TECHNISCHE
@ UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

SOFTWARE SANDBOXES

CARSTEN WEINHOLD, BJORN DOBEL

W

TECHNISCHE
UNIVERSITAT
DRESDEN

 \Why and what to isolate?

e Machine-Level Isolation

 Virtual Machines

e OS-level isolation: chroot, BSD Jails, OS Containers,
SELinux

* Application-Level Isolation

e Chromium Architecture
« Native Client

W

TECHNISCHE
UNIVERSITAT
DRESDEN

» | arge-scale: Multi-user systems

o Security:
Prevent other users from reading/modifying my data...

e Sharing:
... but allow this for certain exceptions.

» Fair distribution of resources (CPU time / network bandwidth)
among users

 Small-scale: Integrate software from differing sources

 Web browser: websites, plugins

W

TECHNISCHE
UNIVERSITAT
DRESDEN

 Fault Isolation

* A faulting application shall not take down others.

e Resource Isolation

* (Global resources shall be distributed fairly across all users
 What is fair?

* Security Isolation

* Applications shall not access or modify others' data.

\, TECHNISCHE
IVERSITAT

TECHNISCHE

Physical Separation

* Advantages:

* Achieves isolation
» Different OS/software setups

 Disadvantages:

e Resource overcommit
« Administration effort
» Sharing difficult

TECHNISCHE

Vi L ® o T
W™ Virtual Machines
.’ '*{t 4 DRESDEN -;;_‘.

» |dea: better resource utilization by running multiple virtual
machines on a single physical

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Provides virtual hardware environment

e Guest OS runs as on real hardware
* |ntercept (and emulate) privileged instructions
e Virtual devices

 Type 1 — Bare metal Type 2 — hosted
* Runs as OS directly on » Part of a native OS (e.g.,
hardware kernel module)

* e.g9., VMware ESXi, Xen e €e.g., KVM, VirtualBox

W

TECHNISCHE
UNIVERSITAT
DRESDEN

 Advantages

e |solation
 Better resource utilization
o Different OS/SW setups

* Disadvantages

 Management
« Slight Performance overhead

» Sharing still difficult

_Q

=
. /

Many more implementation
Issues: See lectures on
Microkernel-Based Operating
Systems and Microkernel
Construction

W

TECHNISCHE
UNIVERSITAT
DRESDEN

/

— bin

— usr

— etc

— home

— var

— Domain1
— bin
— usr
— efc

— Domain2
\— mmnm

opt

* Unix path name resolution

 Each process has a lookup root
(default: /)

e open(”/foo/bar/baz”)traverses file
system hierarchy starting from this root

* (Limited) ACLs to manage access rights

* Single group/owner not sufficient for
complex access policies

* |dea: Restrict users/programs' access to
parts of the file system — chroot

10

W

TECHNISCHE
UNIVERSITAT

DRESDEN

opt

Domain1
— bin
— usr
— etc

—— Domain2

\— "aw

e Process A:

* Global file system access

e open (”/bin/1ls”) — returns file
descriptorto /bin/1s

* A creates process B:

pid = fork();
if (pid == 0) // child

chdir (”/var/Domainl”) ;

chroot (”/var/Domainl”) ;

setuid (some user);
execve ("program B”);

11

W

TECHNISCHE
UNIVERSITAT
DRESDEN

Domain1

— bin
— usr
— etc

—— Domain2
\— "

opt

e Process B now has /var/Domain1 set as
Its lookup root

e open(”/bin/1s”) returns file

descriptor to
/var/Domainl/bin/1ls

* |deally, no access to anything outside
/[var/Domain1 possible for process B

* Sharing between users:

* Make files/directories visible Iin
different locations (e.g. linking)

12

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Chroot is meant to restrict file access of well-behaving
applications

* [ntended for software testing

e No restrictions on

* Loading kernel modules
* Opening network connections
 Reading /dev/kmem

« Tracking other processes (e.g., through ps / top)

13

W= Breaking out of chroot

 Step 1: Become root
 Find an exploit as described in last week's lecture

o Step 2:

fd = open(”.”, O RDWR);
mkdir(”./tmpdir”, 0755);
chroot(”./tmpdir”);
fchdir(£fd);

for (1 = 0; 1 < 1024; ++1)
chdir(”.."”);

chroot(”."”);

&

TECHNISCHE
UNIVERSITAT
DRESDEN

Breaking out of chroot

— opt

Domain1

— bin
— usr
— etc

—— Domain2

|_ "aw

Starting as process B, chroot'ed
to /var/Domainl...

