
TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

THIS LECTURE’S QUESTIONS

Q1: Is it possible to build arbitrarily reliable Systems out
of unreliable components?

Q2: Can we achieve consensus in the presence of faults
(consensus: all non-faulty components agree on action)?

Q3: Is there an algorithm to determine for a system with
a given setting of access control permissions, whether or
not a Subject A can obtain a right on Object B?

2 Models per Question !

11

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

LIMITS OF RELIABILITY

Q1: Can we build arbitrarily reliable Systems out of
unreliable components ?

How to build reliable systems from less reliable
components

Fault(Error, Failure, Fault,)
terminology in this lecture synonymously used for
“something goes wrong”
(more precise definitions and types of faults in SE)

12

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

 DEFINITIONS

Reliability:

R(t): probability for a system to survive time t

Availability:

A: fraction of time a system works

13

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

INGREDIENTS OF FT

Fault detection and confinement

Recovery

Repair

Redundancy

Information

time

structural

functional

14

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

WELL KNOWN EXAMPLE

15

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

16

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

17

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

18

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

19

...

. .
 .

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: ABSTRACT RELIABILITY MODEL

20

R
1

R
2

R
m

Each component must work for the whole system to work.

Serial-Systems

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: ABSTRACT MODEL

21

R
1

R
2

R
m

One component must work for the whole system to work.

Each component must fail for the whole system to fail.

Parallel-Systems

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: ABSTRACT MODEL

22

R
1,1

R
1,2

R
1,m

R
n,1

R
n,2

R
n,m

R
2,1

R
2,2

R
2,m

Serial-Parallel-Systems

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: LIMITS OF RELIABILITY

23

...

. .
 .

Parallel-Serial-Systems

(Pfitzmann/Härtig 1982)

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

24

Fault Model

„Computer-Bus-Connector“
can fail such that Computer and/or Bus also fail

=>
conceptual separation of components into

Computer, Bus: can fail per se

CC: Computer-Connector
 fault also breaks the Computer

 BC: Bus-Connector
 fault also breaks Bus

Computer

Bu
s

CC

BC

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

25

Computer 1

CC
 1,1

Bu
s 1

BC 1,1

1 Buses

1 Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

26

Computer 1

CC
 1,1

Computer 2

CC
 2,1

Bu
s 1

BC 2,1
BC 1,1

1 Buses

2 Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

27

Computer 1

CC
 1,1

Computer 2

CC
 2,1

Computer n

CC
 n,1

Bu
s 1

BC n,1

BC 2,1
BC 1,1

1 Buses

N Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

28

Computer 1

CC
 1,1

CC
 1,2

CC
 1,m

Bu
s 1

BC 1,1

Bu
s m

BC 1,m

M Buses

1 Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL

29

Computer 1

CC
 1,1

CC
 1,2

CC
 1,m

Computer 2

CC
 2,1

CC
 2,2

CC
 2,m

Computer n

CC
 n,1

CC
 n,2

CC
 n,m

Bu
s 1

BC n,1

BC 2,1
BC 1,1

Bu
s m

BC n,m

BC 2,m
BC 1,m

M Buses

N Computers

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL1: CONCRETE MODEL FOR N,M

30

CC 1,m Com. 1CC 1,1 CC 1,2BC 2,1 BC n,1Bus 1 BC 1,1

CC 2,m Com. 2CC 2,1 CC 2,2BC 2,2 BC n,2Bus 2 BC 1,2

CC n,m Com. nCC n,1 CC n,2BC 2,m BC n,mBus m BC 1,m

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q1/MODEL2: LIMITS OF RELIABILITY

System built of Synapses (John von Neumann, 1956)

Computation and Fault Model :
Synapses deliver „0“ or „1”
Synapses deliver with R > 0,5:

with probability R correct result

with (1-R) wrong result

Then we can build systems that deliver correct result for
any (arbitrarily high) probability R

31

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

THIS LECTURE’S QUESTIONS

Q1: Is it possible to build arbitrarily reliable Systems out
of unreliable components?

Q2: Can we achieve consensus in the presence of faults
(consensus: all non-faulty components agree on action)?

Q3: Is there an algorithm to determine for a system with
a given setting of access control permissions, whether or
not a Subject A can obtain a right on Object B?

