
HERMANN HÄRTIG, SUMMER 2019

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

“TRUSTED” COMPUTING

DISTRIBUTED OPERATING SYSTEMS

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Lecture Goals
Understand principles of:

Authenticated booting, relation to (closed) secure
booting

Remote attestation

Sealed memory

Dynamic root of trust, late launch

Protection of applications from the OS

Point to implementation variants (TPM, iSGX, ARM-TZ)

�2

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Lecture NON-Goals

Non-Goal:

Lots of TPM, TCG, Trustzone, SGX details  
→ read the documents once needed

�3

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Some Terms
Secure Booting

Authenticated Booting

(Remote) Attestation

Sealed Memory

Late Launch / dynamic root of trust

Trusted Computing (Group) / Trusted Computing Base

Beware of terminology chaos !
�4

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Trusted Computing (Base)

Trusted Computing Base (TCB)

The set off all components,  
hardware, software, procedures,  
that must be relied upon to enforce a security policy.

Trusted Computing (TC)

A particular technology comprised of authenticated
booting, remote attestation and sealed memory.

�5

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

TC Key Goals
Can running certain Software be prevented?

Which computer system do I communicate with ?

Which stack of Software is running?
In front of me?

On my server somewhere?

Restrict access to certain secrets (keys) to certain
software?

Protect an application against the OS

�6

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Usage Examples (1)
Digital Rights Management:

Provider sells content

Provider creates key, encrypts content

Client downloads encrypted content, stores on disk

Provider sends key, but needs to ensure that only specific
SW can use it

Has to work also when client is off line

PROVIDER DOES NOT TRUST CUSTOMER

�7

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Usage Examples (2)

Virtual machine provided by cloud

Client buys Cycles + Storage (Virtual machine)

Client provides its own operating system

Needs to ensure that provided OS runs

Needs to ensure that provider cannot access data

CUSTOMER DOES NOT TRUST PROVIDER

�8

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Usage Examples (3)

Industrial Plant Control (Uranium enrichment)

Remote Operator sends commands, keys

Local operator occasionally has to run test SW, 
update to new version, ...

Local technicians are not Trusted

�9

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Usage Examples (4)

Anonymity Service

Intended to provide anonymous communication over
internet

Legal system can request introduction of trap door
(program change)

Anonymity-service provider not trusted

�10

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Trusted Computing Terminology
Measuring

“process of obtaining metrics of platform characteristics”

example for metric: Hash- Codes of SW

Attestation

 “vouching for accuracy of information”

Sealed Memory

binding information to a configuration

�11

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Notation
■ H(M)  

Collision-Resistant Hash Function H  
applied to content M  

■ Spair: Spriv Spub  
 Asymmetric key pair of entity S  
used to conceal or sign some content  
Spub is published, Spriv must be kept secret  

■ Ssymm  

symmetric key, must be kept secret (“secret key”)

�12

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Notation

■ “Digital Signature”: { M } Spriv  
 Spub can be used to verify that S has signed M  
 is short for: (M, encrypt(H(M), Spriv)) 
 Spub is needed and sufficient to check signature 

■ “Concealed Message”: { M } Spub  
 Message concealed for S 
 Spriv is needed to unconceal M

�13

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Identification of Software
Program vendor: Foosoft FS

Two ways to identify Software: Hash / Public Key

H(Program)

{Program, ID- Program}FSpriv  
use FSpub to check  
the signature must be made available,  
e.g. shipped with the Program

The „ID” of SW must be known.  
H(Program) and FSpub can serve as ID.

�14

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Tamperresistant Black Box(TRB)

�15

CPU

Memory

Non-Volatile Memory 
(NVM)

Platform Configuration Regs 
(PCR)

TRB

Conceptional

View

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Ways to “burn in” the OS or “Secure Booting”

Read-Only Memory (Flash)

H(OS) in NVM preset by manufacturer
load OS- Code

compare H(loaded OS code) to preset H(OS)

abort if different

FSpub in NVM preset by manufacturer
load OS- Code

check signature of loaded OS-Code using FSpub

abort if check fails

�16

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Authenticated Booting, using HASH

Steps:

A. Preparation by TRB and OS Vendors

B. Booting & “Measuring”

C. Remote attestation

�17

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Tamperresistant Black Box(TRB)