\fd fd = fopen(”.”, O RDWR);
-» fd now contains valid file descriptor
of /var/Domainl

15

W= Breaking out of chroot

Starting as process B, chroot'ed
to /var/Domainl...

- fd = fopen(”.”, O RDWR);
-» fd now contains valid file descriptor

of /var/Domainl
Domain1

— bin mkdir(”./tmpdir”, 0755);
o usr - creates new directory tmpdir’ below

et current one
— tmpdir

~ Domain2

__ opt

W

TECHNISCHE
UNIVERSITAT
DRESDEN

/

— bin
— usr
— etc

——var

— opt

— home

y

—— Domain1

— bin
— USr

B ' tmpdir

—— Domain2

|— mam

CWD

chroot (”./tmpdir”)

- sets B's resolution root to
/var/Domainl/tmpdir

- S0 B can't access anything above,
right?

But we still have a file descriptor
pointing outside!

fchdir (£fd);
— sets the current working
directory to /var/Domainl

— this iIs POSIX-certified behavior

17

TECHNISCHE

@& Breaking out of chroot

e Nowchdir(”..”) inalongloop

CWD

* At some point we will hit the real
root directory

* Now finally

chroot(”."”);

sets B's resolution root to /.

 Mission accomplished.

18

TECHNISCHE
UNIVERSITAT
DRESDEN

e Based on chroot + kernel modifications

 Prohibited: e Permitted:

* Loading kernel modules * Run programs within jall

. Modify network (working directory...)

configuration * Signalling processes

* (Un-)mount file systems within a jal

* Modification of in-jail file
system

* Bind sockets to TCP/UDP

ports defined at jall
creation

e Create device nodes

* Access kernel runtime
parameters (sysctl)

W

TECHNISCHE
UNIVERSITAT
DRESDEN

« Added jail system call

* Create jall structure — unmodifiable after setup
 Attached to every process

- Only processes within a jail can add processes to it
— No breaking out of chroot

» Adapted other system calls

 Limit PID/GID/TID-based system calls
 Had to adjust some drivers

* e.g., virtual terminal needs to belong to specific jails

20

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Discretionary Access Control (DAC)

» Security (isolation) enforced based on object-subject relationship
* Linux: File System — file ownership

 Mandatory Access Control (MAC)

 |solation based on object — (subject x operation) relationship

* e.g., Program Awith UID X may read a file;
Program B with UID X may also write it

* Linux: File System ACLs (limited to 3 operations)

* Role-Based Access Control (RBAC)

* Subjects can have dynamic roles assigned
» Access based on object-role relationship

* Principle of Least Privilege

21

W

TECHNISCHE
UNIVERSITAT
DRESDEN

 RBAC for Linux (co-developed by NSA...)
* Type Enforcement

 Processes are placed in dedicated sandboxes
(domains)

* Fine-grained configuration per domain

- Which files can be accessed? (And how?)

- Which network ports can be bound to?

- Can the app render to an X11 window?

- Can the app fork() new processes? In which domain?

22

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Policy files define

 Userroles
user joe —» role user t

* Object types

dir /etc/selinux - policy src t

 Permissions
r dir file(user t, policy src t)
— user_t may read policy src t

 checkpolicy compiler generates loadable kernel module to
enforce rules

23

N\ TECHNISCHE
NIVERSITAT
ESDEN

w

TECHNISCHE
UNIVERSITAT
DRESDEN

LSM: Linux Security Modules

e Loadable Kernel Modules

e struct security operations
[..]
int (*file open) (struct file *,
const struct cred *);
[..]
b i

« extern int register security(
struct securlty operations¥®);

25

/=\ TECHNISCHE
[gJVERSH]J

static i1nt do entry open(struct file *f,
const struct cred *cred)

{
[...]
error = security file open(f, cred);
1f (error) { .. }
[...]

