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Teaser

» Problem: Hardware is changing faster than software
» More cores
» Increasing heterogeneity

» Idea: build the OS as a distributed system

» No sharing by default
» Explicit message-passing between (heterogeneous) cores
» Support new and existing applications
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Barrelfish goals
We're exploring how to
structure an OS to:

» scale to many processors

» manage and exploit
heterogeneous hardware

» run a dynamic set of
general-purpose applications

» reduce code complexity to do this
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Barrelfish goals
We're exploring how to
structure an OS to:
» scale to many processors
» manage and exploit
heterogeneous hardware
» run a dynamic set of
general-purpose applications
» reduce code complexity to do this
Barrelfish is:
» written from scratch
» some library code reused

» open source, BSD licensed
» expect a release soon
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Why should we write a new 0OS?
Many cores
Increasing heterogeneity
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Many cores

» Sharing within the OS is becoming a problem

» Cache-coherence protocol limits scalability
» Tornado/K42, Disco, Corey, ...

» Prevents effective use of heterogeneous cores
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Scaling existing OSes

» Increasingly difficult to scale conventional OSes

» Removal of dispatcher lock in Win7 changed 6kLOC in 58 files
» Optimisations are specific to hardware platforms

» Cache hierarchy, consistency model, access costs
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Increasing hardware heterogeneity

1. Non-uniformity
2. Core diversity
3. System diversity
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Diversity 1: Non-uniformity

The machine looks different from different cores

» Memory hierarchy becomes more complicated

» Non-uniform memory access (NUMA), plus ...
» Many levels of cache sharing (L2, L3 caches)

» Device access
» where are my PCle root complexes?
» Interconnect increasingly looks like a network

» Tileby, Intel 80-core
» larrabee
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Diversity 2: Core diversity

The cores within a box will be diverse

» Architectural differences on a single die:
» Streaming instructions (SIMD, SSE, etc.)
» Virtualisation support, power mgmt.

» Within a system

» Programmable NICs
» GPUs
» FPGAs (in CPU sockets)

» Already seeing machines with heterogeneous cores
» Heterogeneity will increase
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Diversity 3: System diversity

Machines themselves become more diverse

SATA RAM

pcte [ rae ] =]
L2 L2

GbE <:| ”

SATA <:| @ @
PCle SATA <::> HH
PCle <:| PCle =
GbE

<:| RAM

Old 2x4-core Intel system Old 2x2-core AMD system

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich



Diversity 3: System diversity
Machines themselves become more diverse
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Diversity 3: System diversity

Machines themselves become more diverse

This is new in the mass-market, desktop or server space:
» Specialised code for a certain architecture not possible
» Unlike with HPC / scientific workloads
» Can’t optimise for a particular memory hierarchy

» If you buy two machines, they may have very different
performance tradeoffs.

» Can’t manually tune for specific machine
= system software must adapt at runtime. Hard ...
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The Multikernel architecture
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Traditional OS vs Multikernel

» Traditional OSes scale up by:

» Reducing lock granularity
» Partitioning state

\ Traditional OSes >

Shared state, Finer-grained Clustered objects, Distributed state,

one-big-lock locking partitioning replica maintenance
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Traditional OS vs Multikernel

» Traditional OSes scale up by:

» Reducing lock granularity
» Partitioning state

\ Traditional OSes > N\ultikernel\©
‘Shared state, Finer-grained Clustered objects, Distributed state,V

one-big-lock locking partitioning replica maintenance
Multikernel:

» State partitioned/replicated by default rather than shared

» Start from the extreme case
» Cores communicate via message-passing
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Multikernel architecture
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Why message-passing?