2 Models per Question !

32

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2: CONSENSUS

Q2: Can we achieve consensus in the presence of faults
 all non-faulty components agree on action?

all correctly working units agree on result/action

agreement non trivial (based on exchange of messages)

33

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 1: “2 ARMY PROBLEM”

p,q processes
communicate using messages
messages can get lost
no upper time for message delivery known
do not crash, do not cheat

p,q to agree on action (e.g. attack, retreat, ...)

how many messages needed ?

first mentioned: Jim Gray 1978

34

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 1: “2 ARMY PROBLEM”

Result: there is no protocol with finite messages

Prove by contradiction:
assume there are finite protocols (mp--> q, mq --> p)*
choose the shortest protocol MP,
last message MX: mp --> q or mq --> p
MX can get lost
=> must not be relied upon => can be omitted
=> MP not the shortest protocol.
=> no finite protocol

35

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

n processes, f traitors, n-f loyals

communicate by reliable and timely messages
(synchronous messages)

traitors lye, also cheat on forwarding messages

try to confuse loyals

36

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

Goal:

loyals try to agree on non-trivial action (attack, retreat)

non-trivial more specific:

one process is commander

if commander is loyal and gives an order, loyals follow the
order otherwise loyals agree on arbitrary action

37

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

38

3 Processes: 1 traitor, 2 loyals

Commander

Lieutenant Lieutenant

attack attack

he said: retreat

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

39

Commander

Lieutenant Lieutenant

attack retreat

he said: retreat

3 Processes: 1 traitor, 2 loyals

=> 3 processes not sufficient to tolerate 1 traitor

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

40

4 Processes Commander

Lieutenant 1 Lieutenant

attack attack

Lieutenant

attack

He said:
attack

He said:
retreat

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q2/MODEL 2: “BYZANTINE AGREEMENT”

41

Commander

Lieutenant 1 Lieutenant 3

x z

Lieutenant 2

y

He said:
y

He said:
z

all lieutenant receive x,y,z => can decide

General result: 3 f + 1 processes needed to tolerate f traitors

4 Processes

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

THIS LECTURE’S QUESTIONS

Q1: Is it possible to build arbitrarily reliable Systems out
of unreliable components?

Q2: Can we achieve consensus in the presence of faults
(consensus: all non-faulty components agree on action)?

Q3: Is there an algorithm to determine for a system with
a given setting of access control permissions, whether or
not a Subject A can obtain a right on Object B?

2 Models per Question !

42

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

Q3: ACCESS CONTROL

Q3: Is there an algorithm to determine for a system with a
given setting of access control permissions, whether or not
a Subject A can obtain a right on Object B?

given a system of entities, acting as subjects and objects
subjects performs operations on objects

dynamic: subjects and objects are created and deleted

access control permissions between entities
can be changed according to some rules

43

TU Dresden, Hermann Härtig, Distributed Operating Systems, SS2020 Modeling Distributed Systems

THE GENERAL IDEA

higher level models:
- Bell La Padula,

- Chinese wall

access control:

1) ACM-based operations

2) take grant

44

…

Model

Model M

Property

Refinement

Refinement

Reasoning

Reasoning

ReasoningOperating S

Subjects: S
Objects: O
Entities: E = S ∪ O

Rights: {read, write, own,…}
Matrix: S x E x R

Simple ACM Operations:
enter / delete R into cell (s,o)
create subject / object
destroy subject / object

45TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

MECHANISMS: ACCESS CONTROL MATRIX

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2

ACM

Access Control List
(ACL)

Capabilities

46TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

OS MECHANISMS: ACL & CAPS

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/MODEL 1: ACL & “LEAKAGE”

Define Protection Mechanisms of an Operating System
in terms of sequences of simple ACM operations

only such defined mechanism provided by the OS can
used to manipulate ACM

47ref MB: chapter 2.2

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/MODEL 1: ACL & “LEAKAGE”

“Leakage”:
an access right is placed into S/O that has not been
there before
it does not matter whether or not that is allowed

Is leakage decidable ?

