

THIS LECTURE'S QUESTIONS

- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?
- 2 Models per Question!

LIMITS OF RELIABILITY

Q1: Can we build arbitrarily reliable Systems out of unreliable components?

- How to build reliable systems from less reliable components
- Fault(Error, Failure, Fault,)
 terminology in this lecture synonymously used for "something goes wrong"
 (more precise definitions and types of faults in SE)

Reliability:

R(t): probability for a system to survive time t

Availability:

■ A: fraction of time a system works

INGREDIENTS OF FT

- Fault detection and confinement
- Recovery
- Repair
- Redundancy
 - Information
 - time
 - structural
 - functional

WELL KNOWN EXAMPLE

John v. Neumann Voter: *single point of failure*

Can we do better

→ distributed solutions?

Parallel-Serial-Systems

Parallel-Serial-Systems

Parallel-Serial-Systems

Parallel-Serial-Systems

Q1/MODEL1: ABSTRACT RELIABILITY MODEL

Serial-Systems

Each component must work for the whole system to work.

Q1/MODEL1: ABSTRACT MODEL

Parallel-Systems

$$R_{whole} = 1 - \prod_{i=1}^{m} \left(1 - R_i\right)$$

One component must work for the whole system to work.

Each component must fail for the whole system to fail.

Q1/MODEL1: ABSTRACT MODEL

Serial-Parallel-Systems

$$R_{whole} = 1 - \prod_{j=1}^{m} \left(1 - \prod_{i=1}^{n} R_{i,j} \right)$$

Parallel-Serial-Systems

Fault Model

"Computer-Bus-Connector" can fail such that Computer and/or Bus also fail

=>

conceptual separation of components into

Computer, Bus: can fail per se

CC: Computer-Connector fault also breaks the Computer

BC: Bus-Connector fault also breaks Bus

Q1/MODEL1: CONCRETE MODEL FOR N, M

$$R_{whole}(n,m) = \left(1 - \left(1 - R_{Bus} \cdot R_{BC}^n\right)^m\right) \cdot \left(1 - \left(1 - R_{Computer} \cdot R_{CC}^m\right)^n\right)$$

then:
$$R_{CC}$$
, R_{BC} <1: $\lim_{n,m\to\infty} R(n,m) =$

- System built of Synapses (John von Neumann, 1956)
- Computation and Fault Model:
 - Synapses deliver "0" or "1"
 - Synapses deliver with R > 0,5:
 - with probability R correct result
 - with (1-R) wrong result
- Then we can build systems that deliver correct result for any (arbitrarily high) probability R

THIS LECTURE'S QUESTIONS

- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?
- 2 Models per Question!

Q2: Can we achieve consensus in the presence of faults all non-faulty components agree on action?

- all correctly working units agree on result/action
- agreement non trivial (based on exchange of messages)

Q2/MODEL 1: "2 ARMY PROBLEM"

- p,q processes
 - communicate using messages
 - messages can get lost
 - no upper time for message delivery known
 - do not crash, do not cheat
- p,q to agree on action (e.g. attack, retreat, ...)
- how many messages needed?

first mentioned: Jim Gray 1978

Q2/MODEL 1: "2 ARMY PROBLEM"

Result: there is no protocol with finite messages Prove by contradiction:

- assume there are finite protocols (mp--> q, mq --> p)*
- choose the shortest protocol MP,
- last message MX: mp --> q or mq --> p
- MX can get lost
- = => must not be relied upon => can be omitted
- = => MP not the shortest protocol.
- = > no finite protocol

n processes, f traitors, n-f loyals

- communicate by reliable and timely messages (synchronous messages)
- traitors lye, also cheat on forwarding messages
- try to confuse loyals

Goal:

- loyals try to agree on non-trivial action (attack, retreat)
- non-trivial more specific:
 - one process is commander
 - if commander is loyal and gives an order, loyals follow the order otherwise loyals agree on arbitrary action

3 Processes: 1 traitor, 2 loyals

3 Processes: 1 traitor, 2 loyals

=> 3 processes not sufficient to tolerate 1 traitor

all lieutenant receive x,y,z => can decide

General result: 3 f + 1 processes needed to tolerate f traitors

THIS LECTURE'S QUESTIONS

- Q1: Is it possible to build arbitrarily reliable Systems out of unreliable components?
- Q2: Can we achieve consensus in the presence of faults (consensus: all non-faulty components agree on action)?
- Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?
- 2 Models per Question!