>

We can reason about it

Decouples system structure from inter-core communication
mechanism

» Communication patterns explicitly expressed

v

v

Naturally supports heterogeneous cores

v

Naturally supports non-coherent interconnects (PCle)
Better match for future hardware

» ...with cheap explicit message passing (e.g. Tile64)
» ...without cache-coherence (e.g. Intel 80-core)

v
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Message-passing vs. sharing: reduced blocking

» Access remote shared data can be viewed as a blocking RPC
» Processor stalled while line is fetched or invalidated
» Limited by latency of interconnect round-trips

» Perf scales with size of data (number of cache lines)

» By sending an explicit RPC (message), we:

» Send a compact high-level description of the operation
» Reduce the time spent blocked, waiting for the interconnect

» Potential for more efficient use of interconnect bandwidth
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Message-passing vs. sharing: tradeoff

16

Latency (cycles x 1000)

2 cores, shared ——
8 cores, shared ——=—
2 cores, message ——+——
8 cores, message —+—

/X/M:’a*il W/’I( 1 1 1 1 1
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Cache lines

» Shared: Client cores modify shared array (no locking)
» Message: Clients send URPC messages to server core
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Change of programming model: why wait?

» Inatraditional OS, blocking operations are the norm
» eg: unmap, global TLB shootdown

Idea: change programming model:
» Don’t wait: do something else in the meantime
» Make long-running operations split-phase from user space
= tradeoff latency vs. overhead

Systems Group | Department of Computer Science | ETH Zurich



Replication

Given no sharing, what do we do with the state?

» Some state naturally partitions
» Other state must be replicated and kept consistent
» How do we maintain consistency?

TLBs (unmap) single-phase commit
Capabilities (retype/reallocation) two-phase commit
Cores come and go (power management, hotplug) agreement
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Optimisation
Sharing as an optimisation in multikernels
» We've replaced shared memory with explicit messaging

» But sharing/locking might be faster between some cores
» Hyperthreads, or cores with shared L2/3 cache

\ Traditional OSes > < Multikernel |

Shared state, Finer-grained Clustered objects, Distributed state,

one-big-lock locking partitioning replica maintenance

— Re-introduce shared memory as optimisation
» Hidden, local
» Only when faster
» Basic model remains split-phase
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Implementation and results
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Non-original ideas in Barrelfish

Techniques we liked

vV V. vV vV YV VvV VvV VvY

Capabilities for all resource management (sel4)

Minimise shared state (Tornado, K42, Corey)

Upcall processor dispatch (Psyche, Sched. Activations, K42)
Push policy into application domains (Exokernel, Nemesis)
User-space RPC decoupled from IPIs (URPC)

Lots of information (Infokernel)

Single-threaded non-preemptive kernel per core (K42)

Run drivers in their own domains (ukernels, Xen)

EDF as per-core CPU scheduler (RBED)

Specify device registers in a little language (Devil)
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Barrelfish structure

Monitors and CPU drivers

User

space:

Kernel

space:

Hardware:

Interrupts

Application Application Application Application
e
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[] f 3 3
' Monitor Monitor URPC Monitor :
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I-------l------------------------l

CPU CPU <:> CPU
driver driver Send IPI driver
ARM ia32-64 ia32-64
CcPU CPU/APIC| <> | CPU/APIC
MMU MMU Cache-coherence, MMU

» CPU driver serially handles traps and exceptions

» Monitor mediates local operations on global state
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Messaging implementation on current hardware

» Current hardware provides one communcation mechanism:
cache-coherent shared memory
» Can we “trick” cache-coherence protocol to send messages?
» User-level RPC (URPC) [Bershad et al., 1991]
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URPC implementation

Channel is shared-memory ring buffer

Messages are cache-line sized

sender

K_receiver

Sender writes message into next line

Receiver polls on last word

\J

vV v . v. v Y

Marshalling/demarshalling, naming,

binding all implemented above

» Slight performance gain (< 5%) possible if
sender uses 128-bit SSE instructions

» Buffer placement matters on AMD (NUMA effect)
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URPC performance

System Cache Latency Throughput
cycles ns  cycles/msg

2x4-core Intel  shared 168 632 49
non-shared 169 635 49

2x2-core AMD  shared 450 160.7 145
non-shared 532 190.0 145

8x4-core AMD  shared 583 2915 138
non-shared 623 3115 137

» Non-shared corresponds to two HyperTransport requests

» Batching/pipelining comes for free
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Local vs. remote messaging
2x2-core AMD system

Latency Throughput Cache lines touched

cycles  cycles/msg Icache Dcache
URPC 450 145 7 8
LRPC 978 978 33 24
L4 IPC 424 424 25 13

» Barrelfish LRPC could be improved

» Also invokes user-level thread scheduler
» URPC to a remote core compares favourably with IPC

» No context switch: TLB unaffected
» Lower cache impact

» Higher throughput for pipelined messages
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Polling for receive

...not as stupid as it sounds

» It's cheap: line is local to receiver until message arrives

» Memory prefetcher helps
» Some channels need only be polled when awaiting a reply
» Ifacore is doing something useful, why interrupt it?

