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IntroductionIntroduction

 Multiprocessor OS's need to synchronize access to 
data structures

➔ Fast synchronization primitives are crucial for 
performance and scalability

 Two important facts in OSs
– Small critical sections (, that access data structures)

– Data structures with many reads and few writes (updates)

 Goals 
– Reducing synchronization overhead

– Reducing lock contention

– Deadlock avoidance



4

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating 
Systems Group

Synchronization PrimitivesSynchronization Primitives

 Coarse-grained locking (code-based locks)
– Spinlock (called 'Big kernel lock' in Linux)

– Reader-writer lock (called 'Big reader lock' in Linux)

 Fine-grained locking (data-based locks)
– Spinlock

– Reader-writer lock

– Per-cpu reader-writer lock

 Lock-free synchronization
➔ Fine grained

– Use atomic operations to update data structures

– Avoids disadvantages of locks

– Hard (to do right) for complex data structures
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Lockless SynchronizationLockless Synchronization
 Idea

– No locks on reader side

– Locks only on writer side (no concurrent update operations)

– Two-phase update protocol

 Prerequisites
– Many readers and few writers on data structure

– Short critical sections

– Data structures  support atomic updates

– Stale data tolerance for readers
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Two-Phase Update - ExampleTwo-Phase Update - Example

A B C

WriterReader Reader

Update Phase

Reclamation Phase

Wait period
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Two-Phase Update - PrincipleTwo-Phase Update - Principle

 Phase 1: Update Phase
– Change data structure and make new state visible

 Wait period:
– Allow existing read operations to proceed on the old state until 

completed

 Phase 2: Reclamation Phase
– Remove old (invisible) state of data structure

 Problem:
– When to reclaim memory after update?

– How long to wait?

 Read-Copy Update uses pessimistic approach:
„Wait until every concurrent read operations has completed and 

no pending references to the data structure exist“
➔ Deferred memory reclamation
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ApplicationsApplications

 Scenarios
– File descriptor table

– Routing cache

– Network subsystem policy changes

– Hardware configuration

– Module unloading

 Implementation
– DYNIX

• UNIX-based operating system from Sequent

– Tornado

• Operating system for large scale NUMA architectures

– K42

• Operating system from IBM for large scale architectures

– Linux
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Example 1: List – Read OperationExample 1: List – Read Operation

void read(long addr)
{
   read lock(&list_lock);
   struct elem *p = head->next;
   while (p != head)
   {
       if (p->address == addr)
       {
           /* read-only access to p */
           read unlock(&list_lock);
           return;
       }
       p = p->next;
   }
   read unlock(&list_lock);
   return;
}

void read(long addr)
{
   
   struct elem *p = head->next;
   while (p != head)
   {
       if (p->address == addr)
       {
           /* read-only access to p */

           return;
       }
       p = p->next;
   }

   return;
}
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Example 1: List – Delete OperationExample 1: List – Delete Operation

void delete(struct elem *p)
{
  struct elem *p = head→next;
  write_lock(&list_lock);
  while (p != head)
  {
    if (p→address == addr)
    {
      p→next→prev = p→prev;
      p→prev→next = p→next;
      write_unlock(&list_lock);

      kfree(p);
      return;
    }
    p = p→next;
  }
  write_unlock(&list_lock);
  return;
}

void delete(struct elem *p)
{
  struct elem *p = head→next;
  spin_lock(&list_lock);
  while (p != head)
  {
    if (p→address == addr)
    {
      p→next→prev = p→prev;
      p→prev→next = p→next;
      spin_unlock(&list_lock);
      wait_for_rcu();
      kfree(p);
      return;
    }
    p = p→next;
  }
  spin_unlock(&list_lock);
  return;
}
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spin_lock(&files→file_lock);
nfds = files→max_fdset + FDSET_INC_VALUE;
/* allocate and fill new_open_fds */
/* allocate and fill new_close_on_exec */
...
old_openset = xchg(&files->open_fds, new_open_fds);
old_execset = xchg(&files->close_on_exec, new_close_on_exec);
...
nfds = xchg(&files->max_fdset, nfds);
spin_unlock(&files→file_lock);
wait_for_rcu();
free_fdset(old_openset, nfds);
free_fdset(old_execset, nfds);

Example 2: File-descriptor TableExample 2: File-descriptor Table

 Expansion of file-descriptor table (files)
– Current fixed-size (max_fdset)

– Pointer to fixed-size array of open files (open_fds)

