

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

DISTRIBUTED OPERATING SYSTEMS SCALABILITY AND NAMING

HORST SCHIRMEIER, DISTRIBUTED OPERATING SYSTEMS, SS2023

ORGANISATION

- Lecturer in charge of DOS:
 Dr. Carsten Weinhold, Barkhausen Institute TUD
- Several lectures presented by research-group members
- Mandatory: register for mailing list (see website)
 - must use "tu-dresden.de" mail adresses
- Hybrid format (BBB, but NO recordings)
 - Lecture: Monday, 11:10
 - Exercise: Monday 13:00 | Tuesday, 09:20? (roughly every 2 weeks)

https://tinyurl.com/bdznzyvc (→ terminplaner4.dfn.de)

- Oral exam covering lectures and exercises
- About 1 exam date per month
- Exam appointments:
 - Email to <u>sandy.seifarth-haupold@tu-dresden.de</u>
 - Provide paperwork (forms) at least 2 weeks before exam otherwise, automatic cancellation (and angry secretary)
 You can cancel until 2 weeks before date; after that, no more cancellation except for sickness.
- Diplom/Master INF study programmes:
 can be combined with other classes in complex modules

DISTRIBUTED OPERATING SYSTEMS

- Course name no more precise, rather:
 "Interesting/advanced Topics in Operating Systems"
 - Scalability
 - Systems security
 - Modeling
- Some overlap with "Distributed Systems" (Prof. Schill) and some classes by Prof. Fetzer
- In some cases no written material (except slides)

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

HORST SCHIRMEIER, DISTRIBUTED OPERATING SYSTEMS, SS2023

GOAL OF ALL LECTURES ON SCALABILITY

Topics:

- Scalability: terminology, problems, principle approaches
- Case studies, all layers of compute systems

Goal:

 Understand (some of the) important principles how to build scalable systems

Outline:

- Scalability and a simple model to reason about one aspect
- Names in Distributed Systems: purposes of naming, terminology (DNS)
- Application of scalability approaches on name resolution

Goal:

 Understand some of the important principles how to build scalable systems (using DNS as example)

MORE CASE STUDIES LATER IN THE CLASS

- Memory consistency
- Locks and advanced synchronization approaches
- File systems
- Load balancing (MosiX) and HPC (MPI)

GENERAL DEFINITION: SCALABILITY

Scalability:

Scalability is the property of a system to handle a **growing amount of work** by **adding resources** to the system.

(Wikipedia (2019) and many other sources)

SCALABILITY: WEAK ./. STRONG

Ability of a system to use growing resources ...

- Weak scalability: to handle growing load, larger problem, ...
- Strong scalability: accelerate existing work load, same problem

- Performance bottlenecks / Amdahl's Law
- Failures / abuse
- Administration

RESOURCES AND PERFORMANCE

- Processors
- Communication
- Memory (remember basic OS course: "thrashing")

Speedup: original execution time enhanced execution time

SIMPLE MODEL: AMDAHL'S LAW

Speedup: original execution time enhanced execution time

Parallel Execution

red: cannot run in parallel

green: runs perfectly parallel

unlimited processors maximum speedup: blue/red

AMDAHL'S LAW

Parallel Execution, N processors

red: cannot run in parallel

green: runs perfectly parallel

N processors maximum speedup: blue/(red+green/N)

AMDAHL'S LAW

Parallel Execution, N processors

red: cannot run in parallel

green: runs perfectly parallel

maximum speedup: blue/(red+green/N)

- P: section that can be parallelized
- 1-P:serial section
- N: number of CPUs

Speedup(P,N) =
$$\frac{1}{1-P+\frac{P}{N}}$$

• if N becomes VERY large, speedup approaches: 1/(1-P)

THE "RPC" PRINCIPLES

Partitioning

Split systems into parts that can operate independently/parallel to a large extent

Replication

Provide several copies of components

- that are kept consistent eventually
- that can be used in case of failure of copies
- Locality (caching)

Maintain a copy of information that is nearer, cheaper/faster to access than the original

MORE PRINCIPLES

- Identify and address bottlenecks
- Specialize functionality/interfaces
- Right level of consistency
 Caches, replicates, ... need not always be fully consistent.
- Lazy information dissemination
- Balance load (make partitioning dynamic)

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

- 1.0) DOS ORGANISATION
 - 1.1) SCALABILITY IN COMPUTER SYSTEMS
 - 1.2) EXAMPLE: DNS/BIND

HORST SCHIRMEIER, DISTRIBUTED OPERATING SYSTEMS, SS2023

UUCP/MMDF:

- ira!gmdzi!oldenburg!heinrich!user (path to destination)
- user@ira!heinrich%gmdzi
 (mixing identifiers and path information)

A BIT OF HISTORY

- ARPA-Net at the beginning:
 - a single file: hosts.txt
 - maintained at Network Information Center of SRI (Stanford)
 - accessed via FTP
 - TCP/IP in BSD Unix massively increased ARPA-Net size
 - → Chaos, name collisions, consistency, load, ...
- DNS: Paul Mockapetris et al.

DOMAIN NAME SYSTEM

NAMES, IDENTIFIERS, ADDRESSES

Names

- symbolic, many names possible for one entity
- have a meaning for people

Identifiers

- identifies an entity uniquely
- are used by programs

Addresses

- locates an entity
- changes occasionally (or frequently)

NAME RESOLUTION

Name resolution:

Map symbolic names to a set of attributes such as: identifiers, addresses, alias names, security properties, encryption keys, ...

- Principle interface:
 - Register (Context, Name, attributes, ...)
 - Lookup (Context, Name) → attributes

DNS DOMAINS

Domain = subtree in DNS hierarchy:

- de
- <u>tu-dresden.de</u>
- os.inf.tu-dresden.de
- <u>tudos.org</u> and <u>os.inf.tu-dresden.de</u> are aliases

PARTITIONING: ZONE

- Zone: Subset of a domain over which an authority has complete control
 - → controlled by a name server
- Subzones can be delegated to other authorities.
- Navigation: querying in a set of cooperating name servers

POTENTIAL ZONES

POTENTIAL ZONES

POTENTIAL ZONES

- Option #1: complete tu-dresden domain
- Option #2: Opt. #1 with sub zone **os** (not allowed by ZIH anymore)

CACHING

- remember intermediate results
- @ root NS makes no sense! (overload)
- @ NS i!

RECURSIVE ./. ITERATIVE

REPLICATION

- Two techniques for replication:

- Several IPs/names
- "anycast" (send packet to one of many servers with same IP)
- 13 root name server IPs, ~1700 physical servers via anycast
- Each zone has at least one primary and one secondary IP

RESOURCE RECORDS

7	m	_ \
7	111	=>

Record type	Interpretation	Content
A	address	IPv4 address
AAAA	address	IPv6 address
NS	Name server	DNS name
CNAME	Symbolic link	DNS name of canonicial name
SOA	Start of authority	Zone-specific properties
PTR	IP reverse pointer	DNS name
HINFO	Host info	Text description of host OS
•••	•••	

- Main problems for scalability
- Simple model: Amdahl's law
- Few principle approaches
- DNS as fine example, more to come
 - → study DNS it in your first exercise (Apr 17th/18th)

 Register in mailing list! (with a tu-dresden.de address)

- Cricket Liu, Paul Albitz: DNS and BIND, 5th edition (2006)
 O'Reilly & Associates, Inc. (available online via SLUB)
- Mark Hill, Michael Marty: Amdahl's Law in the Multicore Era, 2008
 IEEE (available online via SLUB)
- · Couluris, Tollimore, Kindberg: Distributed systems