26

W

TECHNISCHE
UNIVERSITAT
DRESDEN

» Jails, SELinux: security isolation + some fault isolation

* Process cannot modify state outside its jall

* Fine-grained SELinux policies may also limit fault propagation
- But configuration is a mess...

» Resource isolation still missing

e Enter: container-based virtual machines

* Recent gain in popularity:
https://linuxcontainers.org
http://www.docker.com

27

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Full virtualization is expensive

* Implementation overhead

- Need to have pass-through drivers available
 Management overhead

- VM configuration in addition to setup of guest OS
* Runtime overhead (though small)

« Often we don't need all features

 Many use cases warrant "A Linux installation”

28

W

TECHNISCHE
UNIVERSITAT
DRESDEN

e Jails-like Linux modification

 Extended chroot
- Chroot barrier: prevent breaking out
* PID / resource name spaces + filtering

 Network isolation
— only bind apps to predefined set of IP addresses / ports

e Share libraries / kernel across VM instances

29

W

TECHNISCHE
UNIVERSITAT
DRESDEN

» Goal: Fair distribution of resources (e.g. CPU time)
* But what is fair?

* Fair share — each VM gets the same amount of
compute time

* Proportional Share — VMs with more processes get
larger amount of resources

* Linux: Completely Fair Scheduler (CFS)

* All processes get the same amount of time
* No notion of process-VM mappings

30

W

TECHNISCHE
UNIVERSITAT

DRESDEN

Each VM has a bucket
Every timer tick removes a token from VM's bucket

If bucket is empty: remove all VM's processes from run
queue until threshold of tokens has been refilled

Refill: over time according to some policy

Allows to implement proportional and fair share

31

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Network: use existing Linux traffic shaping
mechanisms

e Bandwidth reservations

e Shares — specify how non-reserved bandwidth is
distributed between VMs

* Disk: rely on Linux disk scheduler to do the right
thing

* Disk is less about isolation, more about optimizing
accesses

2

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* All modern container implementations based on
Linux namespaces

* Virtualizes these resources:

 Mount (mnt), process (pid), network (net)

* Inter-process communication (ipc)

* Host and domain names (UTS)

» User IDs (user), Control group (cgroup), time
» Basis of Docker, LXC, Rkt, Singularity, ...

33

=% Application-level Is

N bl -« ol - P &
. LIRS - ® ol \’-':-

O I '.
,.
o
..'.u. ._
: e

34

TECHNISCHE

c—
S 4

=
=
-

ek

TECHNISCHE
UNIVERSITAT
DRESDEN

 Web pages communicate User credentials stored by
through DOM browser
 Unrelated page can inspect May be (mis-)used by other
and modify data pages
* Access Control: Same-Origin
Policy * Per-page isolation infeasible:
http://www.example.com web apps need multiple pages
http://www.example.com/p2 |
https://www.example.com » Calendar window
 Email compose window
 Web pages may include data N

from different sources
(e.q., iframes)

N\ TECHNISCHE

WEE™ Chromium: Isolating Web Program:

L

Site Instance

o/

2 af_, 65?\‘/-IEN£|CTIE 1 . 1 '
Utesoen ~ Chromium: Isolating Web Programs

38

&

TECHNISCHE
UNIVERSITAT

DRESDEN

Web Processes

Rendering Process

* No direct storage access
» Single thread of execution
e chroot to empty temp dir

* Might require
FS access
e Fault isolation

oR7

W

TECHNISCHE
UNIVERSITAT

DRESDEN

|solate web pages into OS processes

Difficult;

* determine exact boundaries...
* ... while maintaining compatibility
Gain:
» Security & Fault Isolation between web pages

 Performance — parallel rendering possible

* Accountability

Enter unlimited possibilities of cloud wonderland...