– Pointer to fixed-size array of open files closed on exit 
(close_on_exec)
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Grace Periods and Quiescent StatesGrace Periods and Quiescent States

 Definition of a grace period
– Intuitive: duration until references to data are no longer hold 

by any thread

– More formal: duration until every CPU has passed through a 
quiescent state

 Definition of a quiescent state
– State of a CPU without any references to the data structure

 How to measure a grace period?
– Enforcement: induce quiescent state into CPU

– Detection: Wait until CPU has passed through quiescent state
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Quiescent StateQuiescent State

 What are good quiescent states?
– Should be easy to detect

– Should occur not to frequent or infrequent

 Per-CPU granularity
– For example: context switch, execution in idle loop, kernel 

entry/exit, CPU goes offline

– OSs without blocking and preemption in read-side critical 
sections

 Per-thread granularity
– OSs with blocking and preemption in read-side critical 

sections
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Quiescent State EnforementQuiescent State Enforement

CPU4
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Quiescent State DetectionQuiescent State Detection
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Quiescent State BitmaskQuiescent State Bitmask
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Enhancing RCUEnhancing RCU

 Two observations
– Measuring grace periods adds overheads

– Influence on system design

 Consequences
– Batching of RCU requests

• Single grace period can satisfy multiple requests

– Maintaining per-CPU request lists

– Callback functions for deferred memory reclamation

• Avoids blocking

– Low-overhead algorithm for measuring grace periods

– Measurement framework for long-running critical sections
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Linux's RCU ImplementationLinux's RCU Implementation

 Batching with per-CPU request list
– Closed batch per CPU waiting for completion of (current or 

next) grace period

– Open batch per CPU for new requests

 Separation of CPU-local and global data structures
– CPU-local quiescent state detection and batch handling

– Global grace period measurement with CPU-bitmask

 Low overhead if RCU system is idle
 Support for CPU hotplugging
 Support for preemptible read-side critical section
 Support for weak memory consistency



19

Distributed
Operating
Systems

Torsten
Frenzel

TU Dresden
Operating 
Systems Group

Data StructuresData Structures
 Global data: rcu_ctrlblk

nr_curr number of current grace period

cpumask bitfield of CPUs, that have to pass through a 
quiescent state for completion of current 
grace period

nr_compl number of recently completed grace period

next_pending flag, requesting another grace period

CPU-local data: rcu_data
nr_curr grace period this CPU thinks as current

               (should be equally global nr_curr)

qs_pending CPU needs to pass through a quiescent

qs_passed CPU has passed a quiescent state

batch_closed closed batch of RCU requests

nr_batch grace period the closed batch belongs to

batch_open open batch of RCU requests
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Functional SeparationFunctional Separation

 Interface
– call_rcu()add RCU callback to batch request list

– synchronize_rcu() wait for grace period to complete

 Tasklet (implements RCU core)
– Batch processing

• Invokes callbacks after grace period

– Finish and start new grace period

– Quiescent state handling

 Timer-interrupt handler
– Updates variable qs_passed of CPU

– Schedules tasklet of RCU work is pending

 Scheduler
– Updates variable qs_passed of CPU
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Batch ProcessingBatch Processing
static void __rcu_process_callbacks(struct global_data *global,

                   struct loca_data *local)
{
        if (not is_empty(local→batch_closed) and          /* Is the closed batch list not empty? */
           (global→nr_compl >= local→nr_batch))       /* Grace geriod this batch is waiting for completed? */
        {
                ... move closed batch list to completed batch ...
        }

        if (not is_empty(local→batch_open) and          /* Is the open batch full? */
            is_empty(local→batch_closed)                     /* Is the closed batch empty? */
        {
                ... move open batch to closed batch ...
                local→nr_batch = global→nr_curr + 1;  /* After the next grace period has completed

                        this batch can be processed */

                if (not global→next_pending)                 /* Is a new grace period aleady requested? */
                {
                        global→next_pending = 1;             /* A new grace period has to be started */
                        rcu_start_batch(global);                   /* Try to start a new grace period immediately */
                }
        }

        rcu_check_quiescent_state(global, local);      /* Check if this CPU gone through a quiescent state */

