
Torsten
Frenzel

TU Dresden
Operating
Systems Group

Distributed Operating Systems
SS2009

Multiprocessor Synchronization

using Read-Copy Update

2

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

OutlineOutline

 Basics
– Introduction

– Examples

 Design
– Grace periods and quiescent states

– Grace period measurement

 Implementation in Linux
– Data structures and functions

– Examples

 Evaluation
– Scalability

– Performance

 Conclusion

3

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

IntroductionIntroduction

 Multiprocessor OS's need to synchronize access to
data structures

➔ Fast synchronization primitives are crucial for
performance and scalability

 Two important facts in OSs
– Small critical sections (, that access data structures)

– Data structures with many reads and few writes (updates)

 Goals
– Reducing synchronization overhead

– Reducing lock contention

– Deadlock avoidance

4

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Synchronization PrimitivesSynchronization Primitives

 Coarse-grained locking (code-based locks)
– Spinlock (called 'Big kernel lock' in Linux)

– Reader-writer lock (called 'Big reader lock' in Linux)

 Fine-grained locking (data-based locks)
– Spinlock

– Reader-writer lock

– Per-cpu reader-writer lock

 Lock-free synchronization
➔ Fine grained

– Use atomic operations to update data structures

– Avoids disadvantages of locks

– Hard (to do right) for complex data structures

5

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Lockless SynchronizationLockless Synchronization
 Idea

– No locks on reader side

– Locks only on writer side (no concurrent update operations)

– Two-phase update protocol

 Prerequisites
– Many readers and few writers on data structure

– Short critical sections

– Data structures support atomic updates

– Stale data tolerance for readers

6

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Two-Phase Update - ExampleTwo-Phase Update - Example

A B C

WriterReader Reader

Update Phase

Reclamation Phase

Wait period

7

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Two-Phase Update - PrincipleTwo-Phase Update - Principle

 Phase 1: Update Phase
– Change data structure and make new state visible

 Wait period:
– Allow existing read operations to proceed on the old state until

completed

 Phase 2: Reclamation Phase
– Remove old (invisible) state of data structure

 Problem:
– When to reclaim memory after update?

– How long to wait?

 Read-Copy Update uses pessimistic approach:
„Wait until every concurrent read operations has completed and

no pending references to the data structure exist“
➔ Deferred memory reclamation

8

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ApplicationsApplications

 Scenarios
– File descriptor table

– Routing cache

– Network subsystem policy changes

– Hardware configuration

– Module unloading

 Implementation
– DYNIX

• UNIX-based operating system from Sequent

– Tornado

• Operating system for large scale NUMA architectures

– K42

• Operating system from IBM for large scale architectures

– Linux

9

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example 1: List – Read OperationExample 1: List – Read Operation

void read(long addr)
{
 read lock(&list_lock);
 struct elem *p = head->next;
 while (p != head)
 {
 if (p->address == addr)
 {
 /* read-only access to p */
 read unlock(&list_lock);
 return;
 }
 p = p->next;
 }
 read unlock(&list_lock);
 return;
}

void read(long addr)
{

 struct elem *p = head->next;
 while (p != head)
 {
 if (p->address == addr)
 {
 /* read-only access to p */

 return;
 }
 p = p->next;
 }

 return;
}

10

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Example 1: List – Delete OperationExample 1: List – Delete Operation

void delete(struct elem *p)
{
 struct elem *p = head→next;
 write_lock(&list_lock);
 while (p != head)
 {
 if (p→address == addr)
 {
 p→next→prev = p→prev;
 p→prev→next = p→next;
 write_unlock(&list_lock);

 kfree(p);
 return;
 }
 p = p→next;
 }
 write_unlock(&list_lock);
 return;
}

void delete(struct elem *p)
{
 struct elem *p = head→next;
 spin_lock(&list_lock);
 while (p != head)
 {
 if (p→address == addr)
 {
 p→next→prev = p→prev;
 p→prev→next = p→next;
 spin_unlock(&list_lock);
 wait_for_rcu();
 kfree(p);
 return;
 }
 p = p→next;
 }
 spin_unlock(&list_lock);
 return;
}

11

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

spin_lock(&files→file_lock);
nfds = files→max_fdset + FDSET_INC_VALUE;
/* allocate and fill new_open_fds */
/* allocate and fill new_close_on_exec */
...
old_openset = xchg(&files->open_fds, new_open_fds);
old_execset = xchg(&files->close_on_exec, new_close_on_exec);
...
nfds = xchg(&files->max_fdset, nfds);
spin_unlock(&files→file_lock);
wait_for_rcu();
free_fdset(old_openset, nfds);
free_fdset(old_execset, nfds);

Example 2: File-descriptor TableExample 2: File-descriptor Table

 Expansion of file-descriptor table (files)
– Current fixed-size (max_fdset)

– Pointer to fixed-size array of open files (open_fds)

– Pointer to fixed-size array of open files closed on exit
(close_on_exec)

12

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Grace Periods and Quiescent StatesGrace Periods and Quiescent States