40

TECHNISCHE
UNIVERSITAT
DRESDEN

* (oals: e Solutions
 Native code execution * Ask for user approval before
(JIT or interpreted) running plugin
* Access to local resources Language-level security
(disk, ...) (e.g. Java Class Loader) —
often open up new attack
surface
* Problems: * Process Isolation — protects

web pages, can still exploit

 Circumvent browsers' .
system call interface

security mechanisms

* Arbitrary code execution
possible

TECHNISCHE
UNIVERSITAT
\—/ DRESDEN

Native Client (NaCL)

e Allow plugins (NaCl
modules) compiled to native
X86 code

e Inner Sandbox: limit
execution to module's code
and data

* Outer Sandbox: System Call
Policy Enforcement
(think: SELinux)

42

TECHNISCHE
NIVERSITAT

NaCL: App Mod

System
Calls

43

W

TECHNISCHE
UNIVERSITAT
DRESDEN

e NaCl module and service runtime in same address
space

 Module code must not break out of its text/data region
 But we need well-defined ways to

- Perform system calls (if policy permits)
- Communicate with web page through plugin API

e Solution: Dedicated compiler (adapted GCC) that
enforces rules on NaCl modules

4.4

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Once loaded, the binary is not writable

« Enforced using mprotect()
* Prevents self-modifying code

* Binary Is statically linked
(start address == 0, entry point = 64 kB)

 No dynamically loaded code — allows static validation during
startup

* Predefined starting point required for load-time validation
* Address restrictions: later

45

W

TECHNISCHE
UNIVERSITAT
DRESDEN

» All indirect control transfers use a nacljmp pseudo-
Instruction

* Disable ret / function pointers — harden stack smashing

 The binary Is padded up to the nearest page with at least
one hlt Instruction

 Prevent jump to arbitrary address — will trigger h1t

46

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary

e Alignment restrictions for indirect jumps (coming soon)

* All valid instruction addresses are reachable by
disassembly that starts at the base address

* Need access to all code for analysis

 All direct control transfers target valid instructions

* Prevent jump into middle of instruction

47

W

TECHNISCHE
UNIVERSITAT

DRESDEN

Problem: x86 code may jump to

arbitrary address (e.g., using ret

or
jmp *%$<register>)

NaCl: Alignment makes sure that
every 32-byte aligned address is
a valid instruction

Use nacljmp instead of indirect

control flow:
and $<reg>, OxFFFFFFEO
Jmp *3s<reg>

Result: code only contains jumps
to valid targets

Disallowed instructions

* Xx86 segment modifications

e ret

e syscall/ int Ox*

No support for POSIX signals

 They use the SS segment
themselves

Remaining issue: controlled
calls into/out of the sandbox

48

W

TECHNISCHE
UNIVERSITAT
DRESDEN

NaCl Data

NaCl Code

Service
Runtime
Trampoline

 NaCl code may jump into
trampoline (32-byte aligned)

 Each 32-byte aligned word is
either

 An entry to a service
routine call

- mmap / sbrk

- thread creation

- Plugin API calls
 Or a HLT instruction

 Trampoline may contain
unsafe code

49

W

TECHNISCHE
UNIVERSITAT
DRESDEN

* Plugins in isolated process

 Compiler enforces

* Reliable Disassembly

e Sandbox enforces

 Data Integrity
* Control Flow Integrity
* No unsafe instructions

Result: We can play
Quake in the browser!

Update: Works with
Javascript now, too!

50

W

TECHNISCHE
UNIVERSITAT
DRESDEN

« Kamp, Watson: “Jails: Confining the omnipotent root”, FreeBSD
Tech Report, 2000

 Soltesz et al. "Container-based operating system virtualization: A
scalable, high-performance alternative to hypervisors”, EuroSys

2007

* Reis, Gribble ”Isolating Web Programs in Modern Browser
Architectures”, EuroSys 2009

 Yee et al. ”Native Client: A Sandbox for portable, untrusted x86
native code”, IEEE Security & Privacy 2009

 (Goldberg et al. ”A Secure Environment for Untrusted Helper
Applications”, Usenix SSYM 1996

S

