at [Reu02b].







16


2.6.6 Task server


The task server creates and kills tasks as well as manages all or a certain
amount of tasks in a system. Every program which wants to create a task
needs to get the right to do so from the task server. In L4Linux, the task
server will be used to manage user space tasks.


2.6.7 L4IO Server


The I/O server occupies all PCI memory regions as well as all interrupts.
It then hands out those resources to other programs on request so that
multiple programs cannot access the same resource in parallel and usually
hardly detectable errors due to incorrect hardware access can be avoided.
For further details please refer to the online manual at [Hel02].


2.7 Other Components


The following two components are not parts of the L4Env suite but are used
in the L4Linux context so that they are mentioned here.


2.7.1 Drops Console


Running multiple programs in parallel in a multi tasking environment re-
quires a possibility to give every program a separate input and output chan-
nel. The console provides a graphical virtual console system giving every
program its own console for output and input. Users can switch between
every console with a key combination. Only one console can be displayed
at any given instant. To support the application programmer a library pro-
vides the access the console server. More information can be obtained online
at [HM02].


2.7.2 DOpE Windowing System


The DOpE is quite equal to the console system except that it provides a
windowing system which is able to display multiple console windows at a
time similar to common window managers used in the X Window System.


2.8 History of L4Linux


L4Linux is one of the oldest and most long-standing projects at the Op-
erating Systems Group in Dresden. It was initially started by Michael







17


Hohmuth [MH] and Jean Wolter [JW]. Michael Hohmuth has written his
Diploma thesis about the work done on the initial L4Linux port [Hoh96b].
This work was done with Linux version 2.0. Later when Linux 2.2 had been
released, L4Linux was ported to it by the same people. After the initial work
the maintenance on the 2.2 tree was done by Frank Mehnert [FM]. Later
revisions were done by me [AL].


The initial work on the Linux 2.4 port was done by Volkmar Uhlig [VU]
to have a multi processor capable testing application for an SMP µ-kernel.
After the first porting efforts the main work was handed over to me. While
this work was developed, Volkmar Uhlig contributed the VX2 adoption to
L4Linux so that L4Linux also runs on VX2 µ-kernels.







18


3 Design


This section covers the goals of my work and how they are accomplished. It
will go into detail on the directory structure layout, the introduced L4Linux-
internal abstraction layer and some other issues.


3.1 Internal Abstraction Layer


In contrast to previous L4Linux versions, L4Linux-2.4 is targeted to at least
four APIs as well as multiple different hardware platforms1. Table 1 on
page 10 contains a list of different µ-kernel currently available. To be pre-
pared for the upcoming porting efforts, the L4Linux source code tree layout
needs to be put in a proper shape so that new ports can easily plug in the
code they need to modify and reuse as much as possible of the generic code
without scattering API specific code into generic code and defacing the code
with #ifdef statements.


The currently used L4Linux-2.2 was originally targeted at V2 L4-µ-kernels
only and thus µ-kernel specific calls were directly put in the code. Now,
if L4Linux should run on multiple different L4 APIs and multiple hardware
platforms those specific calls have to vanish from the generic code. The code
has to be split into a generic part which handles functionality every version
of L4Linux needs to have. µ-kernel specific parts have to be extracted from
the old code and put into a separate place, ideally a library.


This library then needs to provide an API which allows to implement the
µ-kernel dependent code in a way it fits for every µ-kernel and is generic
enough for the other parts of the code.


Parts of L4Linux, which can obviously be put into a separate library, are
task and thread management. In this case the API can be designed in the
spirit of the threadlib and the task server from L4Env. Of course, the specific
parts of the library can also implement additional functionality needed by
L4Linux if that is useful. Ideally, in the L4Env case, the library should only
be a wrapper to the appropriate L4Env functionality. That of course means
that the L4Linux internal library reimplements some parts from L4Env for
other APIs.


Furthermore, the library will be written in a way that it could be used across
different L4Linux version like L4Linux-2.2 or future L4Linux versions. It will
use generic Linux functionality like kmalloc and will depend on L4 as well
as L4Env. It is not planned to make the library dependent on the L4 specific
part of L4Linux.


1Currently only the X86 platform is used but others are planned.







19


For the documentation of the latest version of the library please have a look
at [Lac02].


The following sections will explain the task and thread parts of the library
in more detail.


3.1.1 Tasks


The handling of L4 tasks is quite different in V2/VX0, VX2 and L4Env so
that it makes sense to split this code and put it into the library. The different
characteristics describe as follows:


V2/VX0 In a V2 or VX0 environment tasks are either created through
RMGR or directly using the appropriate L4 system call.


VX2 Using a VX2 µ-kernel the tasks are created directly.


L4Env All tasks in the system are handled by a task server.


The library needs to provide the following functionality for L4Linux regarding
tasks:


• Allocate a task number.


• Create a task with a previously allocated task number.


• Delete a task.


• Free a task number of an idle task.


• Setup (two) threads for each user task.


• Keep track of used/free tasks.


For V2, VX0 and VX2 a simple bit vector is used to keep track of free and
used tasks. In the V2 and VX0 case the vector is initialized by querying
RMGR for used tasks, reserving free tasks for later use and storing the avail-
ability status in the bit vector. Theoretically, the vector would not be needed
as RMGR could be asked every time a task needs to be created. This had the
additional benefit that no tasks need to be reserved in the L4Linux startup
and thus would be available to other L4 applications as well. Unfortunately
the communication with RMGR places an additional overhead on every task
creation and deletion so that the solution with the bit vector promises better
performance. When using L4Env we cannot maintain a vector for the tasks,
as we have to communicate with the L4 task server for task handling. This
way we can run other L4Env applications besides L4Linux (such as other
L4Linux instances) without restricting every L4Linux instance to a too small
window of possible task IDs.







20


3.1.2 Threads


The thread handling is another part of L4Linux which can be factored out into
the library as it is quite independent of other L4Linux parts and dependent
on the underlying µ-kernel or system. Only kernel internal threads (e. g.
interrupt threads) are handled by the library. The different ways of handling
threads describe as follows:


V2/VX0 Threads are created and destroyed directly using the
l4_thread_ex_regs L4 system call. It can be configured whether
thread priorities are set directly or with the help of RMGR.