         ... if there is a non-empty completed batch, process RCU callbacks ....
}
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Quiescent State HandlingQuiescent State Handling
static void rcu_check_quiescent_state(struct global_data *global,
                                                              struct local_data  *local)
{
        if (local→nr_curr != global→nr_curr) {       /* Has a new grace period started? */
                local→qs_pending = 1;                       /* Yes, Reset, for new grace period */
                local→qs_passed = 0;                        /* Reset, for new grace period */
                local→nr_curr = global→nr_curr;      /* Grace period this cpu is passing through */
                return;
        }

        if (!local→qs_pending)                          /* Is this cpu waiting for quiescent state */
                return;                                           /* No, go on with work */

        if (!local→qs_passed)                           /* Has this cpu passed a quiescent state */
                return;                                          /* No, come back later */

        local→qs_pending = 0;                         /* This cpu has passed through a quiescent state! */

        if (local→nr_curr == global→nr_curr)     /* sanity check */
                cpu_quiet(local→cpu, global);       /* update cpu bitmask and check if
                                                                         grace period completed */
}
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Finish and Start of Grace PeriodFinish and Start of Grace Period

static void rcu_start_batch(struct global_data *global)
{
     if (global→next_pending and                     /* Should a new grace period be started? */
         global→nr_compl == global→nr_curr)  /* Is completed equal current grace period? */
     {
             global→next_pending = 0;                 /* Reset grace period trigger */
             global→nr_curr++;                              /* A new global grace period starts */

                                                                          /* Update cpu bitmask */
             cpus_andnot(global→cpumask, cpu_online_map);                   
     }
}

static void cpu_quiet(int cpu, struct global_data *global)
{
     cpu_clear(cpu, global→cpumask);              /* Clear bit of this cpu in cpu bitmask */

     if (cpus_empty(global→cpumask))              /* Has a grace period completed? */
     {
             global→nr_compl = global→nr_curr; /* Set completed to current grace period */
             rcu_start_batch(global);                        /* Try to start a new grace period */
     }
}
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When to invoke the RCU Core?When to invoke the RCU Core?
static int __rcu_pending(struct global_data *global, struct local_data *local)
{
        /* This cpu has pending rcu entries and the grace period
            for them has completed. */
        if (not is_empty(local→batch_closed) and
            global→nr_compl >= local→nr_batch)
                return true;

        /* This cpu has no pending entries, but there are new entries */
        if (is_empty(local→batch_closed) and 
            not is_empty(local→batch_open)
                return true;

        /* This cpu has finished callbacks to invoke */

        /* The rcu core waits for a quiescent state from the cpu */
        if (local→nr_curr < global→nr_curr or local→qs_pending)
                return true;

        return false;
}
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Linux RCU ExampleLinux RCU ExampleLinux RCU ExampleLinux RCU Example
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Linux RCU ExampleLinux RCU ExampleLinux RCU ExampleLinux RCU Example
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Scalability and PerformanceScalability and Performance

 How does RCU scale?
– Number of CPUs (n)

– Number of read-only operations

 How does RCU perform?
– Fraction of  accesses that are updates (f)

– Number of operations per unit

 What other algorithms to compare to?
– Global reader-writer lock (globalrw)

– Per-CPU reader-writer lock (brlock)

– Data spinlock (spinbkt)

– Lock-free using safe memory reclamation (SMR)
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ScalabilityScalability

 Hashtable benchmark
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PerformancePerformance
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Performance vs. ComplexityPerformance vs. Complexity

 When should RCU be used?
– Instead of simple spinlock? (spinlock)

– Instead of per-CPU reader-writer lock? (drw)

 Under what conditions should RCU be used?
– Memory-latency ratio (r)

– Number of CPUs (n = 4)

 Under what workloads?
– Fraction of access that are updates (f)

– Number of updates per grace period (λ = {small, large} )
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Few Updates per Grace PeriodFew Updates per Grace Period
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Many Updates per Grace PeriodMany Updates per Grace Period
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Concluding RemarksConcluding Remarks

 RCU performance and scalability
– Near-optimal scaling with increasing number of CPUs

– Very good performance under high contention

 RCU modifications
– Support for weak consistency models

– Support for NUMA architectures

– Without stale data tolerance

– Support for preemptible critical sections

 Other memory reclamation schemes
– Lock-free reference counting

– Hazard-pointer-based recalamation

– Epoch-based reclamation
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Hazard-Pointer-Based ReclamationHazard-Pointer-Based Reclamation

 Introduces H=NK hazard pointers
N ... number of threads

K ... data structure dependent (K=2 for queues and lists)

 Memery can only be reclaimed, when no hazard 
pointer to the location exist
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HP[2]
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