 Definition of a grace period
– Intuitive: duration until references to data are no longer hold

by any thread

– More formal: duration until every CPU has passed through a
quiescent state

 Definition of a quiescent state
– State of a CPU without any references to the data structure

 How to measure a grace period?
– Enforcement: induce quiescent state into CPU

– Detection: Wait until CPU has passed through quiescent state

13

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent StateQuiescent State

 What are good quiescent states?
– Should be easy to detect

– Should occur not to frequent or infrequent

 Per-CPU granularity
– For example: context switch, execution in idle loop, kernel

entry/exit, CPU goes offline

– OSs without blocking and preemption in read-side critical
sections

 Per-thread granularity
– OSs with blocking and preemption in read-side critical

sections

14

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State EnforementQuiescent State Enforement

CPU4

CPU3

CPU2

CPU1

Grace period
start

Detected
grace period end

Minimal
Grace period

writer

15

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State DetectionQuiescent State Detection

CPU4

CPU3

CPU2

CPU1

Grace period
start

Minimal and detected
Grace period

writer

16

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State BitmaskQuiescent State Bitmask

CPU4

CPU3

CPU2

CPU1

Grace period
start

Minimal and detected
Grace period

1010

0000

1110 1010

1010

0010

17

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Enhancing RCUEnhancing RCU

 Two observations
– Measuring grace periods adds overheads

– Influence on system design

 Consequences
– Batching of RCU requests

• Single grace period can satisfy multiple requests

– Maintaining per-CPU request lists

– Callback functions for deferred memory reclamation

• Avoids blocking

– Low-overhead algorithm for measuring grace periods

– Measurement framework for long-running critical sections

18

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux's RCU ImplementationLinux's RCU Implementation

 Batching with per-CPU request list
– Closed batch per CPU waiting for completion of (current or

next) grace period

– Open batch per CPU for new requests

 Separation of CPU-local and global data structures
– CPU-local quiescent state detection and batch handling

– Global grace period measurement with CPU-bitmask

 Low overhead if RCU system is idle
 Support for CPU hotplugging
 Support for preemptible read-side critical section
 Support for weak memory consistency

19

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Data StructuresData Structures
 Global data: rcu_ctrlblk

nr_curr number of current grace period

cpumask bitfield of CPUs, that have to pass through a
quiescent state for completion of current
grace period

nr_compl number of recently completed grace period

next_pending flag, requesting another grace period

CPU-local data: rcu_data
nr_curr grace period this CPU thinks as current

 (should be equally global nr_curr)

qs_pending CPU needs to pass through a quiescent

qs_passed CPU has passed a quiescent state

batch_closed closed batch of RCU requests

nr_batch grace period the closed batch belongs to

batch_open open batch of RCU requests

20

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Functional SeparationFunctional Separation

 Interface
– call_rcu()add RCU callback to batch request list

– synchronize_rcu() wait for grace period to complete

 Tasklet (implements RCU core)
– Batch processing

• Invokes callbacks after grace period

– Finish and start new grace period

– Quiescent state handling

 Timer-interrupt handler
– Updates variable qs_passed of CPU

– Schedules tasklet of RCU work is pending

 Scheduler
– Updates variable qs_passed of CPU

21

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Batch ProcessingBatch Processing
static void __rcu_process_callbacks(struct global_data *global,

 struct loca_data *local)
{
 if (not is_empty(local→batch_closed) and /* Is the closed batch list not empty? */
 (global→nr_compl >= local→nr_batch)) /* Grace geriod this batch is waiting for completed? */
 {
 ... move closed batch list to completed batch ...
 }

 if (not is_empty(local→batch_open) and /* Is the open batch full? */
 is_empty(local→batch_closed) /* Is the closed batch empty? */
 {
 ... move open batch to closed batch ...
 local→nr_batch = global→nr_curr + 1; /* After the next grace period has completed

 this batch can be processed */

 if (not global→next_pending) /* Is a new grace period aleady requested? */
 {
 global→next_pending = 1; /* A new grace period has to be started */
 rcu_start_batch(global); /* Try to start a new grace period immediately */
 }
 }

 rcu_check_quiescent_state(global, local); /* Check if this CPU gone through a quiescent state */

 ... if there is a non-empty completed batch, process RCU callbacks
}

22

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Quiescent State HandlingQuiescent State Handling
static void rcu_check_quiescent_state(struct global_data *global,
 struct local_data *local)
{
 if (local→nr_curr != global→nr_curr) { /* Has a new grace period started? */
 local→qs_pending = 1; /* Yes, Reset, for new grace period */
 local→qs_passed = 0; /* Reset, for new grace period */
 local→nr_curr = global→nr_curr; /* Grace period this cpu is passing through */
 return;
 }

 if (!local→qs_pending) /* Is this cpu waiting for quiescent state */
 return; /* No, go on with work */

 if (!local→qs_passed) /* Has this cpu passed a quiescent state */
 return; /* No, come back later */

 local→qs_pending = 0; /* This cpu has passed through a quiescent state! */

 if (local→nr_curr == global→nr_curr) /* sanity check */
 cpu_quiet(local→cpu, global); /* update cpu bitmask and check if
 grace period completed */
}