VX2 As there is no resource manager in the VX2 environment, all threads
handling is done directly via the appropriate µ-kernel system calls.


L4Env In a L4Env system threads are handled through the threadlib, no
direct communication with the µ-kernel itself is needed.


Before the library was used within L4Linux, every thread creation in L4Linux
hand coded, including the allocation of memory for the stack of every thread.
As the scheme of the thread creation was almost always the same, the stack
handling has also been included in the library. Doing a uniform stack han-
dling implies that every stack has the same size which may waste memory
in certain cases. As the stack needs to be available from the beginning, it is
located in the BSS segment of the L4Linux server itself.


To summarize, the library needs to provide the following functionality:


• Start a thread with a given thread ID or with an unspecified one, in
which case the library has to find a free one.


• Destroy a thread.


• Set and get the priority of a given thread.


• Compare two thread IDs for equality.


The stack handling is quite similar among the different implementations,
so this will be implemented in a generic part and used from the specific
implementations.


3.2 Directory structure


A rather minor issue but also an important one for the further development
of L4Linux is the directory structure of the source tree. Separation of generic







21


and special code should also be reflected in the directory structure. This
becomes even more important when ports to other hardware platforms are
added to the tree. The tree should be prepared for such code integrations.


Additionally the L4Linux port should follow the common rules for Linux
ports so that different and common code parts between the L4Linux port
and the port from the L4Linux port originally derived can easily be found.
It is more easy to track changes in the original linux tree in this case as well.


3.2.1 Implementation Files


For the above mentioned reasons it makes sense to have ’kernel’, ’lib’
and ’mm’ directories in the ’arch/l4’ directory. Those directories contain
the code which implements the functions every port has to supply for the
rest of the kernel. For an older version of this API refer to [Hoh96a], an up
to date version is currently not available but may be created in the future.


Library Implementation The files implementing the library go to ’arch/l4/l4lxlib’.
This directory then contains subdirectories for implementations the library
contains. They are named after the µ-kernel API they implement, so that
usually means V2, VX0, VX2 and l4env are used. Each of these implementa-
tion directories then contains the code which implements the library API. It
is advised that even the main file names are the same so that one can easily
navigate through the different implementations.


To summarize, the layout of the ’arch/l4’ directory is shown in Figure 1 on
the next page.


boot,emulib,kernel,lib,mm contain the functionality every port has to
provide for the kernel to work. As the code in the ’emulib’ directory
is API specific it is likely that the code in this directory will be moved
to the appropriate library directory and the directory is removed.


arch-<ARCH> Those directories contain platform specific code, for example
assembler or special initialization code.


l4lxlib This directory contains a subdirectory for every API the L4Linux
internal library supplies code.


3.2.2 Header Files


The layout of the ’include/asm-l4’ directory is shown in Figure 2 on
page 23.







22


arch/l4 boot
... emulib


kernel
lib
mm
...
arch-x86
arch-ia64
arch-ppc
...
l4lxlib V2
. . . VX0


VX2
l4env


Figure 1: Layout of arch/l4


include/asm-l4 This directory contains auto generated header files which
include the appropriate header files with the same file name from
’include/asm-l4/ arch-<arch>’. If this file does not exists, the
header file from ’include/ asm-<arch>’ is included. This schema en-
sures that header files which can be taken unmodified from the appro-
priate ’asm-<arch>’ directory need not to be copied into the ’asm-l4’
directory, they are “copied” at build time.


l4linux The ’l4linux’ directory contains generic header files which are
not special to any architecture or API version.


api-generic The ’api-generic’ directory could contain code which is not
generic to all APIs but where code duplication across similar APIs can
be avoided (e.g. the V2 and VX0 API are quite similar). Architecture-
dependent code should be placed in appropriate ’arch-<ARCH>’ di-
rectories. The file names in this directory should be considered as
well. They should be prefixed with an API specific string, for example
’v2vx0_’. If files with the same prefix get more they should be moved
to a directory named as the prefix. Then the prefix of the files must
be removed.


api-<API> The ’api-<API>’ directories contain API specific code and when
needed subdirectories for specific architecture dependant code (e.g. C-
Bindings).


api-l4env L4Env is in fact another API but due to the design of it, no archi-







23


include/asm-l4/
... l4linux


api-generic
api-V2
api-VX0
api-VX2


arch-x86
arch-ia64
arch-arm
. . .


api-l4env
. . .
arch-x86
arch-ia64
arch-ppc
. . .
l4lxapi


Figure 2: Layout of include/asm-l4


tecture dependant subdirectories are necessary. Ideally, this directory
only contains header files which wrap the appropriate ones in the L4
directory.


arch-<ARCH> The ’arch-<ARCH>’ directories in the ’asm-l4’ directory con-
tain architecture dependent code which was modified from the appro-
priate version in ’include/arch-<ARCH>’. They are included from the
auto generated header files under point 1.


l4lxapi The ’l4lxapi’ directory contains the header files for the L4Linux
internal library and thus the definition of the API of the library.


3.3 Using L4Env


Up to now L4Linux runs directly on the µ-kernel which means that it must
be aware all the different APIs those µ-kernels provide. L4Env provides
a consistent view to the underlying system an L4Env application runs on.
Furthermore it already implements often used functionality which relieves
programmers from writing often needed code again and again. Other parts
manage the resources of a system so that they cannot be used in parallel by
different programs, not knowing anything about each other.


The goal is to add a port to L4Linux which does not run on a specific L4







24


µ-kernel but on L4Env. This has several benefits in comparison to the tradi-
tional L4Linux approach:


• Through the usage of dm_phys it is possible to use specially prepared
memory like cache colored memory or even paged one. The way how
dm_phys or any other dataspace manager works is completely trans-
parent to L4Linux so that the type of memory used for L4Linux can be
changed without changing L4Linux itself. One just replaces the used
dataspace manager with another one.


• Run multiple L4Linux instances in parallel without the need to do spe-
cial hacks (e. g., link every instance to another address). This can be
useful for security architectures, for example run special applications
which need superuser privileges in their own Linux environment. An-
other use could be the migration of user space applications to another
L4Linux instance to exchange the currently running L4Linux with a
newer version. These migration techniques are still the subject of cur-
rent research. See [SMi02] for the project page.


