TECHNISCHE
@ UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Distributed Operating Systems

Cache Coherence

Marcus Volp

(slides Julian Stecklina, Marcus Vélp)

SISPAREZ

SRR
DRESDEN Concurrent programs

: ~inti;

global variables: int k:
if (i>1) k= 3; if (k ==0) k =4;
mov $1, [%:i] lock;inc [%i]
cmp [%i], $1 cmp [%k], $0
jgt end || jne end

mov $3, [%Kk] mov $4, [%Kk]
end: end:

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 2

TECHNISCHE

Qe S etric Multiprocessor (SMP)

Processors

Local
Caches

Bus or
Crossbar

Shared
Memory

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 3

TECHNISCI&E
Qe i Multiprocessor (CMP), Multicore

Processors

Local Cache

Shared
LL-Cache

Bus or
Crossbar

Shared
Memory

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 4

rcennscie DY mMmetric Multithreading (SMT),
WEE™ Hyperthreading

TU Dresden, 5.05.2014

Distributed Operating Systems

Processors

Local Cache

Shared
LL-Cache

Bus or
Crossbar

Shared
Memory

Slide 5

TECHNISCI%E
BEE‘Q%“ESJ” Non-Uniform Memory Access (NUMA)

General
Interconnect

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 6

TECHNISCHE

QWS MA Example: Tilera Gx

..|/\|..

I'I.I'Iemury Controller I'ulemuly Confr oller

..'I'"I"I"'I"I'"I"I"I'."l

A
ey -I-.-I-.-I'.'I

S

- II'I I.. IIII .' -:

Sy

4 .'II" 'I' 'I" IIII + 'I'.'I'.'I'.'I

..'Illlllll"l"lllll'l"l
'I' 'I- 'I' 'I' & 'I'.'I'.'I'.'I_
iiil iiii

Memory Controller Memory Controller

L1 1L

Source: http://tilera.com

(::j Complete 64-bit cores
with integrated cache

n [o S o s
=

..ﬁ"'"r.

..I-"'"I‘:..
11k

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 7

SRR
pResbeN ~ SUMMary: Memory Organization

e Multiple processors share memory

e Memory access paths through one or more controllers
- UMA (Uniform Memory Access)
— NUMA (Non-Uniform Memory Access)

e Caches / store buffers hold memory content near
accessing CPUs.

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 8

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Cache Coherency

HT"
HT1

HT>

HT3

TU Dresden, 5.05.2014

set

Distributed Operating Systems

address

tag

idx

ofs

/\

tag data
RAM RAM
o—]

Slide 9

UNIVERSITAT
DRESDEN Cache Coherency

e Caches lead to multiple copies for the content of a
single memory location

e Cache Coherency keeps copies “consistent”
— locate all copies
— invalidate/update content

e Write Propagation

writes must eventually become visible to all
processors.

e Write Serialization

every processor should see writes to the same
location in the same order.

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 10

TECHNISCHE

BR"E‘Q%RESJTKT Alternative Definition: SWMR

Single-Writer, Multiple-Reader Invariant
For any memory location A, at any given time,

either only a single core may write (or read-modify-
write) the content of A

or any number of cores may read the content of A.

Data-Value Invariant

The value of a memory location at the start of an
operation is the same as the value at the end of its
last write (read-modify-write) operation.

[based on Sorin et al., 2011]

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 11

TECHNISCI;_E
BE'E‘Q%RESJ” Attempt 1: write through all caches

CPUO: read x
CPUO CPU1 x=0 stored in cache

CPU1l: read x
CPU1l: read x

x=0 stored in cache
Write not visible to CPU1! x=0 retrieved from cache

CPUO: write x=1

x=1 stored in cache
x=1 stored in memory

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 12

TECHNISCHE
QBT Ao ot 21 write back

CPUO: read x

x=0 stored in cache

CPUO CPU1 CPU1: read x

x=0 stored in cache

CPUO: write x=1

x=1 stored in cache

CPU1: write x=2
x=2 stored in cache

CPU1: writeback

x=2 stored in memory

Later store x=2 lost! CPUO: writeback

x=1 stored in memory

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 13

Y
prespeN Coherency Problems & Solutions

Both examples violate SWMR!

