
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed Operating Systems
SS2010

Multiprocessor Synchronization

using Read-Copy Update

2

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

OutlineOutline

 Basics
– Introduction

– Examples

 Design
– Grace periods and quiescent states

– Grace period measurement

 Implementation in Linux
– Data structures and functions

– Examples

 Evaluation
– Scalability

– Performance

 Conclusion

3

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

IntroductionIntroduction

 Multiprocessor OSs need to synchronize access to
shared data structures

➔ Fast synchronization primitives are crucial for
performance and scalability

 Two important facts about OSs
– Small critical sections

– Data structures with many reads and few writes (updates)

 Goals
– Reducing synchronization overhead

– Reducing lock contention

– Avoiding deadlocks

4

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Synchronization PrimitivesSynchronization Primitives

 Coarse-grained locking
– Spinlock (called 'Big kernel lock' in Linux)

– Reader-writer lock (called 'Big reader lock' in Linux)

 Fine-grained locking
– Spinlock

– Reader-writer lock

– Per-cpu reader-writer lock

 Lock-free synchronization
➔ Fine grained

– Uses atomic operations to update data structures

– Avoids disadvantages of locks

– Hard (to do right) for complex data structures

5

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

'Lockless' Synchronization'Lockless' Synchronization
 Idea

– No locks on reader side

– Locks only on writer side

– Two-phase update protocol

 Prerequisites
– Many readers and few writers on data structure

– Short critical sections

– Data structures support atomic updates

– Stale data tolerance for readers

6

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

DilbertBob

Bob

Example 1: ListExample 1: List

Alice Charly

A B C

WriterReader Reader

Copy & Update Phase

Reclamation Phase

Wait period

D

7

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example 1: ListExample 1: List

key

val
next

key

val
nexthead

struct elem { long key; char *val; struct elem *next; };

struct elem *head; // pointer to first list element

lock_t list_lock; // lock to synchronize access to list

list_lock

8

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example1: List – Read OperationExample1: List – Read Operation

int read(long key)
{
 lock(&list_lock);
 struct elem *p = head→next;
 while (p != head)
 {
 if (p→key == key)
 {
 /* read-only access to p */
 read unlock(&list_lock);
 return OK;
 }
 p = p→next;
 }
 unlock(&list_lock);
 return NOT_FOUND;
}

int read(long key)
{

 struct elem *p = head→next;
 while (p != head)
 {
 if (p→key == key)
 {
 /* read-only access to p */

 return OK;
 }
 p = p→next;
 }

 return NOT_FOUND;
}

9

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example1: List – Write OperationExample1: List – Write Operation
int write(long key, char *val)
{
 struct elem *p = head→next;
 lock(&list_lock);
 while (p != head)
 {
 if (p→key == key)
 {
 /* write-access to p */

 p.val = val;

 unlock(&list_lock);

 return OK;
 }
 prev_p = p; p = p→next;
 }
 unlock(&list_lock);
 return NOT_FOUND;
}

int write(long key, char *val)
{
 struct elem *p = head→next;
 lock(&list_lock);
 while (p != head)
 {
 if (p→key == key)
 {
 /* copy & update */
 struct elem *new_p = copy(p);
 new_p.val = val;
 new_p->next = p→next;
 prev_p->next = new_p;
 unlock(&list_lock);
 wait_for_rcu(); /* wait phase */
 kfree(p); /* reclamation phase */
 return OK;
 }
 prev_p = p; p = p→next;
 }
 unlock(&list_lock);
 return NOT_FOUND;
}