» Tradeoff between timeslicing overhead and message latency
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Alternatives to polling

» Alternatives available on current (x86) hardware:
» |PI: few cycles to send, hundreds to receive
» MONITOR/MWAIT: core enters low-power state until
designated cache line is modified
» General idea:

» Receiver sends message to indicate they are not polling
» Sender uses appropriate mechanism to notify receiver core

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich



Unmap (TLB shootdown)

v

Send a message to every core with a mapping,
wait for all to be acknowledged
Linux/Windows:

1. Kernel sends IPIs

2. Spins on acknowledgement
Barrelfish:

1. User request to local monitor
2. Single-phase commit to remote monitors

v

v

Possible worst-case for a multikernel

v

v

How to implement communication?

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich



Unmap communication protocols

Raw messaging cost

Latency (cycles x1000)
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Why multicast?

8x4-core AMD system
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Unmap latency
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Application-level results

» Shared-memory apps (OpenMP, SPLASH-2) uninteresting
» Network I0: placement on cores matters
» 887.9 MBit/s vs. 502.7 Mbit/s UDP echo

» Pipelined web server

1000 Webserver/ .
SQOlite

driver

Application

1]
il

» Static: 14180 requests per second vs. 5700 for Apache/Linux
» Dynamic: =1500 requests per second (bottlenecked on SQL)
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Direct representation of heterogeneity
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Managing heterogeneity

» Multikernel architecture handles core diversity
» Can specialise CPU driver / data structures to cores

» Doesn't deal with heterogeneity in general
» Want to optimise on complex HW representation without
affecting fast-paths
Idea: specialise mechanisms,
reason on explicit HW representation for policy
» We deploy a system knowledge base
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The system knowledge base

Representing the execution environment

» Representation of hardware and current state
in a subset of first-order logic

Runs as an OS service

Off the fast-path

Queried from applications for application level policies
Used by OS to derive system policies

vV v.v. v Y

Reduces code complexity

Initial implementation: port of the ECL'PS® constraint solver
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Populating the SKB

Information sources

» Resource discovery and monitoring
» Device enumeration
» ACPI...
» Online measurement and profiling
» Devices
» Interconnect links
» CPU performance counters
» Application performance and behaviour
» Asserted a priori knowledge
» Data sheets, documentation
» Device identifiers

Systems Group | Department of Computer Science | ETH Zurich

8th April 2009



SKB example

Uniquely assign IRQ numbers to devices
» Each device supports some IRQ numbers
» Need to find unique allocation

device(el1000,...,supported_irqgs([1, 3, 41))
device (SATA,...,supported_irqs([1, 4, 6]))

constrain_irq(L,I) :-
i(_,supported_irqs(List)) = L,
I::List.

allocate_irqgs(DevIRQ,IRQList) :-
findall(i(Loc,I),device(_,Loc,_,_,_,I),DevIRQ),
maplist(constrain_irq,DevIRQ,IRQList),
alldifferent(IRQList),
labeling (IRQList) .
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Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich



Current status

What's working this week?

vV V. vV V. YV VvV VvV VY

x86-64 CPU/APIC driver, multiple cores
Capability system & memory management
Monitor implementation

Low-level IDC/LRPC/URPC messaging
High-level OSGi-like component system
User-space libraries, incl. threads

Devices: PCl, ACPI, 3 NICs, framebuffer, ...
IwlIP, NFS stacks

SQOLite, Python, OpenMPp, ...

currently serving www.barrelfish.org
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www.barrelfish.org

Conclusions

1. Treat the machine as a distributed system:

» Concurrency, communication, heterogeneity

» Tailor messaging mechanisms and algorithms to the
machine

» Hide sharing as an optimisation

2. Tackle the heterogeneity and complexity head-on:

» Discover, measure, or just assert it
» Spend cycles to reason about it

3. Build a real system!
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