Problem 1
CPU1 used stale value that had already been modified by CPUO.
— Solution: Invalidate copies before write proceeds!

Problem 2

Incorrect writeback order of modified cache lines.
— Solution: Disallow more than one modified copy!

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 14

ONIVERSITAT
prespeN COoherency Protocol Design Space

e Snooping-based
— All coherency related traffic broadcasted to all CPUs
— Each processor snoops and acts accordingly:
e Invalidate lines written by other CPUs
e Signal sharing for lines currently in cache
— Straightforward for bus-based systems
— Suited for small-scale systems

e Directory-based
— Uses central directory to track cache line owner
— Update copies in other caches

e Can update all CPUs at once
(less traffic for alternating reads and writes)

e Multiple writes need multiple updates
(more traffic for subsequent writes)

— Suited for large-scale systems

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 15

TECHNISCHE
UNIVERSITAT

prespeN COoherency Protocol Design Space

e Snooping-based vs. Directory-based

CPUO

TU Dresden, 5.05.2014

CPU1

CPUO

Distributed Operating Systems

CPU1

Slide 16

SRR
prespeN 1Nvalidation vs. Update Protocols

e Invalidation-based

— Only write misses hit bus (suited for WB caches)

— Subsequent writes are write hits

— Good for multiple writes to same cache line by same CPU
e Update-based

— All shares of a cache line continue to hit in the cache after
a write by one CPU

— Otherwise lots of useless updates (wastes bandwidth) —
Rarely used!

e Hybrid forms are possible!

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 17

TECHNISCHE
UNIVERSITAT

prespeN A Basic Coherency Protocol: MSI

Modified (M)
— No copies on other caches; local copy modifed
— Memory is stale
e Shared (S)
— Unmodified copies in one or more caches
— Memory is up-to-date
e Invalid (I)
— Not in cache

e States tracked from the view of the cache controller.
Sees events from:
— Local processor — processor transactions
— Other processors — snoop transactions

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 18

SRR
DRESDEN MSI: Processor Transitions

State is I, CPU reads (PrRd)

— Generate bus read request (BusRd)

- Goto S

State is S or M, CPU reads (PrRd)

— No transition

State is S, CPU writes (PrWr)

— Upgrade cache line for exclusive ownership (BusRdX)
- Goto M

State is M, CPU writes (PrWr)

— No transition

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 19

RS
DRESDEN MSI: Snoop Transitions

e Receiving a read snoop (BusRd) for a cache line
- If M, write cache line back to memory (WB), transition to S
- If S, no transition

e Receiving a exclusive ownership snoop (BusRdX)

— If M, write cache line back to memory (WB), discard it,
transition to I

- If S, discard cache line, transition to I

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 20

TECHNISCHE
@ UNIVERSITAT
DRESDEN

MSI State Transitions

PrWr — BusRdX

BusRd
BusRdX

TU Dresden, 5.05.2014

PrWr
PrRd

PrWr — BusRdX

PrRd
BusRd — WB

BusRdX — WB BusRd
BusRdX
PrRd — BusRd

Distributed Operating Systems

Snoop
Transitions

Processor
Transitions
Slide 21

IEeses
DRESDEN Problems in MSI

A common usecase is to:

— read variable A: S
- Modify A: BusRdX sent, S - M

Invalidation message pointless, if no other cache holds A.

Solved by adding Exclusive (E) state:
— No copies exist in other caches
— Memory is up-to-date

Variants of MESI are used by most popular
MIiCroprocessors.