10

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example 2: File-descriptor Table Example 2: File-descriptor Table
ExpansionExpansion

files
data structureold

file-descriptor
tables

new
file-descriptor
tables

Increased size by
FDSET_INC_VALUE

11

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

spin_lock(&files→file_lock);
nfds = files→max_fdset + FDSET_INC_VALUE;
/* allocate and fill new_open_fds */
/* allocate and fill new_close_on_exec */
...
old_openset = xchg(&files->open_fds, new_open_fds);
old_execset = xchg(&files->close_on_exec, new_close_on_exec);
...
nfds = xchg(&files->max_fdset, nfds);
spin_unlock(&files→file_lock);
wait_for_rcu();
free_fdset(old_openset, nfds);
free_fdset(old_execset, nfds);

Example 2: File-descriptor TableExample 2: File-descriptor Table
ExpansionExpansion
 Expansion of file-descriptor table (files)

– Current fixed-size (max_fdset)

– Pointer to fixed-size array of open files (open_fds)

– Pointer to fixed-size array of open files closed on exit
(close_on_exec)

12

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Other ExamplesOther Examples

 Routing cache
– Copy & update phase: change the network routing topology

– Reclamation phase: clear old routing information data

 Network subsystem policy changes
– Copy & update phase: add new policy rules and make old

rules inaccessible

– Reclamation phase: clear data structures of old policy rules

 Hardware configuration
– Copy & update phase: hot-unplug a CPU or device and

remove any reference to the device specific data structures

– Reclamation phase: free the memory of the data structures

 Module unloading
– Copy & update phase: remove all references to the module

– Reclamation phase: remove the module from the system

13

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ImplementationsImplementations

 DYNIX
– UNIX-based operating system from Sequent

 Tornado
– Operating system for large scale NUMA architectures

 K42
– Operating system from IBM for large scale parallel

architectures

 Linux
 L4-based Microkernels: Fiasco, Nova, Pistachio

14

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Two-Phase Update - PrincipleTwo-Phase Update - Principle

 Phase 1: Copy & Update Phase
– Copy relevant data of old state

– Update data to new state

– Make new state visible

– Make old state inaccessible

 Wait period:
– Allow ongoing read operations to proceed on the old state until

completed

 Phase 2: Reclamation Phase
– Remove old (invisible) state of data structure

– Reclaim the memory

15

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Deferred Memory ReclamationDeferred Memory Reclamation

 Problem:
– When to reclaim memory after update pase?

– How long to wait?

 Read-Copy Update uses pessimistic approach:
„Wait until every concurrent read operation has completed and

no pending references to the data structure exist“

16

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Grace Periods and Quiescent StatesGrace Periods and Quiescent States

 Definition of a grace period
– Intuitive: duration until references to data are no longer held

by any thread

– More formal: duration until every CPU has passed through a
quiescent state

 Definition of a quiescent state
– State of a CPU without any references to the data structure

 How to measure a grace period?
– Enforcement: induce quiescent state into CPU

– Detection: wait until CPU has passed through quiescent state

17

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent StateQuiescent State

 What are good quiescent states?
– Should be easy to detect

– Should occur not to frequently or infrequently

 Per-CPU granularity
– OSs without blocking and preemption in read-side critical

sections

– For example: context switch, execution in idle loop, kernel
entry/exit, CPU goes offline

 Per-thread granularity
– OSs with blocking and preemption in read-side critical

sections

– Counting of the number of threads inside read-side critical
sections

➔ Not discussed in this lesson!

18

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Modelling of Critical SectionsModelling of Critical Sections

Thread

 User-level code path of threads are ignored
– Threads execute only in the kernel

 Non-critical sections of threads are ignored
– Threads execute continously critical sections

User mode
Kernel mode

read-side
critical section

write-side
critical section

quiescent
state

quiescent
state

quiescent
state

Kernel mode

19

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

synchronous message
across CPUs

Quiescent State EnforcementQuiescent State Enforcement

CPU4

CPU3

CPU2

CPU1

grace period
start

writer

quiescent
state

quiescent
state

quiescent
state

minimal
grace period

detected
grace period

reclamation phasewait phase

20

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State DetectionQuiescent State Detection

CPU4

CPU3

CPU2

CPU1

grace period
start

minimal and detected and
grace period

quiescent
state

quiescent
state

quiescent
state

writer reclamation phasewait phase

21

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State Detection Using Quiescent State Detection Using
a Bitmaska Bitmask

CPU4

CPU3

CPU2

CPU1

1010

0000

0010

1110

grace period
start

minimal and detected and
grace period

writer reclamation phasewait phase

22

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

How to Make RCU Scalable?How to Make RCU Scalable?