• Be independent of the underlying µ-kernel. Ideally, only L4Env needs
to be ported to any new µ-kernel architecture and L4Linux would run
unmodified or with very little effort on this new kernel. To accomplish
this goal the internal library needs proper abstractions and all used
L4Env parts need to be examined if they can be used on all µ-kernel
APIs.


• Use the existing infrastructure already provided by L4Env.


• Proof of concept: See if the API and functionality of L4Env is sufficient
to use it for a big application such as L4Linux.


• Does L4Env provide the full functionality of the underlying µ-kernels?


In addition to the specific parts addressed shortly, the L4Env support in
L4Linux needs another entry code as the traditional L4Linux. L4Env appli-
cations are expected to have a main(int, char **) function with the usual
two parameters for the arguments which a traditional L4Linux does not have.
Fortunately this alternative entry code is rather small.


3.3.1 dm_phys


Originally L4Linux runs directly on the memory provided by Sigma0 and
maps it one to one to its virtual address space. The information which
section of memory to take for L4Linux is taken from the BIOS in the same
way as a native Linux does. When using dm_phys (see 2.6.3 on page 15) we







25


simply allocate a region of memory and give it to L4Linux in the same way as
the BIOS memory. As a result, L4Linux believes it has its “physical” memory
mapped one to one to its virtual memory although in reality this memory
comes from wherever dm_phys or any other dataspace manager takes it. This
also means that L4Linux still gets a fixed amount of memory on startup of
the kernel.


3.3.2 Task server


Each L4Linux user task is encapsulated in a separate address space which
has to be created, managed and destroyed. In a L4Env system this is done
by a task server. It offers an interface for task management. As a result
L4Linux will create and destroy tasks through the task server. The usage of
the task server will be implemented in the internal L4Linux library.


3.3.3 Threads


In the L4Linux server a lot of threads are used for various tasks, for example
for every interrupt in use an interrupt thread is assigned. All these threads
need space for their stacks and need to be set up. As mentioned in Sec-
tion 3.1.2 on page 20 the internal library implements this functionality for
the various µ-kernels and for L4Env. In the L4Env case the library imple-
mentation is rather a wrapper for the functionality provided by the threadlib
as it offers a nearly identical interface.


3.3.4 L4IO Server


The I/O server handles all device memory for memory mapped I/O as well as
all interrupts. Certain device drivers need memory mapped I/O to commu-
nication with their hardware. Without L4Env L4Linux makes this memory
available by adding page table entries to the physical memory itself. In an
L4Env system the I/O server is used for this purpose.


3.3.5 DROPS console/DOpE support


L4Linux with or without L4Env can either run with the normal textual or
serial output or display its output on a console of the DROPS console system.
To output something L4Linux has to communicate with the console server.
This is done with a driver which is plugged into L4Linux either statically or
as a Linux module. Through this code a virtual console is opened and the
console output of L4Linux is redirected to the console server. The code of this
module was originally developed for L4Linux-2.2 by Frank Mehnert [FM] but







26


with a slight adaptation it can also be used for L4Linux-2.4. This adaptation
mainly consist of some code changes for the L4Linux internal library and
some modifications to the Linux console code since there were some changes
between Linux 2.2 and 2.4. Furthermore, to support DOpE, some further
changes to the Linux module and to DOpE itself had to be done.


With this DROPS console driver module and a special driver module for
the XFree86 X server it is also possible to run the X Windows System in a
console window.







27


4 Implementation


In this section I will explain some aspects of the implementation work I did.
To reiterate, L4Linux-2.4 was not initially ported by me but when I adopted
the code lots of adaption, bug fixing and clean ups needed to be done to get
it in a usable shape. Some of the fields I worked on were:


• Make the V2 µ-kernel API part work, as the initial work was done
using a VX0 µ-kernel.


• Initially sending signals to user space applications did not work (reli-
able) and needed fixing.


• The interrupt handling code was modified to resolve some issues like
auto probing.


• The kernel was brought up to date with the main line kernel tree
multiple times.


• Various other small bits and pieces which are too small to be mentioned
here.


Besides the actual work on L4Linux itself, some work had to be done on
various Drops components as well. To use the L4 IO server in L4Linux, the
Drops console also has to use this server as it needs to access the video mem-
ory and the I/O server allocates this resource beforehand. As a consequence
L4IO support for the console system was added.


Another problem was that initially the L4IO server did not map I/O memory
correctly so that certain graphic or network interface cards did not work. I
removed this deficiency as well.


Solely for documentation purposes a console snapshot program for L4Linux
was written which takes screenshots of Drops consoles.


4.1 Internal Abstraction Layer


The internal abstraction layer was mostly implemented as described in Sec-
tion 3.1 on page 18. Up to now I implemented the task and thread func-
tionality which is being used within L4Linux and the currently used external
modules. Common code which could be shared among different implementa-
tions was put into appropriate generic directories so that code duplication
could be mostly avoided.


The next subsections will show some details on task and threads and will
describe some problems with L4Env or the L4Env-API respectively.







28


4.1.1 Tasks


In a non-L4Env system, L4Linux allocates a predefined number of tasks, usu-
ally all tasks available in the system. These tasks are then only usable in
L4Linux.


This approach cannot be used with L4Env because it must be possible to
run other applications besides L4Linux. Those other applications, which can
even be other L4Linux instances, need to be able to create tasks as well. It
would be possible that every application which needs to create tasks gets a
fixed amount task numbers but obviously this approach is really inflexible
and needs an explicit configuration to be adjusted to the local setup. Con-
sequently, a central entity needs to handle the tasks for all applications in
the system. Two possible solutions were considered for this.


In a first implementation, RMGR was used as a task server. This was quite
uncomplicated except that the RMGR_TASK_FREE function of RMGR which
had to be implemented in RMGR itself first. This function should have been
available looking at the interface of RMGR but was probably not imple-
mented because it was not needed up to now.


