

WELCOME TO DOS CLASS

Hermann Härtig
Senior Professor
Head of OS group 1994 - 2019

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020

Scalability in Computer Systems, Example: DNS/BIND

ORGANISATION

- Lecturer in charge of DOS:
 Dr. Carsten Weinhold, Barkhausen Institute TUD
- Several lectures presented by research-group members.
- register for mailing list !!! see Website
 - only way to inform about short-term issues
 - for questions and discussions and lecturing methods
 - must use: "tu-dresden.de" mail-adresses

DISTRIBUTED OPERATING SYSTEMS

- Name no more precise →
 Interesting/advanced Topics in Operating Systems
 - scalability
 - systems security
 - modeling
- Some overlap with "Distributed Systems" (Prof Schill) and some classes by Prof Fetzer
- In some cases no written material (except slides)

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

- 1.0) DOS ORGANISATION
- 1.1) SCALABILITY IN COMPUTER SYSTEMS
 - 1.2) EXAMPLE: DNS/BIND

HERMANN HÄRTIG, DISTRIBUTED OPERATING SYSTEMS, SS2020

GOAL OF ALL LECTURES ON SCALABILITY

Topics:

- scalability: terminology, problems, principle approaches
- case studies, all layers of compute systems

Goal:

 understand (some of the) important principles how to build scalable systems

Outline:

- scalability ... and simple model to reason about 1 aspect
- names in Distributed Systems:
 purposes of naming, terminology. (DNS)
- application of scalability approaches on name resolution

Goal:

 understand some of the important principles how to build scalable systems ... using DNS as example

MORE CASE STUDIES LATER IN THE CLASS

- memory consistency
- locks and advanced synchronization approaches
- file systems
- load balancing (MosiX) and HPC(MPI)

GENERAL DEFINITION: SCALABILITY

Scalability:

Scalability is the property of a system to handle a growing amount of work by adding resources to the system.

Wikipedia (2019) and many other sources

SCALABILITY: WEAK ./. STRONG

ability of a system to use growing resources ...

- weak:
 to handle growing load, larger problem, ...
- strong:
 accelerate existing work load, same problem

problems

THINK and PAUSE!

PAUSE THE VIDEO HERE
AND THINK before continuing

- performance bottlenecks / Amdahl's Law
- failures / abuse
- administration

RESOURCES AND PERFORMANCE

- processors
- communication
- memory (remember basic OS course: "thrashing")

Speedup: original execution time enhanced execution time

SIMPLE MODEL: AMDAHL'S LAW

Speedup: original execution time enhanced execution time

Parallel Execution

red: cannot run in Parallel

green: runs perfectly parallel

unlimited processors maximum speedup: blue/red

AMDAHL'S LAW

Parallel Execution, N processors

red: cannot run in Parallel

green: runs perfectly parallel

N processors maximum speedup: blue/(red+green/N)

AMDAHL'S LAW

Parallel Execution, N processors

red: cannot run in Parallel

green: runs perfectly parallel

maximum speedup: blue/(red+green/N)

- P: section that can be parallelized
- 1-P: serial section
- N: number of CPUs

Speedup(P,N) =
$$\frac{1}{1-P+\frac{P}{N}}$$

■ if N becomes VERY large, speedup approaches: 1/(1-P)

principle approaches

THINK and PAUSE!

PAUSE THE VIDEO HERE
AND THINK before continuing

THE "RPC" PRINCIPLES

- partitioning
 split systems into parts that can operate independently/parallel
 to a large extent
- replication
 provide several copies of components
 - that are kept consistent eventually
 - that can be used in case of failure of copies
- locality (caching)
 maintain a copy of information that is nearer, cheaper/faster to access than the original

- identify and address bottlenecks
- specialize functionality/interfaces
- right level of consistency
 caches, replicates, ... need not always be fully consistent
- lazy information dissemination
- balance load (make partitioning dynamic)

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

- 1.0) DOS ORGANISATION
- 1.1) SCALABILITY IN COMPUTER SYSTEMS
- 1.2) EXAMPLE: DNS/BIND

HERMANN HÄRTIG, DISTRIBUTED OPERATING SYSTEMS, SS2020

- UUCP/MMDF (cum grano salis):
 - ira!gmdzi!oldenburg!heinrich!user (path to destination)
 - user@ira!heinrich%gmdzi(mixing identifiers and path information)

A BIT OF HISTORY

- ARPA-Net at the beginning:
 - a single file: hosts.txt
 - maintained at Network Information Center of SRI (Stanford)
 - accessed via ftp
 - TCP/IP in BSD Unix
 => chaos name collisions, consistency, load
- DNS: Paul Mockapetries (84) ...

DOMAIN NAME SYSTEM

NAMES, IDENTIFIERS, ADDRESSES

names

- symbolic, many names possible for 1 entity
- have a meaning for people
- identifiers
 - identifies an entity uniquely
 - are used by programs
- addresses
 - locates an entity
 - changes occasionally (or frequently)

NAME RESOLUTION

name resolution:
 map symbolic names to a set of attributes such as:
 identifiers, addresses, alias names, security properties
 encryption keys

- Principle interface:
 - Register (Context, Name, attributes, ...)
 - Lookup (Context, Name) -> attributes

DNS DOMAINS

subtree in DNS hierarchy:

- os.inf.tu-dresden.de
 - tudos.org and os.inf.tudresden.de are aliases

PARTITIONING: ZONE

- zone: Subset of a domain over which an authority has complete control. controlled by a name server.
 Subzones can be delegated to other authorities.
- navigation
 querying in a set of cooperating name servers

POTENTIAL ZONES

POTENTIAL ZONES

POTENTIAL ZONES

CACHING

- remember intermediate results
- @ root NS makes no sense!
 (overload)
- @ NS i !!!

RECURSIVE ./. ITERATIVE

REPLICATION

- 2 techniques for replication:
 - several IPs/names
 - "any cast" (send packet to one of many servers with same IP)
- 13 root name server IPs, several hundreds of any cast
- each zone has at least
 one primary and one secondary IP

RESOURCE RECORDS

nan	ne :	=>

Record type	Interpretation	Content
Α	address	IPv4 address
AAAA	address	IPv6 address
NS	Name server	DNS name
CNAME	Symbolic link	DNS name of canonicial name
SOA	Start of authority	Zone-specific properties
PTR	IP reverse pointer	DNS name
HINFO	Host info	Text description of host OS
	•••	

- main problems for scalability
- simple model: Amdahl' law)
- few principle approaches ...
- DNS as fine example ... more examples to come study DNS it in your first exercise

register in mailing list

- Paul Albitz & Cricket Liu
 DNS and BIND
 O´Reilly & Associates, Inc.
- Mark Hill, Michael Marty
 Amdahl's Law in the Multicore Era IEEE
- Couluris, Tollimore, Kindberg
 Distributed systems