 Observation
– Measuring grace periods adds overheads

 Consequences
– Generate RCU requests using callbacks instead of waiting

– Batching: Measure on grace period for multiple RCU requests

– Maintaining per-CPU request lists

– Measuring of grace periods globally for all CPUs

– Separation of RCU-related data structures into CPU-local and
global data

• CPU-local: quiescent state detection and batch handling

• Global: grace period measurement with CPU-bitmask

– Low overhead for detecting quiescent states

– Minimal overhead if RCU subsystem is idle

23

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Memory Reclamation with RCUMemory Reclamation with RCU

 Memory reclamation is most important use case
– Recall single-linked list example

 Waiting for end of grace period blocks thread:
1. Start of operation

2. Modify data structure

3. Block current operation and start grace period

4. Grace period completed and reclamation of memory

5. Continue operation

6. End of operation

1 2 3 4 5 6

CPU 1

CPU 2

quiescent
state

24

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Using CallbacksUsing Callbacks

 Callback is a function that is invoked to perform the
memory reclamation after the grace period completed

 A callback defines an RCU request
1. Start of operation

2. Modify data structure

3. Register callback and continue operation without blocking

4. End of operation

5. Start of grace period measurement

6. Grace period completed and reclamation of memory

1 2 3 64 5
CPU 2

CPU 1

quiescent
state

25

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Batch for Multiple RequestsBatch for Multiple Requests

 Batch contains a set of request which wait for the
same grace period to complete

 RCU requests must be registered before measurement
of grace period starts
1. Register RCU request 'A' into batch

2. Register RCU request 'B' into batch

3. Start new grace period

4. Grace period completed, execute request 'A' and 'B' of batch

1 3 52

CPU 1

CPU 2

quiescent
state

26

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Closed and Open BatchesClosed and Open Batches

 Closed batch holds requests that are waiting for
current grace period to complete

 Open batch holds requests that are waiting for next
grace period to complete
1. Register RCU request 'A' into open batch

2. Register RCU request 'B' into open batch

3. Close current open batch and start new grace period

4. Register RCU request 'C' into open batch

5. Register RCU request 'D' into open batch

6. Grace period completed, execute requests of closed batch

1 3 62 4 5

CPU 1

CPU 2

quiescent
state

27

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Global Grace PeriodsGlobal Grace Periods

 Grace periods are measured globally for all CPUs
– Maintaing per CPU request lists

– One CPU starts next grace periods

– CPU that executes quiescent state last, ends grace period

 Once a grace period has completed all CPUs can
execute their own requests
1. Start of next grace period 1

2. End of grace period 1 and start of grace period 2

3. End of grace period 2

CPU 1

1 32

CPU 2

grace period 1 grace period 2

28

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Data StructuresData Structures
 CPU-Global data:

nr_curr_global number of current grace period

cpumask bitfield of CPUs, that have to pass through a
quiescent state for completion of current
grace period

nr_compl number of recently completed grace period

next_pending flag, requesting another grace period

 CPU-local data:
nr_curr_local local copy of global nr_curr

qs_pending CPU needs to pass through a quiescent state

qs_passed CPU has passed a quiescent state

batch_closed closed batch of RCU requests

nr_batch grace period the closed batch belongs to

batch_open open batch of RCU requests

29

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ComponentsComponents

 Interface
– wait_for_rcu() wait for grace period to complete

– call_rcu()add RCU callback to open batch request list

 RCU core
– Creates closed batch from open batch and assign grace

period to be completed

– Invokes callbacks in closed batch after grace period
completed

– Clear bit in CPU bitmask after quiescent state has detect

– Requests new grace period, if required

– Starts and finishes grace periods

 Timer-interrupt handler and scheduler
– Detect quiescent states

– Update variable CPU-local qs_passed of CPU

– Schedule RCU core if work is pending

30

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Modelling of Batches andModelling of Batches and
Grace PeriodsGrace Periods