The RMGR approach was finally discarded as it is planned to discontinue
the use of RMGR, though slowly. Instead, applications running with L4Env
should use the L4 task server for their task handling. To make that work,
the L4 task server needed some modifications to support the allocation and
deallocation of task numbers independently of the actual creation and dele-
tion. This is for example needed in cases where the creation of a task fails
and a previously allocated task number needs to be freed again or where the
task number needs to be known before the task is created. Knowing the task
ID before the creation of the task is needed to set up the environment of the
task prior it is started.


Furthermore, the task server of L4Env exhibits a disadvantageous format of
its abstract task type. Instead of being independent from the various L4
APIs, the l4_ts_taskid_t type is a normal V2 l4_threadid_t type in the
current implementation. Consequently, the client needs to know about that
to work with this type of variables. In the future, a more generic type has
to be introduced, mainly also looking at the VX2 interface.


4.1.2 Threads


Besides the actual thread management like thread creation or deletion, a
stack handling mechanism had to be implemented. Another problem was to
have a possibility to transfer some data to a newly created thread. This was
solved by codifying the layout of the thread function as follows:







29


void thread_func(void *data);


The data pointer points to a piece of memory where the parent thread can
put data and the child thread can receive it. To avoid races and to guarantee
that this memory is always available it is stored on the stack. As the stack
is usually 8 KByte in size this implies that the size of the memory pointed
to by the data pointer is below that. This memory and the normal stack
usage have to fit in the whole stack memory.


Getting Thread IDs There is another optimization which was considered
for V2 and VX0 environments. The l4_myself() system call is called away
relatively often throughout the kernel, so it makes sense to optimize it away.
This is done by putting the thread ID of each thread on the top of the stack
when creating it. Getting the thread ID is then a simple operation, one just
gets the current stack pointer and delivers the thread ID from the top of
the stack. No system call is needed anymore for this task. L4Env and VX2
systems already implement a fast way to access the thread ID so that this
optimization is not used in these cases.


Created threads must not rely on the layout of the stack, which means that
in future versions of the library the data memory may be in a completely
different place.


Stack Allocation The stack memory for the threads is generally handled
by the L4Linux itself, except for the L4Env case where the threadlib provides
such functionality. In L4Linux, some threads are created very early in the
boot process of the kernel which makes it necessary to have the stack memory
available before any kernel internal memory handling is set up. Therefore,
all stacks are placed in the BSS memory where the amount of stacks and
their size can only be configured at compile time.


Through this approach, the stack memory is easily available but a lot of
memory is wasted as well. Theoretically, L4Linux may use all interrupts of a
system it runs on and so needs a stack for every interrupt thread. There can
be up to 16 interrupts in the system (with the use of the IO-APIC of modern
systems even more) so L4Linux needs to be prepared with enough stacks at
compile time. But usually, only very few interrupt threads are actually used
and so lots of memory is wasted.


To prevent this wastage, the thread allocation mechanism will be divided
into two parts in a future version of L4Linux. The first part uses BSS allo-
cated stacks, the second part will supersede the first part when the kernel
memory management is set up and use the kmalloc function for memory
allocation. Memory allocated by kmalloc is continuous and fulfills the same







30


requirements as the BSS memory. When this technique is used, stack mem-
ory is usually allocated through kmalloc and only very few stacks need to be
in the BSS memory because they are needed before the memory management
was set up.


To illustrate, the stack layout for non-L4Env system is displayed in Figure 3:


Stack growthStack
bottom


Stack
top


TIDData for
the thread


DPRA


ESP


ESP ... Stack pointer for the new thread.
RA  ... Fake return address.
DP  ... Pointer to the data memory (function parameter).
TID ... Thread ID of the new thread.


Figure 3: Stack layout of a non-L4Env thread


Thread Data Another minor problem occurred with the threadlib in con-
junction with the data pointer which is given to thread functions [Reu02b].
The threadlib provides only the data pointer and the thread creator, the
thread itself is expected to appropriately handle the memory that the data
pointer points to. In the L4Linux mechanism, where the data is being put
onto the stack, the creator of the thread can use its own memory right after
it called the thread creation function as the actual data was copied to a safe
place. Likewise, the created thread can access this memory every time as it
is in its own memory.


When using the threadlib, the thread creator needs to allocate memory for
the data it wants to give to the new thread and this memory may not be
freed until the created thread is completed or the creator is informed by the
created thread that it is safe to free this memory or use it for other things.
The threadlib provides a one time call back mechanism which can be used
for this purpose but is generally not needed in L4Linux. Instead, in the
L4Env case, the data will be copied to a separate memory when the thread is
created. For this purpose the kmalloc stack mechanism will be used which
is described before. Additionally, when using kmalloc, only the needed size
of memory will be allocated and not memory of the whole stack size as in
the BSS case.







31


Dynamic Thread IDs Additionally it is planned to remove support for
statically assigned thread IDs. Originally, L4Linux only had static thread
IDs because dynamically chosen ones were not needed at that point. Later,
the dynamic approach was implemented and used side by side with the static
one. Using both variations needs preallocation of thread IDs and poses other
problems in conjunction with the threadlib where free IDs are hardly known
beforehand. Therefore, I will convert L4Linux to a dynamic only thread ID
scheme in the future as statically allocated thread IDs have no real need. The
one benefit of them, the static relation of the a thread with a fixed number
which helps debugging, will be replaced by a mechanism which maps thread
IDs to names. With the help of the names one can find a certain thread IDs
quite easily.


One other minor problem is that although the threadlib provides “sleep” func-
tions it does not provide one to suspend a thread or to sleep forever. Such a
function can be easily added to the threadlib.


4.2 Directory Structure


Currently the directory structure looks like designed in Section 3.2 on page 20
but not everything was implemented and some modifications were made.


Firstly, architecture dependent code was not extracted from the generic code
and put into a separate architecture directory. It has yet to be shown how
multiple architectures work out in the L4 directory of L4Linux. These deci-
sions should be made when an actual port to another architecture is planned
or in progress.


Secondly, as the V2 and VX0 API are nearly equal they were put into the
same directory. In this case the contamination with #ifdef statements is
minor compared to the code duplication otherwise. Furthermore “generic”
directories were introduced to host code which can be used by multiple imple-
mentations of the library. This helps to avoid code duplication and improves
maintainability of the library. The generic part of the library is documented
in the same way as the other parts, the online version of the documentation
can be found at [Lac02].