�18

CPU

Memory

NVM:

PCR:TRB

Conceptional

View

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Tamperresistant Black Box(TRB)

�19

NVM:

PCR:

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

TRB Vendor

�20

NVM:

PCR:

EKprivTRB generates key pair:

„Endorsement Key“ EKpair

stores EKpriv in TRB NVM

publishes EKpub

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

TRB and OS vendor

TRB vendor certifies:  
{“a valid EK”, EKpub}TRB_Vendorpriv

OS-Vendor certifies:  
{„a valid OS“, H(OS)}OS_Vendorpriv

serve as identifiers:  
EKpub and H(OS)

�21

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Booting

�22

NVM:

PCR:

EKpriv

TRB:

resets TRB !

measures OS code H(OS)

stores H(OS) in PCR

PCR not (directly) writable by OS

more later

H(OS)

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Attestation (first basic explanation)

�23

NVM:

PCR:

EKpriv
Challenge:

send NONCE

H(OS)

Response:

{NONCE’, PCR}EKpriv

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

■ boot Linux 
 challenge 
 response “Linux” 

  
 send data

Problem

�24

add one step of indirection:

create keypairs at each reboot

■ boot Linux 
 challenge 
 response “Linux” 

■ reboot Windows 
 send data

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Booting (Considering Reboot)
At booting, TRB :

computes H(OS) and stores in PCR

creates 2 keypairs for the booted, “active” OS (like “Session key”):
ActiveOSAuthpair /* for Authentication

ActiveOSConspair /* for Concellation

certifies:  
{ ActiveOSAuthKpub,ActiveOSConsKpub, H(OS)} EKpriv

hands over ActiveOSKeys to booted OS

�25

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Attestation (Considering Reboot)
Remote Attestation:

Challenge: nonce

Active OS generates response: 
{ ActiveOSConspub, ActiveOSAuthpub, H(OS)}EKpriv  
 /* see previous slide  
{nonce'} ActiveOSAuthpriv

Secure channel:  
 { message } ActiveOSConspub 

�26

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Assumptions

TRB can protect: EKpriv, PCR 
OS can protect: “Active OS keys”

Rebooting destroys content of
PCR

Memory Holding “Active OS keys”

�27

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Software Stacks and Trees

�28

ROOT

Boot-Loader

OS-Kernel

GUI et al.

Application

ROOT

Boot-Loader

OS-Kernel

GUI et al.

Application

GUI et al.

Application

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Software Stacks and Trees

2 Concerns:

Very large Trusted Computing Base for Booting  
(including Device Drivers etc)

Remote attestation of one process (leaf in tree)

�29

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Software Stacks and Trees

“Extend” Operation:

stack: PCRn = H(PCRn-1 || next-component)

tree: difficult (“hearsay”: possible, unpublished ?)

�30

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Software Stacks and Trees

Key pairs per step:

OS controls applications →  
generate key pair per application

OS certifies
{ Application 1, App1Kpub } ActiveOSAuthpriv

{ Application 2, App2Kpub } ActiveOSAuthpriv

�31

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Late Launch/Dynamic Root of Trust

Problem: huge Software to boot system !!!

Use arbitrary SW to start system and load all SW

provide specific instruction to enter “secure mode”
set HW in specific state (stop all processors, IO, …)

Measure “root of trust” SW and store in PCR  

AMD: “skinit” (Hash) arbitrary root of trust

Intel: “senter” (must be signed by chip set manufacturer)

�32

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory

Goal:

Send information using secure channels

Bind that information to Software configuration

Work offline: 
How to store information in the absence of
communication channels?