Q3: ACCESS CONTROL

Q3: Is there an algorithm to determine for a system with a given setting of access control permissions, whether or not a Subject A can obtain a right on Object B?

- given a system of entities, acting as subjects and objects subjects performs operations on objects
- dynamic: subjects and objects are created and deleted
- access control permissions between entities can be changed according to some rules

THE GENERAL IDEA

higher level models:

- Bell La Padula,
- Chinese wall

access control:

- 1) ACM-based operations
- 2) take grant

MECHANISMS: ACCESS CONTROL MATRIX

Subjects: S

Objects: O

Entities: $E = S \cup O$

Rights: {read, write, own,...}

Matrix: SxExR

Simple ACM Operations:

enter / delete R into cell (s,o) create subject / object destroy subject / object

OS MECHANISMS: ACL & CAPS

ACM

Access Control List(ACL)

Capabilities

- Define Protection Mechanisms of an Operating System in terms of sequences of simple ACM operations
- only such defined mechanism provided by the OS can used to manipulate ACM

- "Leakage":

 an access right is placed into S/O that has not been there before
 it does not matter whether or not that is allowed
- Is leakage decidable?

Define OS-Mechanisms by simple ACM-Operations:

example:

UNIX create file (S1,F)

create object

enter own into A(S1,F)

enter read into A(S1,F)

enter write into A(S1,F)

Example:

```
UNIX chmod -w (S2,F)

if own ∈ A(caller,F)

then delete w in A(S2,F)
```


Q3:

Given an OS with a ACM-based description of protection mechanisms is "Leakage" decidable for any R in A(x,y)?

Q3/MODEL 1: DECIDABILITY OF LEAKAGE

Decidable

- no subjects/objects can be created
- or only **one** primitive ACM operation per OS-Mechanism by exhaustive search!

Q3 in general:

undecidable (proof: reduction to Turing machine)

OS MECHANISMS: ACL & CAPS

ACM

Access Control List(ACL)

Capabilities

W

r,w

S3

r,w,own

Q3/MODEL 2: "TAKE GRANT"

Directed Graph:

Subjects:

Objects:

Either S or O: 🛇

t take right

x has cap with set of rights

τ that includes t

x has capability on Y with set of rights α on y:

g grant right

x has cap with set of rights

y that includes g

Q3/2: TAKE GRANT RULES

Rules:

take rule $(\alpha \subseteq \beta)$

a takes (α to y) from z

grant rule (α⊆β)

Q3/2: TAKE GRANT RULES

Rules:

create rule

x create (α to new vertex) y

remove rule

x removes (α to) y

Q3/M2: FORMALIZED

CanShare(α , x, y, G₀):

there exists a sequence of Go ... Gn with Go +* Gn

and there is an edge in Gn:

$$\begin{array}{c} \alpha \\ \times \\ \times \\ \times \\ \end{array}$$

Q3/2: CAREFUL: LEMMA

take rule $(\alpha \subseteq \beta)$

a takes (α to y) from z

grant rule (α⊆β)

z grants (α to y) to

Question:

Q3/2: CAREFUL: LEMMA

 $(\underline{\alpha} \subseteq \underline{\beta})$

create rule

z takes (g to v) from x

z grants (α to y) to v

Q3/M2: FORMALIZED

CanShare(α , x, y, G₀):

there exists a sequence of G_0 ... G_n with $G_0 \vdash^* G_n$

and there is an edge:

CanShare decidable in linear time!

- three questions, 2 models per question, different answers !!!
- modeling is powerful
- need to look extremely carefully into understanding models !!!

REFERENCES

Q1/M1:

Pfitzmann A., Härtig H. (1982) Grenzwerte der Zuverlässigkeit von Parallel-Serien-Systemen. In: Nett E., Schwärtzel H. (eds) Fehlertolerierende Rechnersysteme. Informatik-

Fachberichte, vol 54. Springer, Berlin, Heidelberg (in German only)

Q1/M2:

John v. Neuman, PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE. ORGANISMS FROM UNRELIABLE COMPONENTS.

- Q2: most textbooks on distributed systems
- Q3: textbook: Matt Bishop, Computer Security, Art and Science, Addison Wesley 2002