4.3 Integration of L4Env support


The port of L4Linux to L4Env was accomplished by taking the V2 part of
L4Linux as a source and modifying the code step by step by replacing V2 code
with the code for L4Env. This method makes it possible to have a working
kernel nearly all the time and helps developing, testing and debugging a lot.
In the current state, the L4Env port of L4Linux only runs on V2 and VX0







32


µ-kernels as the generic code has not been modified completely. As L4Env is
only available for V2 and VX0 µ-kernels so far, the complete independence is
not that important right now. Nevertheless it should be the aim to make the
L4Env port independent of the underlying µ-kernel. Furthermore it should
be mentioned that the L4Env port should run on a VX0 µ-kernel but this
was not tested as all the needed L4Env modules need to be recompiled for
VX0 and there was not enough time for this up to now.


4.3.1 dm_phys


As already stated in Section 3.3.1 on page 24, dm_phys memory replaces
the traditional physical memory in L4Linux. With this replacement there
is one difference with respect to drivers. The physical memory in L4Linux
used to be mapped one to one to the virtual kernel memory and drivers could
simply access their hardware without any translation. Now, with a dataspace
manager like dm_phys, the relation between physical and virtual memory is
not one to one anymore so that a physical address needs to be calculated
from the virtual one. dm_phys offers a function to get the offset of a virtual
to a physical address. As the memory from the dataspace manager may
be noncontinuous this offset is not a simple value but a table to continuous
memory regions with their own offsets. This translation was implemented
by modifying the virt_to_phys and phys_to_virt functions of Linux.


Using non contiguous physical memory places a problem with the DMA us-
age within Linux. Theoretically it may happen that a driver within Linux
requests a DMA memory region which is not fully covered by physical mem-
ory as the dataspace manager may split it into several parts. L4Linux does
not know about that and assumes its memory is contiguous. There are sev-
eral ways to handle the situation. The first and most convenient way is to
only request contiguous memory from dm_phys so that the physical memory
is not split into parts. This has the drawback that the system may not have
the requested memory as a contiguous chunk so that L4Linux cannot run
although the needed memory would be available in the system. Another
way could be to split the memory from dm_phys in the same way the physi-
cal memory is so that L4Linux itself knows about it. This solution requires
some more changes and could be implemented at a later point. The last
possible solution would be that L4Linux does not need to use DMA capable
memory at all. Using DMA memory within secure systems is questionable
anyway since malfunctioning or malicious hardware may write anywhere into
the memory. Furthermore it is envisioned within Drops that L4Linux does
not need to access any hardware directly but will use services offered by L4
servers which access the hardware. Unfortunately, developing drivers is a
time consuming and error prone job and so not many drivers for L4 systems
exist up to now. Nevertheless more and more drivers for the Drops project







33


are developed which may change the situation in the future, at least for com-
mon hardware. Finally, the first solution was taken as it is the easiest for
now.


4.3.2 L4IO Server


The L4IO server provides access to device I/O memory as well as hard-
ware interrupts [Hel02]. Currently, L4Linux only makes usage of the device
I/O memory features of the L4IO server. This was done be modifying the
ioremap and iounmap functions to call appropriate functions in the L4IO
server. The interrupt features in the server need to be disabled so that
L4Linux can use them itself. Support for L4IO hardware interrupts is planed
for a later stage.


4.4 Tracing


Another currently ongoing project at the Operating Systems Group is the
tracing of the Fiasco µ-kernel as well as the user space applications running
on it. Regarding the µ-kernel itself events like context switches and interrupt
are interesting. User level programs can focus on function call traces, system
calls, IPC as well as communication relationships.


L4Linux was chosen as a test object for the tracing project since it is quite
big and complex compared to other applications and was likely to trigger
bugs in the tracing tools.


The most interesting part of these tests were the function call traces from
L4Linux. To get the traces every function of the Linux kernel needs to be
instrumented with special enter and exit function. The GNU C Compiler
provides the “-finstrument-functions” option for this purpose. The code
for these functions is provided by the tracing project in form of a library
which is linked to the application. The only code which needs to be written
especially for L4Linux is the provision of memory for the trace buffers. This
is a bit complicated as the memory is needed very early in the boot process
and thus kernel internal memory functions cannot be used. Furthermore, all
functions which are used within the tracing library must not be instrumented
by the compiler. Using kernel internal memory functions would require that
all functions called directly or indirectly need a tag that they are not instru-
mented. Additionally, the memory needs to be aligned in a certain way. The
current solution adds some code to the memory initialization of Linux and
takes away the needed buffers. Every thread within L4Linux needs its own
trace buffer. Another place for the trace buffers could be the BSS memory
but this was disregarded because the buffers can be megabytes big.







34


The next problem occurs when compiling the kernel. extern inline func-
tions do not have code for the pure function and thus a pointer to such a
function is not resolvable when linking. But this is needed for the enter and
exit functions. To solve this issue, every extern inline function needs to be
converted to a static inline function. This conversion is done by a script
on a copy of the L4Linux source. The script originated from the “Linux Trace
Toolkit Project” [LTT02] which aims to trace the Linux kernel as well but
in a different way.


When running a tracing enabled L4Linux, the gathered data is transmitted to
another host via the log server. Currently it has to be minded that L4Linux
is not allowed to use the same network card as the log server as they would
interfere with each other. This situation will hopefully be resolved in the
future. When the tracing data is available on the other host, it has to be
converted by several tools until the result can be used as an input file for
the VAMPIR tool [VAM02]. VAMPIR is used to visualize the function call
traces as well as other data which can be retrieved from the gathered data.


Finally it can be said that the tracing tools still need some enhancements as
an instrumented L4Linux produces a huge amount of trace data in a short
time. When the data is displayed within VAMPIR it is quite hard to navi-
gate through it and find interesting parts. The tools need some mechanism
to filter out most of the information to concentrate on the essential parts.
Furthermore, VAMPIR showed some instabilities with big input files which
further hinder the work with the trace data.







35


5 Performance Comparisons


This chapter will present some performance related figures comparing dif-
ferent versions of L4Linux. These figures will only give a rough idea, as not
enough time was available for extended testing. For example, only Fiasco
was used, other µ-kernel s could also be evaluated and compared.