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 22

TECHNISCH_E
Q) NVERsIBT 2o 1 State Transitions

PrWr

PrWr — BusRdX

PrWr — BusRdX BUSRd — WB

BusRd — HIT

BusRdX — WB
BusRdX

BusRd — HIT
BusRdX

PrRd — BusRd (HIT)

Snoop
= Transitions

—

Processor
Transitions
TU Dresden, 5.05.2014 Distributed Operating Systems Slide 23

TECHNISCH_E
W™\ 0EST: Adding Owned to MESI

Similar to MESI, with some extensions

e (Cache-to-Cache transfers of modified cache lines

— Modified cache lines not written back to memory, but
supplied by to other CPUs on BusRd

— CPU that had initial modified copy becomes “owner”
e Avoids writeback to memory when another CPU
accesses cache line

- Beneficial when cache-to-cache latency/bandwidth is
better than cache-to-memory latency/bandwidth

e Used by AMD Opteron

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 24

TECHNISCH_E
Q) NversIit S EST State Transitions

PrRd
PrWr “
PrWr — BusRdX

M O
BusRd — HIT, XFER
Prvr - BusRd — HIT, XFER

PrWr — BUSRdX
PrWwr — BusRdX BusRdX — XFER erd

BusRd — HIT BustX-—>VVB

BusRd — HIT

BusRdX
BusRdX
PrRd — BusRd (!'HIT) PrRd — BusRd (HIT)
Snoop
— —~ Transitions
—_—
EE:ESX I Processor
Transitions

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 25

SRR
prespeN Coherency in Multi-Level Caches

e Bus only connected to last-level cache (e.g. L2)
— Snoop requests are relevant to inner-level caches (e.g. L1)
— Modifications in L1 may not be visible to L2 (and the bus)

e Idea: L2 forwards filters transactions for L1:
— On BusRd check if line is M/O in L1 (may be S or Ein L2)
— On BusRdX, send invalidate to L1

e Only easy for inclusive caches!

e Inclusion property

Outer cache contains a superset of the content of its inner
caches.

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 26

Rl
DRESDEN References

A Primer on Memory Consistency and Cache Coherence
Sorin, Hill, Wood; 2011

atomic<> Weapons: The C++ Memory Model and

Modern Hardware (Video)
Sutter; 2013

Shared memory consistency models: a tutorial
Adve, Gharachorloo; 1996

IA Memory Model

Richard Hudson; Google Tech Talk 2008
Memory Ordering in Modern Microprocessors

McKenney; Linux Journal 2005

How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs
Lamport, 1979

PowerPC Storage Model

TU Dresden, 5.05.2014 Distributed Operating Systems Slide 105

http://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=546611&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=546611&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=546611&tag=1
https://www.youtube.com/watch?v=WUfvvFD5tAA
https://www.youtube.com/watch?v=WUfvvFD5tAA
https://www.youtube.com/watch?v=WUfvvFD5tAA
http://www.linuxjournal.com/article/8211
http://www.linuxjournal.com/article/8211
http://www.linuxjournal.com/article/8211
https://www.ibm.com/developerworks/systems/articles/powerpc.html
https://www.ibm.com/developerworks/systems/articles/powerpc.html

TECHNISCI:I_E
QD INVERSTET | fe e ces

Scheduler-Conscious Synchronization
Leonidas Kontothanassis, Robert Wisniewski, Michael Scott

Scalable Reader- Writer Synchronization for Shared-Memory Multiprocessors
John M. Mellor-Crummey, Michael L. Scottt

Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors
John Mellor-Crummey, Michael Scott

Concurrent Update on Multiprogrammed Shared Memory Multiprocessors
Maged M. Michael, Michael L. Scott

Scalable Queue-Based Spin Locks with Timeout
Michael L. Scott and William N. Scherer lli

TECHNISCI:I_E
QD INVERSTET | fe e ces

Reactive Synchronization Algorithms for Multiprocessors
B. Lim, A. Agarwal

Lock Free Data Structures
John D. Valois (PhD Thesis)

Reduction: A Method for Proving Properties of Parallel Programs
R. Lipton - Communications of the ACM 1975

Decoupling Contention Management from Scheduling (ASPLOS 2010)
F.R. Johnson, R. Stoica, A. Ailamaki, T. Mowry

Corey: An Operating System for Many Cores (OSDI 2008)
Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang

