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SRR
DRESDEN Concurrent programs

: ~inti;

global variables: int k:
if (i>1) k= 3; if (k ==0) k =4;
mov $1, [%:i] lock;inc [%i]
cmp [%i], $1 cmp [%k], $0
jgt  end || jne end

mov $3, [%Kk] mov $4, [%Kk]
end: end:
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pResbeN ~ SUMMary: Memory Organization

e Multiple processors share memory

e Memory access paths through one or more controllers
- UMA (Uniform Memory Access)
— NUMA (Non-Uniform Memory Access)

e Caches / store buffers hold memory content near
accessing CPUs.
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e Caches lead to multiple copies for the content of a
single memory location

e Cache Coherency keeps copies “consistent”
— locate all copies
— invalidate/update content

e Write Propagation

writes must eventually become visible to all
processors.

e Write Serialization

every processor should see writes to the same
location in the same order.
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BR"E‘Q%RESJTKT Alternative Definition: SWMR

Single-Writer, Multiple-Reader Invariant
For any memory location A, at any given time,

either only a single core may write (or read-modify-
write) the content of A

or any number of cores may read the content of A.

Data-Value Invariant

The value of a memory location at the start of an
operation is the same as the value at the end of its
last write (read-modify-write) operation.

[based on Sorin et al., 2011]
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CPUO: read x
CPUO CPU1 x=0 stored in cache

CPU1l: read x
CPU1l: read x

x=0 stored in cache
Write not visible to CPU1! x=0 retrieved from cache

CPUO: write x=1

x=1 stored in cache
x=1 stored in memory
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CPUO: read x

x=0 stored in cache

CPUO CPU1 CPU1: read x

x=0 stored in cache

CPUO: write x=1

x=1 stored in cache

CPU1: write x=2
x=2 stored in cache

CPU1: writeback

x=2 stored in memory

Later store x=2 lost! CPUO: writeback

x=1 stored in memory
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prespeN  Coherency Problems & Solutions

Both examples violate SWMR!

Problem 1
CPU1 used stale value that had already been modified by CPUO.
— Solution: Invalidate copies before write proceeds!

Problem 2

Incorrect writeback order of modified cache lines.
— Solution: Disallow more than one modified copy!
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prespeN  COoherency Protocol Design Space

e Snooping-based
— All coherency related traffic broadcasted to all CPUs
— Each processor snoops and acts accordingly:
e Invalidate lines written by other CPUs
e Signal sharing for lines currently in cache
— Straightforward for bus-based systems
— Suited for small-scale systems

e Directory-based
— Uses central directory to track cache line owner
— Update copies in other caches

e Can update all CPUs at once
(less traffic for alternating reads and writes)

e Multiple writes need multiple updates
(more traffic for subsequent writes)

— Suited for large-scale systems
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e Snooping-based vs. Directory-based
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prespeN  1Nvalidation vs. Update Protocols

e Invalidation-based

— Only write misses hit bus (suited for WB caches)

— Subsequent writes are write hits

— Good for multiple writes to same cache line by same CPU
e Update-based

— All shares of a cache line continue to hit in the cache after
a write by one CPU

— Otherwise lots of useless updates (wastes bandwidth) —
Rarely used!

e Hybrid forms are possible!
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Modified (M)
— No copies on other caches; local copy modifed
— Memory is stale
e Shared (S)
— Unmodified copies in one or more caches
— Memory is up-to-date
e Invalid (I)
— Not in cache

e States tracked from the view of the cache controller.
Sees events from:
— Local processor — processor transactions
— Other processors — snoop transactions
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State is I, CPU reads (PrRd)

— Generate bus read request (BusRd)

- Goto S

State is S or M, CPU reads (PrRd)

— No transition

State is S, CPU writes (PrWr)

— Upgrade cache line for exclusive ownership (BusRdX)
- Goto M

State is M, CPU writes (PrWr)

— No transition
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e Receiving a read snoop (BusRd) for a cache line
- If M, write cache line back to memory (WB), transition to S
- If S, no transition

e Receiving a exclusive ownership snoop (BusRdX)

— If M, write cache line back to memory (WB), discard it,
transition to I

- If S, discard cache line, transition to I
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MSI State Transitions
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DRESDEN Problems in MSI

A common usecase is to:

— read variable A: S
- Modify A: BusRdX sent, S - M

Invalidation message pointless, if no other cache holds A.

Solved by adding Exclusive (E) state:
— No copies exist in other caches
— Memory is up-to-date

Variants of MESI are used by most popular
MIiCroprocessors.
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Similar to MESI, with some extensions

e (Cache-to-Cache transfers of modified cache lines

— Modified cache lines not written back to memory, but
supplied by to other CPUs on BusRd

— CPU that had initial modified copy becomes “owner”
e Avoids writeback to memory when another CPU
accesses cache line

- Beneficial when cache-to-cache latency/bandwidth is
better than cache-to-memory latency/bandwidth

e Used by AMD Opteron
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e Bus only connected to last-level cache (e.g. L2)
— Snoop requests are relevant to inner-level caches (e.g. L1)
— Modifications in L1 may not be visible to L2 (and the bus)

e Idea: L2 forwards filters transactions for L1:
— On BusRd check if line is M/O in L1 (may be S or Ein L2)
— On BusRdX, send invalidate to L1

e Only easy for inclusive caches!

e Inclusion property

Outer cache contains a superset of the content of its inner
caches.
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