5.1 Scenario


The benchmarking scenario looks as displayed in figure 4.


L4Linux 2.4 V2L4Linux 2.2


Linux 2.2 Linux 2.4


L4Linux 2.4 L4Env


4


1 2


3


Figure 4: Benchmarking scenario.


1. Compare Linux 2.2 with L4Linux-2.2 to have results to compare L4Linux-
2.4 against.


2. Compare Linux 2.4 with L4Linux-2.4 compiled for V2. These results
can be compared with the results from the first benchmark.


3. Compare the results for L4Linux from benchmarks one and two against
each other. This will show how much better or worse L4Linux-2.4 is
compared to L4Linux-2.2.


4. Additionally benchmark L4Linux-2.4 for L4Env (under V2) to see what
the additional layer L4Env costs for the performance of L4Linux.


5.2 Benchmark


The benchmark consists of a small program measuring CPU cycles for certain
tasks. One is a system call, getpid(), the other is a fork() which creates a







36


child and thus a new task. The most interesting part of the comparison is the
difference between the V2 and the L4Env variant of L4Linux-2.4. The values
were measured on a Pentium Pro processor at 200 MHz and are displayed
in Table 2. While measuring the system was idle otherwise and the figures
are the average of 5,000,000 calls of getpid() and 5,000 calls of the fork()
code block. All Linux versions have been compiled with the same version
of the build tools (C compiler, binutils). They also have been configured
in the same way as much as possible. Furthermore, no special optimization
were done to any component although that would be possible, for example
the trampoline code for system calls could be avoided by modifying the C
library [BHWH97].


Linux version getpid() fork()
Linux 2.2.22 370 91,145
Linux 2.4.19 377 102,123
L4Linux 2.2.22 2,049 994,508
L4Linux 2.4.19 V2 2,078 1,022,591
L4Linux 2.4.19 L4Env 2,133 1,084,195


Table 2: Benchmarking results showing CPU cycles.


5.3 Results


Comparing plain Linux versions shows that Linux 2.4 is a bit slower than
Linux 2.2, both for the plain system call as well as for the fork code. These
observations have to be considered when comparing the different L4Linux
versions.


Linux 2.2.22 and L4Linux 2.2.22 were measured to get a basis for L4Linux-2.4
and to see the tradeoff in an existing and stable version of L4Linux. Looking
at the getpid() case, one can see that L4Linux-2.2 and L4Linux-2.4 V2 only
differ in a few cycles but the native Linux version also differ a bit, so that
may be a correlated behavior. The same argumentation may apply to the
fork() case where the native versions differ by about 11,000 cycles and the
L4Linux versions by 28,000. The most interesting part of the measurements
are the differences of the V2 and the L4Env version of L4Linux-2.4. In both
cases the L4Env version is a bit slower which is mainly the tradeoff introduced
by the additional L4Env components. The slowdown of the getpid() case
cannot be explained reasonably up to now as no L4Env component directly
influences this path, the fork() slowdown is because of the task server and
other introduced parts. Overall, these figures need more investigation to find
out why they differ and how to lower them. Nevertheless, the differences
between L4Linux-2.4 V2 and L4Env are in the expected range so that the
L4Env approach of L4Linux can be seen as feasible.







37


5.4 Future Benchmarking


As the measurements in the previous sections were only small, other bench-
marks need to be done in the future. These benchmarks can cover several
areas:


• Use other µ-kernels like Hazelnut [Haz02] or Pistachio [Pis02].


• Use different processor models like Pentium 3 and Pentium 4 as the
Pentium 4 implements some functions in a different way than previous
Pentium models.


• Use a modified C library which directly sends system calls to the
L4Linux server instead of using the trampoline code.


• The Fiasco µ-kernel can be optimized in various ways.


• Implement sysenter and -exit support in L4Linux to speed up L4 system
calls.


All the data gathered under the different mentioned points can then be
compared to each other and conclusions can be drawn.







38


6 Prospective Work


L4Linux is one of the most important parts in Drops and lots of work still
needs to be done. Firstly, the work started with this thesis needs to be
completed. That means the L4Linux internal library needs to be extended
and the generic code parts need to be made more generic so that µ-kernel
dependent code can be fully replaced by generic code. Furthermore, the code
still needs some restructuring and clean ups but that usually is an all time
goal.


Then there are some more points to consider for the future. It was proposed
that the bindings in L4Linux against the different µ-kernel APIs should be
generated from an IDL description so that not many different implementa-
tions for different µ-kernels need to developed and maintained. Instead, the
different bindings would be generated by the appropriate IDL compiler for
each µ-kernel API. To make that happen a proper abstraction for the generic
code of the L4Linux port code needs to be found. As this is also the goal of
the internal library of L4Linux a later integration of yet another port should
not be too difficult.


Concerning ports there are several plans and ideas although they are still
quite rough. As displayed in table 1 on page 10, the used µ-kernels run on
different hardware platforms and L4Linux would be a great application there
as well. Possible usage for it could be PDAs and other small devices where
valuable and critical applications are used on the one side and programs
from the Internet and other untrusted sources on the other. L4Linux could
host the latter and the critical applications run completely separated from
L4Linux in a safe environment [Här02]. As L4Linux only exists for the IA32
platform currently it would need to be ported to typical PDA platforms
such as (Strong)ARM. Other currently considered platforms are PowerPC
and IA64.


Fiasco/SMP is the Fiasco µ-kernel for SMP system, currently on the IA32
architecture. To run L4Linux on this µ-kernel some modification to L4Linux
needs to be done. These have been done for L4Linux-2.2 and still need to be
done for L4Linux-2.4.


Another currently ongoing project at the Operating Systems Group in Dres-
den is the port of the Fiasco µ-kernel [Fia02] to the user mode in a UNIX en-
vironment, called Fiasco/UX. There are ideas to port L4Linux to Fiasco/UX
although the usefulness is still questionable, it is probably useful for debug-
ging.