23

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Finish and Start of Grace PeriodFinish and Start of Grace Period

static void rcu_start_batch(struct global_data *global)
{
 if (global→next_pending and /* Should a new grace period be started? */
 global→nr_compl == global→nr_curr) /* Is completed equal current grace period? */
 {
 global→next_pending = 0; /* Reset grace period trigger */
 global→nr_curr++; /* A new global grace period starts */

 /* Update cpu bitmask */
 cpus_andnot(global→cpumask, cpu_online_map);
 }
}

static void cpu_quiet(int cpu, struct global_data *global)
{
 cpu_clear(cpu, global→cpumask); /* Clear bit of this cpu in cpu bitmask */

 if (cpus_empty(global→cpumask)) /* Has a grace period completed? */
 {
 global→nr_compl = global→nr_curr; /* Set completed to current grace period */
 rcu_start_batch(global); /* Try to start a new grace period */
 }
}

24

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

When to invoke the RCU Core?When to invoke the RCU Core?
static int __rcu_pending(struct global_data *global, struct local_data *local)
{
 /* This cpu has pending rcu entries and the grace period
 for them has completed. */
 if (not is_empty(local→batch_closed) and
 global→nr_compl >= local→nr_batch)
 return true;

 /* This cpu has no pending entries, but there are new entries */
 if (is_empty(local→batch_closed) and
 not is_empty(local→batch_open)
 return true;

 /* This cpu has finished callbacks to invoke */

 /* The rcu core waits for a quiescent state from the cpu */
 if (local→nr_curr < global→nr_curr or local→qs_pending)
 return true;

 return false;
}

25

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU ExampleLinux RCU Example

CPU4

CPU3

CPU2

CPU1

nr_curr

nr_compl

next_pending

0

0

1 2

1 2

C.2

D.3

B.2

s(1) d(1)
s(3)

s(2) d(2)

s(2) d(2)

d(3)

3
A.1

3

3

26

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Linux RCU ExampleLinux RCU ExampleLinux RCU ExampleLinux RCU Example

CPU4

CPU3

CPU2

CPU1

nr_curr

nr_compl

next_pending

0

0

1 2

1 2

C.2

D.3

B.2

s(1) d(1)
s(3)

s(2) d(2)

s(2) d(2)

d(3)

3
A.1

3

3

27

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Scalability and PerformanceScalability and Performance

 How does RCU scale?
– Number of CPUs (n)

– Number of read-only operations

 How does RCU perform?
– Fraction of accesses that are updates (f)

– Number of operations per unit

 What other algorithms to compare to?
– Global reader-writer lock (globalrw)

– Per-CPU reader-writer lock (brlock)

– Data spinlock (spinbkt)

– Lock-free using safe memory reclamation (SMR)

28

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ScalabilityScalability

 Hashtable benchmark

29

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

PerformancePerformance

30

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Performance vs. ComplexityPerformance vs. Complexity

 When should RCU be used?
– Instead of simple spinlock? (spinlock)

– Instead of per-CPU reader-writer lock? (drw)

 Under what conditions should RCU be used?
– Memory-latency ratio (r)

– Number of CPUs (n = 4)

 Under what workloads?
– Fraction of access that are updates (f)

– Number of updates per grace period (λ = {small, large})

31

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Few Updates per Grace PeriodFew Updates per Grace Period

32

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Many Updates per Grace PeriodMany Updates per Grace Period

33

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Concluding RemarksConcluding Remarks

 RCU performance and scalability
– Near-optimal scaling with increasing number of CPUs

– Very good performance under high contention

 RCU modifications
– Support for weak consistency models

– Support for NUMA architectures

– Without stale data tolerance

– Support for preemptible critical sections

 Other memory reclamation schemes
– Lock-free reference counting

– Hazard-pointer-based recalamation

– Epoch-based reclamation

34

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

ReferencesReferences

 Read-Copy Update: Using Execution History to Solve
Concurrency Problems; McKenney, Slingwine; 1998

 Read-Copy Update; McKenney, Karma, Arcangeli,
Krieger, Russel; 2003

 Making Lockless Synchronization Fast: Performance
Implications of Memory Reclamation; Hart McKenney;
Brown; 2006

 Linux Journal: Introduction to RCU; McKenney 2004;
http://linuxjournal.com/article/6993

 Linux Journal: Scaling dcache with RCU; McKenney;
2004; http://linuxjournal.com/arcticle/7124

35

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating
Systems Group

Hazard-Pointer-Based ReclamationHazard-Pointer-Based Reclamation

 Introduces H=NK hazard pointers
N ... number of threads

K ... data structure dependent (K=2 for queues and lists)

 Memery can only be reclaimed, when no hazard
pointer to the location exist

HP[0]

HP[1]

HP[2]

HP[3]

{

{

T1

T2

A B C D

	Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