 Explanation:
Insertion of a callback X into the open batch

 move requests from the open batch to the closed
batch; the closed batch can be processed after
grace period n has elapsed

 grace period n has been elapsed and the
corresponding closed batch can be processed

 Start new grace period and reset CPU bitmask

 Set bit to 0 for this CPU in CPU bitmask

CPU

Invocation
of RCU core

Invocation
of RCU core

X n[X]

X

n[X]

n[X]

n[X]

0111

0111

1001

1001

Invocation
of RCU core

31

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (1)Linux RCU Example (1)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl

0
0

1 2
1 2

3 3
3

1[A]A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0111

0011

0010

0000

1101

1001

0001

0000

Initial state, no requests are pending and the RCU subsystem is idle

next_pending

32

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (2)Linux RCU Example (2)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

1 2
1 2

3 3
3

1[A]A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0111

0011

0010

0000

1101

1001

0001

0000

Submit of new RCU request 'A' on CPU4 into the open batch of CPU4

33

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (3)Linux RCU Example (3)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

1 2
1 2

3 3
3

1[A]A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0111

0011

0010

0000

1101

1001

0001

0000

Submit of new RCU request 'B' on CPU1 into the open batch of CPU1

34

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (4)Linux RCU Example (4)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1 2

3 3
3

A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0011

0010

0000

1101

1001

0001

0000

Invocation of RCU core on CPU4:
1. create closed batch waiting for grace period '1' to complete
2. start of new grace period '1' and set bitmask to wait for quiescent states

0111

1[A]

1

35

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (5)Linux RCU Example (5)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1 2

3 3
3

A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0010

0000

1101

1001

0001

0000

0111

1[A]

1

0011

Invocation of RCU core on CPU3:
1. quiescent state detected, clear CPU bit in bitmask for grace period '1'

36

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (6)Linux RCU Example (6)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

1 2
1 2

3 3
3

1[A]A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0111

0011

0010

0000

1101

1001

0001

0000

Submit of new RCU request 'C' on CPU2 into the open batch of CPU2

37

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (7)Linux RCU Example (7)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1 2

3 3
3

A

B

D

C 2[C]

2[B]

2[C]

3[D]3[D]1[A]

0000

1101

1001

0001

0000

0111

1[A]

1

0011

Invocation of RCU core on CPU1:
1. quiescent state detected, clear CPU bit in bitmask for grace period '1'
2. create closed batch waiting for grace period '2' to complete
3. request another grace period

2[B]

0010

38

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (8)Linux RCU Example (8)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

1 2
1 2

3 3
3

1[A]A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0111

0011

0010

0000

1101

1001

0001

0000

Submit of new RCU request 'D' on CPU4 into the open batch of CPU4

39

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (9)Linux RCU Example (9)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0 2

3 3
3

A

B

D

C 2[C]

2[B]

2[C]

3[D]3[D]1[A]

1001

0001

0000

0111

1[A]

1

0011

Invocation of RCU core on CPU2:
1. quiescent state detected, clear CPU bit in bitmask; grace period '1' has completed
2. create closed batch waiting for grace period '2' to complete
3. start new grace period '2'

2[B]

0010

1101

0000

2
1

40

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (10)Linux RCU Example (10)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1 2

3 3
3

A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]3[D]1[A]

0010

0000

1101

0001

0000

0111

1[A]