Writing Linux drivers or other “connectivity code” for Drops components is
another topic. Currently, there are some drivers for L4 in development or are
even available, among them a network server with NIC drivers, a USB driver,
an IDE driver and a SCSI driver. These drivers are L4 servers, run in user







39


space and have the appropriate privileges to access the hardware they con-
trol. To access these drivers in L4Linux a Linux driver is needed which does
not access the hardware directly but instead communicates with the corre-
sponding L4 server. User space applications can then access these resources
in a normal way. But not only pure “hardware” drivers need to be written.
The Drops system also has a file system which could be accessed in L4Linux
by a Linux filesystem driver which queries the L4 filesystem internally.


Network transparent IPC for L4 systems was the topic of a diploma thesis at
the Dresden group. The goal of this work was to extend the IPC mechanism
to work across machine boundaries. With the help of this work, L4Linux
could be extended to run user applications on other systems instead of the
one L4Linux runs itself. This could work in the spirit of Mosix [Mos02].


When the plans of the Linux core developer come to true, Linux 2.6 (or
however the version number is) is not too far away. If it is released, it should
be considered to upgrade L4Linux to the next Linux version. It may be rea-
sonable to wait with L4Linux ports to other architectures until this happens.
Non IA32 architectures in Linux are usually under heavy development, es-
pecially considering IA64. The next Linux version may be a better starting
point.


After these rather separate topics there are points which target L4Linux itself
or Drops components. The ones affecting L4Linux are on my list as well
and will hopefully be added or fixed in the near future:


• Sysenter/-exit support for L4 syscalls, speeds up L4 syscalls.


• Drop static thread number allocation and use a pure dynamic ap-
proach. Add a debugging aid to find thread numbers by names.


• Use a two stage approach for thread stack allocation, first stage through
BSS, second one through kmalloc (also see 4.1.2 on page 28).


• Remove the “Ping-Pong-Task”, as all the currently used µ-kernels do
not have the limitation like the original version that they can’t map
pages in the same task.


• When using multiple L4Linux instances it would be beneficial for mem-
ory usage if they could use “Copy-on-Write” (COW) memory. This
includes the L4Linux server where the code is the same as well as the
RAM disk image where nearly the whole image never changes. When
using the DROPS RAM disk of 16MByte, which has 15MByte of usu-
ally readonly data on it, COW memory would save about 17MByte
(RAM disk and L4Linux server) for every additional instance of L4Linux.
The COW memory would need to be implemented in a dataspace man-
ager like dm_phys or in another dataspace manager.







40


• Add support for the Omega0 interrupt protocol [LH99] to access in-
terrupts in a hardware and architecture independent manner. The
Omega0 protocol is implemented by the L4IO server as well as the
Omega0 server. For L4Linux the L4IO will be used as it is already
used for I/O memory.


• The oshkosh driver currently in L4Linux-2.2 needs to be ported to
L4Linux-2.4. I expect that with this work it will be possible that mul-
tiple concurrently running L4Linux instances can have network access.
Then it would be possible as well that all L4Linux instances use NFS for
their root file system instead of a RAM disk. Process migration [SMi02]
over the network would work on a single machine which should help
debugging and testing.


• Fully integrate the VX2 port. Currently, the VX2 port has duplicated
and modified some code for its efforts. This code duplication needs to
be removed and the code merged. This work will be done with the
further work on the library.


• Keep up to date with the main line Linux tree and incorporate changes
into the L4 tree of L4Linux.


Finally, if L4Linux-2.4 proves to be stable and most of the currently existing
bugs are fixed, it could be considered to replace L4Linux-2.2 as the standard
L4Linux within Drops.







41


7 Summary


The main goal of this work was to integrate L4Env support into L4Linux-2.4
and to incorporate an abstraction layer to L4Linux to be able to cope with
the different configurations more sanely. Besides that smaller issues were
addressed as well. Lots of bugs have been fixed and code quality has been
improved but there is still some amount of work to do. Additionally the
directory structure has been defined and tracing support for the L4 Tracing
environment has been added. In the context of this work bugs in some
Drops components could be fixed as well as some small features could be
added.


As a result, L4Linux-2.4 has progressed a lot lately but there is still a huge
amount of work to do.







42


A Glossary


µ-kernel Microkernel, an operating system only containing the absolutely
necessary functionality in kernel mode. Other services are implemented
in user mode running in separate tasks.


API Application Programming Interface


BSS A segment within an address space where variables of a program are
stored.


COW “Copy On Write”, used for initially shared read/write memory, on
the first write access, the memory is copied


CPU Central Processing Unit


DMA Direct Memory Access


DROPS Dresden Realtime OPerating System [DRO02]


Hazelnut See [Haz02]. A µ-kernel implementing Version X.0 of the L4
specification [VX002].


IPC Inter Process Communication


kernel mode Code running at the highest privilege level available.


L4 An interface description to user space of a µ-kernel.


L4Env An user level environment for L4 systems consisting of several mod-
ules.


NFS Network File System


NIC Network Interface Card


Omega0 A portable interface to interrupt hardware for L4 systems. [LH99]


preemption handler A mechanism in L4 to schedule in user space.


Pistachio See [Pis02]. A µ-kernel implementing Version X.2 of the L4 spec-
ification [VX202].


RMGR Resource Manager


Sigma0 The initial pager for L4 systems.


SMP Symmetrical Multi Processing


USB Universal Serial Bus







43


user mode Code running in a domain of its own, unauthorized access to
other applications or data is not possible.


V2 Version 2 of the L4 API specification. [Lie96]


VX0 Version X.0 of the L4 API specification. [VX002]


VX2 Version X.2 of the L4 API specification. [VX202]







44


B Bibliography


References


[ABB+86] M. J. Accetta, R. V Baron, W. Bolosky, D. B. Golub, R. F.
Rashid, A. Tevanian, and M. W. Young. Mach: A new kernel
foundation for unix development. In USENIX Summer Confer-
ence, pages 93–113, Atlanta, GA, June 1986.


[AL] Adam Lackorzynski. http://os.inf.tu-dresden.de/˜adam/.


[APJ+01] M. Aron, Y. Park, T. Jaeger, J. Liedtke, K. Elphinstone, and
L. Deller. The SawMill Framework for Virtual Memory Di-
versity. In 6th Australasian Computer Architecture Conference,
Gold Coast, Australia, January 2001.