For example DRM: 
bind encryption keys to specific machine, specific OS

�33

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory Principle

�34

PCR: 
H(OS)

Win 7

SUSE-Linux

L4-Test-Version

Add / delete entry  
Read / writeTamper-Resistant Black Box

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory Principle

�35

PCR: 
H(OS)

Win 7

SUSE-Linux

L4-Test-Version

Add / delete entry  
Read / writeTamper-Resistant Black Box

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory Principle

�36

PCR: 
H(OS)

Win 7

SUSE-Linux

L4-Test-Version

Add / delete entry  
Read / writeTamper-Resistant Black Box

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory Principle

�37

PCR: 
H(OS)

Win 7

SUSE-Linux

L4-Test-Version

Add / delete entry  
Read / writeTamper-Resistant Black Box

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Sealed Memory: Seal Operation

�38

PCR: 
H(Win-7)

Message

Tamper-resistant black box

Win 7

SUSE-Linux

L4-Test-Version

Sealed Message

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Implementation

�39

NVM:

PCR:

EKpriv

H(OS)

Storagesymm:
TRB generates

symmetric Storage Key

never leaves chip

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory
Seal(message): 
 encrypt(“PCR, message”, S) → “sealed_message”;

 emit sealed_message  

Unseal(sealed_message): 
 decrypt(sealed_message, S) → “SealTime_PCR,message”; 
 If SealTime_PCR == PCR  
 then emit message  
 else abort

�40

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Sealed Memory for future configuration

Seal(message, FUTURE_Config):  
 encrypt(“FUTURE_Config, message”, S) → “sealed_message”;  
 emit sealed_message  

“seals” information such that it can be unsealed by a future
configuration  
(for example: future OS version)

�41

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Example
Win8: Seal („SonyOS, Sony-Secret“)  
 → SealedMessage (store it on disk)

L4: Unseal (SealedMessage)  
 → SonyOS, Sony-Secret  
 → PCR#SonyOS  
 → abort

SonyOS: Unseal(SealedMessage  
 → SonyOS, Sony-Secret  
 → PCR==SonyOS  

�42

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Tamper Resistant Box ?
Ideally, includes CPU, Memory, …

Current practice
Additional physical protection, for example IBM 4758 …  
look it up in Wikipedia

HW support:
TPM: 
separate “Trusted Platform Modules” (replacing BIOS breaks TRB)
Add a new privilege mode: ARM TrustZone
raise to user processes: Intel SGX

�43

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

Protection of Application

Principle Method: 
 separate critical Software  
 rely on small Trusted Computing Base

Small OS kernels  
micro kernels, separation kernels, ….

Hardware/Microcode Support

�44

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Small Trusted Computing Base

�45

Hardware

Linux
X11

App. APP

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Small Trusted Computing Base

�46

Mini OS

Hardware

Linux
X11

App.

Helper

App.

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Small Trusted Computing Base

�47

Hardware

Linux
X11

App.

Helper

App.

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

TCG PC Platforms: “Trusted Platform Module” (TPM)

�48

CPU Memory

BIOS TPM

FSB
PCI
LPC

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

TPM

�49

IO

NV Store PCK EK / AIK Internal  
Program

SHA-1 RSA Key gen Random  
number

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

Small Trusted Computing Base

�50

Mini OS

Hardware

Linux
X11

App.

Helper

App.

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

ARM TrustZone

�51

Monitor

Hypervisor

Kernel Trusted OS

User Trusted Services

Secure WorldNormal World

Kernel

User

PL2

PL1

PL0

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

intel SGX

�52

Hardware

Linux
X11

App.

Helper

Intel

SGX

App.

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

intel SGX

�53

CPU

Memory

Non-Volatile Memory 
(NVM):

Platform Configuration Regs 
(PCR):TRB

Conceptional

View

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

intel SGX

�54

CPU

Memory

Crypto HW “External”

Memory

bound to  
application “enclaves”

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

intel SGX

“Enclaves” for Applications:

established per special new instruction

measured by HW

provide controlled entry points

resource management via untrusted OS

�55

Distributed Operating Systems, “Trusted Computing”, SS 2019TU Dresden: Hermann Härtig

iPhone

�56

Hardware

IOS-Kernel
GUI

App.

L4

Security CPU

App.App.

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

References

Important Foundational Paper: 
 
Authentication in distributed systems: theory and practice 
Butler Lampson, Martin Abadi, Michael Burrows, Edward
Wobber 
ACM Transactions on Computer Systems (TOCS)

�57

TU Dresden: Hermann Härtig Distributed Operating Systems, “Trusted Computing”, SS 2019

More References

TCG Specifications:https://
www.trustedcomputinggroup.org/groups/
TCG_1_3_Architecture_Overview.pdf

ARM Trustzone & Intel SGX  
vendor sources

�58