48ref MB: chapter 3

Define OS-Mechanisms by
simple ACM-Operations:

example:
UNIX create file (S1,F)
 create object
 enter own into A(S1,F)
 enter read into A(S1,F)
 enter write into A(S1,F)

49TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/MODEL 1: ACL & “LEAKAGE”

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3 r,w r w —-

F
r,w, own

—

—

ref MB: chapter 2.2

Example:

UNIX chmod -w (S2,F)
 if own ∊ A(caller,F)
 then delete w in A(S2,F)

50TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/MODEL 1: ACL & “LEAKAGE”

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3 r,w r w —-

F
r,w, own

r,w

—

r,-

Q3:
Given an OS with a ACM-based description of protection mechanisms
is “Leakage” decidable for any R in A(x,y) ?

ref MB: chapter 2.2

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/MODEL 1: DECIDABILITY OF LEAKAGE

Decidable

no subjects/objects can be created

only one primitive ACM operation per OS-Mechanism

 by exhaustive search !

Q3 in general:

undecidable (proof: reduction to Turing machine)

51ref MB: chapter 3

or

ACM

Access Control List
(ACL)

Capabilities

52TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

OS MECHANISMS: ACL & CAPS

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

S2O1
r,w,ownS1

O2 S1

S2 r,w

r,w

r,w,own

r,w,own

—

—-

r,w,own

S3

S3 r,w r w —-

r,w

r

r,w,own

ref MB: chapter 2.2

Directed Graph:
Subjects:
Objects:
Either S or O:

x has capability on Y
with set of rights ! on y:

53TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/MODEL 2: “TAKE GRANT”

X

!
x y

t take right
x has cap with set of rights
" that includes t

t
x y

g
x y

g grant right
x has cap with set of rights
that includes g

Rules:

take rule (!⊆%)

a takes (& to y) from z

grant rule (!⊆%)

54TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/ 2: TAKE GRANT RULES

yz
Xg

x yz
Xg

x
' '

!

ref MB: chapter 3.3

Xt
x yz

Xt
x y

'
!

' Xt
x

!
' Xt

x

!
' Xt

x

!
' Xt

x

!
' Xt

x z

!
' Xt

x

!
' Xt

x

!
'X X

Rules:

create rule

x create (& to new vertex) y

remove rule

x removes (& to) y

55TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/ 2: TAKE GRANT RULES

x x
! X

y

ref MB: chapter 3.3

x y
'

x y
'-!X X

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/M2: FORMALIZED

CanShare(&, x, y, G0):

there exists a sequence of G0 … Gn with G0 ⊢* Gn

and there is an edge in Gn:

56

x y
!

ref MB: chapter 3.3

X

take rule (!⊆%)

a takes (& to y) from z

grant rule (!⊆%)

z grants (& to y) to

Question:

57TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/ 2: CAREFUL: LEMMA
Xt

x yz
Xt

x y
'

!
' Xt

x

!
' Xt

x z

!
' Xt

x

!
' Xt

x

!
' Xt

x

!
' Xt

x

!
' Xt

x

!
'

Xg
x yz

Xg
x yz

' '
!

ref MB: chapter 3.3

Xt
x yz

Xt
x yz

' '
!

*
?

create rule

z takes (g to v) from x

z grants (& to y) to v

58TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/ 2: CAREFUL: LEMMA

Xt
x yz

'
(!⊆%)

ref MB: chapter 3.3

Xx z y
'

v

tg

t

Xx z y
'

v

tg

t
g &

Xx z y
'

v

tg

t
g

Xx z y
'

v

tg

t
g &

&

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

Q3/M2: FORMALIZED

CanShare(&, x, y, G0):

there exists a sequence of G0 … Gn with G0 ⊢* Gn

and there is an edge:

CanShare decidable in linear time !

59

x y
!

ref MB: chapter 3.3

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

TAKE AWAY

three questions, 2 models per question, different answers !!!

modeling is powerful

need to look extremely carefully into understanding

models !!!

60

TU Dresden: Hermann Härtig, Marcus Völp Modeling Computer Security, SS2020

REFERENCES
Q1/M1:
Pfitzmann A., Härtig H. (1982) Grenzwerte der Zuverlässigkeit von Parallel-Serien-Systemen.
In: Nett E., Schwärtzel H. (eds) Fehlertolerierende Rechnersysteme. Informatik-

Fachberichte, vol 54. Springer, Berlin, Heidelberg (in German only)
Q1/M2:
John v. Neuman, PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE. ORGANISMS
FROM UNRELIABLE COMPONENTS.

Q2: most textbooks on distributed systems

Q3: textbook: Matt Bishop, Computer Security, Art and
Science, Addison Wesley 2002

61