[BHWH97] Martin Borriss, Michael Hohmuth, Jean Wolter, and Hermann
Härtig. Portierung von Linux auf den µ-Kern L4. In Int. wiss.
Kolloquium, Ilmenau, September 1997.


[DRO02] Dresden Realtime OPeration System.
http://os.inf.tu-dresden.de/drops/, 2002.


[Fia02] Fiasco µ-kernel, 2002. http://os.inf.tu-dresden.de/fiasco/.


[FM] Frank Mehnert. http://os.inf.tu-dresden.de/˜fm3/.


[GRU02] GRUB, the GRand Unified Boot loader.
http://www.gnu.org/software/grub/, 2002.


[Här02] Hermann Härtig. Security Architectures Revisited. In Proceed-
ings of the Tenth ACM SIGOPS European Workshop, Saint-
Emilion, France, September 2002.


[Haz02] The Hazelnut VX0 µ-kernel. http://www.l4ka.org/projects/hazelnut/,
2002.


[Hel02] Christian Helmuth. L4Env Generic
I/O Reference Manual. Available from
http://os.inf.tu-dresden.de/˜ch12/doc/generic_io/,
2002.


[HHL+97] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter.
The performance of µ-kernel-based systems. In 16th ACM Sym-
posium on Operating System Principles (SOSP), pages 66–77,
Saint-Malo, France, October 1997.







45


[HM02] Christian Helmuth and Frank Mehnert. DROPS Console Sys-
tem. Available from http://os.inf.tu-dresden.de/local/
project/manuals/drops/con/refman/, 2002.


[Hoh96a] M. Hohmuth. Linux Architecture-Specific Kernel Interfaces. TU
Dresden, March 1996. Available from URL: http://os.inf.tu-
dresden.de/˜hohmuth/prj/linux-on-l4/.


[Hoh96b] M. Hohmuth. Linux-Emulation auf einem Mikrokern. Mas-
ter’s thesis, TU Dresden, August 1996. In German; with
English slides. Available from URL: http://os.inf.tu-dres-
den.de/˜hohmuth/prj/linux-on-l4/.


[JW] Jean Wolter. jean.wolter@inf.tu-dresden.de.


[L4I02] Different L4 Implementations. http://os.inf.tu-dresden.de/L4/
impl.html, 2002.


[L4K02] L4KA Homepage. http://www.l4ka.org/, 2002.


[Lac02] Adam Lackorzynski. L4Linux Internal Li-
brary API Documentation. Available from
http://os.inf.tu-dresden.de/˜adam/l4lx/apidoc/html/,
2002.


[LH99] J. Löser and M. Hohmuth. Omega0 – a portable interface to
interrupt hardware for L4 systems. In Proceedings of the First
Workshop on Common Microkernel System Platforms, Kiawah
Island, SC, USA, December 1999.


[LHH97] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache
predictability for real-time systems. In Third IEEE Real-time
Technology and Applications Symposium (RTAS), pages 213–
223, Montreal, Canada, June 1997.


[Lie96] J. Liedtke. L4 reference manual (486, Pentium, PPro). Ar-
beitspapiere der GMD No. 1021, GMD — German National
Research Center for Information Technology, Sankt Augustin,
September 1996. Also Research Report RC 20549, IBM T. J.
Watson Research Center, Yorktown Heights, NY, September
1996.


[LTT02] "Linux Trace Toolkit" project. http://www.opersys.com/LTT/,
2002.


[Meh02] Frank Mehnert. L4 loader Reference Manual. Available from
http://os.inf.tu-dresden.de/˜fm3/doc/loader/, 2002.







46


[MH] Michael Hohmuth. http://os.inf.tu-dresden.de/˜hohmuth/.


[Mos02] Mosix project. http://www.mosix.org/, 2002.


[OS02] Operating Systems Group. http://os.inf.tu-dresden.de/,
2002.


[Pis02] The Pistachio VX2 µ-kernel. http://www.l4ka.org/
projects/pistachio/, 2002.


[Reu02a] Lars Reuther. L4 Region Mapper Reference Manual. Available
from http://os.inf.tu-dresden.de/˜reuther/doc/l4rm/,
2002.


[Reu02b] Lars Reuther. L4 Thread Library Reference Manual. Available
from http://os.inf.tu-dresden.de/˜reuther/doc/thread/,
2002.


[Reu02c] Lars Reuther. L4Env Physical Memory Data-
space Manager Reference Manual. Available from
http://os.inf.tu-dresden.de/˜reuther/doc/dm_phys/,
2002.


[SMi02] "Service Migration in Linux Environments" project.
http://os.inf.tu-dresden.de/SMiLE/, 2002.


[VAM02] The VAMPIR tool. http://www.pallas.com/e/products/vampir/,
2002.


[VU] Volkmar Uhlig. http://i30www.ira.uka.de/˜uhlig/.


[VX002] Version X.0 specification of the L4 API.
http://www.l4ka.org/documentation/files/l4-86-x0.pdf,
2002.


[VX202] Version X.2 specification of the L4 API.
http://www.l4ka.org/documentation/files/l4-x2.pdf,
2002.





		Introduction

		Overview



		Prerequisites and Related Work

		Operating Systems

		Microkernel Architectures

		Available APIs on different hardware platforms



		Inside L-4Linux

		Hardware Interrupts

		Scheduling

		Signals

		System Calls and Emulation Library

		Memory Management



		Drops

		Drops system basics

		L4Env

		File Provider

		L4 Loader

		dm_phys

		Region Mapper

		Thread Library

		Task server

		L4IO Server



		Other Components

		Drops Console

		DOpE Windowing System



		History of L-4Linux



		Design

		Internal Abstraction Layer

		Tasks

		Threads



		Directory structure

		Implementation Files

		Header Files



		Using L4Env

		dm_phys

		Task server

		Threads

		L4IO Server

		DROPS console/DOpE support





		Implementation

		Internal Abstraction Layer

		Tasks

		Threads



		Directory Structure

		Integration of L4Env support

		dm_phys

		L4IO Server



		Tracing



		Performance Comparisons

		Scenario

		Benchmark

		Results

		Future Benchmarking



		Prospective Work

		Summary

		Glossary

		Bibliography