1

0011

Invocation of RCU core on CPU3:
1. quiescent state detected, clear CPU bit in bitmask for grace period '1'

1001

41

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (11)Linux RCU Example (11)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1 2

3 3
3

A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]1[A]

0011

0010

0000

1101

1001

0000

Invocation of RCU core on CPU4:
1. quiescent state detected, clear CPU bit in bitmask for grace period '1'
2. process closed batch for grace period '1'
3. create closed batch waiting for grace period '3' to complete

0111

1[A]

1

0001

3[D]

42

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (12)Linux RCU Example (12)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1

3
3

A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]1[A]

0011

0010

0000

1101

1001

Invocation of RCU core on CPU1:
1. quiescent state detected, clear CPU bit in bitmask, grace period '2' has completed
2. process closed batch for grace period '2'

0111

1[A]

1

0001

3[D]

0000

3
2

43

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU Example (13)Linux RCU Example (13)

CPU4

CPU3

CPU2

CPU1

nr_curr
nr_compl
next_pending

0
0

2
1

A

B

D

C

2[B]

2[C]

2[B]

2[C]

3[D]1[A]

0011

0010

0000

1101

1001

Invocation of RCU core on CPU2 and CPU4:
1. process closed batch for grace period '2'

0111

1[A]

1

0001

3[D]

0000

3
2 3

3

44

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Scalability and PerformanceScalability and Performance

 How does RCU scale?
– Number of CPUs (n)

– Number of read-only operations

 How does RCU perform?
– Fraction of accesses that are updates (f)

– Number of operations per unit

 What other algorithms to compare to?
– Global reader-writer lock (globalrw)

– Per-CPU reader-writer lock (brlock)

– Data spinlock (spinbkt)

– Lock-free using safe memory reclamation (SMR)

45

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ScalabilityScalability

 Hashtable benchmark
– Reading entries in a hashtable

46

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

PerformancePerformance

 Changing entries in a hashtable with 4 CPUs

47

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Performance vs. ComplexityPerformance vs. Complexity

 When should RCU be used?
– Instead of simple spinlock? (spinlock)

– Instead of per-CPU reader-writer lock? (drw)

 Under what conditions should RCU be used?
– Memory-latency ratio (r)

– Number of CPUs (n = 4)

 Under what workloads?
– Fraction of access that are updates (f)

– Number of updates (batch size) per grace period (λ = {small,
large})

48

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Few Updates per Grace PeriodFew Updates per Grace Period

49

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Many Updates per Grace PeriodMany Updates per Grace Period

50

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Concluding RemarksConcluding Remarks

 RCU performance and scalability
– Near-optimal scaling with increasing number of CPUs

– Very good performance under high contention

 RCU modifications
– Support for weak consistency models

– Support for NUMA architectures

– Without stale data tolerance

– Support for preemptible read-side critical sections

– Support for CPU hotplugging

 Other memory reclamation schemes
– Lock-free reference counting

– Hazard-pointer-based recalamation

– Epoch-based reclamation

51

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ReferencesReferences

 Read-Copy Update: Using Execution History to Solve
Concurrency Problems; McKenney, Slingwine; 1998

 Read-Copy Update; McKenney, Karma, Arcangeli,
Krieger, Russel; 2003

 Making Lockless Synchronization Fast: Performance
Implications of Memory Reclamation; Hart McKenney;
Brown; 2006

 Linux Journal: Introduction to RCU; McKenney 2004;
http://linuxjournal.com/article/6993

 Linux Journal: Scaling dcache with RCU; McKenney;
2004; http://linuxjournal.com/arcticle/7124

52

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Preemption of ReadersPreemption of Readers

Thread A

Thread B

Thread A

Thread B

Kernel mode

User modeKernel entry Kernel exit

Read-side
critical section

preemption

 Thread B preempts read-side critical section of
thread A
– Context switch from thread A to thread B

– Kernel exit is not a quiescent state

53

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Batch ProcessingBatch Processing
static void __rcu_process_callbacks(struct global_data *global,

 struct loca_data *local)
{
 if (not is_empty(local→batch_closed) and /* Is the closed batch list not empty? */
 (global→nr_compl >= local→nr_batch)) /* Grace geriod this batch is waiting for? */
 {
 ... process RCU callbacks ...
 }

 if (not is_empty(local→batch_open) and /* Is the open batch not empty? */
 is_empty(local→batch_closed) /* Is the closed batch empty? */
 {
 ... move open batch to closed batch ...
 local→nr_batch = global→nr_curr + 1; /* After the next grace period has completed

 this batch can be processed */

 if (not global→next_pending) /* Is a new grace period aleady requested? */
 {
 global→next_pending = 1; /* A new grace period has to be started */
 rcu_start_batch(global); /* Try to start a new grace period immediately */
 }
 }

 rcu_check_quiescent_state(global, local); /* Check if this CPU gone through a quiescent state */
}

54

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State HandlingQuiescent State Handling
static void rcu_check_quiescent_state(struct global_data *global,
 struct local_data *local)
{
 if (local→nr_curr != global→nr_curr) { /* Has a new grace period started? */
 local→qs_pending = 1; /* Yes, Reset, for new grace period */
 local→qs_passed = 0; /* Reset, for new grace period */
 local→nr_curr = global→nr_curr; /* Grace period this cpu is passing through */
 return;
 }

 if (!local→qs_pending) /* Is this cpu waiting for quiescent state */
 return; /* No, go on with work */

 if (!local→qs_passed) /* Has this cpu passed a quiescent state */
 return; /* No, come back later */

 local→qs_pending = 0; /* This cpu has passed through a quiescent state! */

 if (local→nr_curr == global→nr_curr) /* sanity check */
 cpu_quiet(local→cpu, global); /* update cpu bitmask and check if
 grace period completed */
}

55

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Finish and Start of Grace PeriodFinish and Start of Grace Period

static void rcu_start_batch(struct global_data *global)
{
 if (global→next_pending and /* Should a new grace period be started? */
 global→nr_compl == global→nr_curr) /* Is completed equal current grace period? */
 {
 global→next_pending = 0; /* Reset grace period trigger */
 global→nr_curr++; /* A new global grace period starts */

 /* Update cpu bitmask */
 cpus_andnot(global→cpumask, cpu_online_map);
 }
}

static void cpu_quiet(int cpu, struct global_data *global)
{
 cpu_clear(cpu, global→cpumask); /* Clear bit of this cpu in cpu bitmask */

 if (cpus_empty(global→cpumask)) /* Has a grace period completed? */
 {
 global→nr_compl = global→nr_curr; /* Set completed to current grace period */
 rcu_start_batch(global); /* Try to start a new grace period */
 }
}

56

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

When to invoke the RCU Core?When to invoke the RCU Core?
static int __rcu_pending(struct global_data *global, struct local_data *local)
{
 /* This cpu has pending rcu entries and the grace period
 for them has completed. */
 if (not is_empty(local→batch_closed) and
 global→nr_compl >= local→nr_batch)
 return true;

 /* This cpu has no pending entries, but there are new entries */
 if (is_empty(local→batch_closed) and
 not is_empty(local→batch_open)
 return true;

 /* This cpu has finished callbacks to invoke */

 /* The rcu core waits for a quiescent state from the cpu */
 if (local→nr_curr < global→nr_curr or local→qs_pending)
 return true;

 return false;
}

57

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Hazard-Pointer-Based ReclamationHazard-Pointer-Based Reclamation

 Introduces H=NK hazard pointers
N ... number of threads

K ... data structure dependent (K=2 for queues and lists)

 Memery can only be reclaimed, when no hazard
pointer to the location exist

HP[0]

HP[1]

HP[2]

HP[3]

{

{

T1

T2

A B C D

	Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

