Swiss Federal Institute of Technology Zurich

Systems @ ETH zivicn

The Barrelfish operating system for
heterogeneous multicore systems

Andrew Baumann

Systems Group, ETH Zurich

© Systems Group | Department of Computer Science | ETI

Teaser

» Problem: Hardware is changing faster than software
» More cores
» Increasing heterogeneity

» Idea: build the OS as a distributed system

» No sharing by default
» Explicit message-passing between (heterogeneous) cores
» Support new and existing applications

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Outline

Introduction and goals
Who's involved

Why should we write a new 0OS?
Many cores
Increasing heterogeneity

The Multikernel architecture
Implementation and results
Direct representation of heterogeneity

Status & Conclusion

8th April 2009 Department of Computer Science | ETH Zurich

Outline

Introduction and goals
Who's involved

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Barrelfish goals
We're exploring how to
structure an OS to:

» scale to many processors

» manage and exploit
heterogeneous hardware

» run a dynamic set of
general-purpose applications

» reduce code complexity to do this

8th April 2009 Systems Group | Department of Computer Science

ETH Zurich

Barrelfish goals
We're exploring how to
structure an OS to:
» scale to many processors
» manage and exploit
heterogeneous hardware
» run a dynamic set of
general-purpose applications
» reduce code complexity to do this
Barrelfish is:
» written from scratch
» some library code reused

» open source, BSD licensed
» expect a release soon

8th April 2009 Systems Group | Department of Computer Science

ETH Zurich

Dramatis personae
Systems Group, ETH Zurich, Switzerland:
» Andrew Baumann
» Pierre-Evariste Dagand
Simon Peter

v

Jan Rellermeyer
Timothy Roscoe Systems @ ETH zirc
Adrian Schipbach
Akhilesh Singhania

vV v.v Vv

Microsoft Research, Cambridge, UK:

» Paul Barham gl

» Tim Harris Cambn ge

» Rebecca Isaacs

Systems Group | Department of Computer Science | ETH Zurich

Outline

Why should we write a new 0OS?
Many cores
Increasing heterogeneity

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Many cores

» Sharing within the OS is becoming a problem

» Cache-coherence protocol limits scalability
» Tornado/K42, Disco, Corey, ...

» Prevents effective use of heterogeneous cores

8th April 2009 Department of Computer Science | ETH Zurich

Scaling existing OSes

» Increasingly difficult to scale conventional OSes

» Removal of dispatcher lock in Win7 changed 6kLOC in 58 files
» Optimisations are specific to hardware platforms

» Cache hierarchy, consistency model, access costs

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Increasing hardware heterogeneity

1. Non-uniformity
2. Core diversity
3. System diversity

Systems Group | Department of Computer Science | ETH Zurich

Diversity 1: Non-uniformity

The machine looks different from different cores

» Memory hierarchy becomes more complicated

» Non-uniform memory access (NUMA), plus ...
» Many levels of cache sharing (L2, L3 caches)

» Device access
» where are my PCle root complexes?
» Interconnect increasingly looks like a network

» Tileby, Intel 80-core
» larrabee

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Diversity 2: Core diversity

The cores within a box will be diverse

» Architectural differences on a single die:
» Streaming instructions (SIMD, SSE, etc.)
» Virtualisation support, power mgmt.

» Within a system

» Programmable NICs
» GPUs
» FPGAs (in CPU sockets)

» Already seeing machines with heterogeneous cores
» Heterogeneity will increase

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Diversity 3: System diversity

Machines themselves become more diverse

SATA RAM

pcte [rae] =]
L2 L2

GbE <:| ”

SATA <:| @ @
PCle SATA <::> HH
PCle <:| PCle =
GbE

<:| RAM

Old 2x4-core Intel system Old 2x2-core AMD system

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Diversity 3: System diversity
Machines themselves become more diverse
‘ RAM ‘ ‘ RAM ‘ ‘ RAM ‘ ‘ RAM

CPU, || CPU, CPU, (| CPU,
L2 2 L2 L2

PCle j PCh,_ <::> cpu, || cpu, cpy, || cru, <::‘> cpu, || cpu,
<::| L2 L2 L2 L2 L2 L2

GbE
o s s

| |

cey, || cru, cry, || cpu, cry, || cpu, cry, || cpu,
SATA L | L L2 L2 L2 L2 L2 L2
¢ P | <::> cpy, |[cru, <::> cru, |[cpu, <::> cru, |[cpu, <::‘> cru, |[cpu,
L2 L2 L2 L2 L2 L2 L2 L2
aee (= [s] [s]

| ram] [ram] [ram] | Rram

SATA

.

Floppy disk drive

8x4-core AMD system

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Diversity 3: System diversity

Machines themselves become more diverse

This is new in the mass-market, desktop or server space:
» Specialised code for a certain architecture not possible
» Unlike with HPC / scientific workloads
» Can’t optimise for a particular memory hierarchy

» If you buy two machines, they may have very different
performance tradeoffs.

» Can’t manually tune for specific machine
= system software must adapt at runtime. Hard ...

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Outline

The Multikernel architecture

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Traditional OS vs Multikernel

» Traditional OSes scale up by:

» Reducing lock granularity
» Partitioning state

\ Traditional OSes >

Shared state, Finer-grained Clustered objects, Distributed state,

one-big-lock locking partitioning replica maintenance

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Traditional OS vs Multikernel

» Traditional OSes scale up by:

» Reducing lock granularity
» Partitioning state

\ Traditional OSes > N\ultikernel\©
‘Shared state, Finer-grained Clustered objects, Distributed state,V

one-big-lock locking partitioning replica maintenance
Multikernel:

» State partitioned/replicated by default rather than shared

» Start from the extreme case
» Cores communicate via message-passing

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Multikernel architecture

User Application Application Application Application
space:
I A
0s: : OS node 0S node 0S node OS node :
: State State State ¢ [State :
1| | replica replica replica Async messages replica | |u
L}
: 1
Hardwatre: : :
ia32-6. -6
ARM CPU GPU SR eoe 1a32-64
CPU CPU
Interconnect

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Why message-passing?

>

We can reason about it

Decouples system structure from inter-core communication
mechanism

» Communication patterns explicitly expressed

v

v

Naturally supports heterogeneous cores

v

Naturally supports non-coherent interconnects (PCle)
Better match for future hardware

» ...with cheap explicit message passing (e.g. Tile64)
» ...without cache-coherence (e.g. Intel 80-core)

v

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

s\ 3
‘Syste A

Message-passing vs. sharing: reduced blocking

» Access remote shared data can be viewed as a blocking RPC
» Processor stalled while line is fetched or invalidated
» Limited by latency of interconnect round-trips

» Perf scales with size of data (number of cache lines)

» By sending an explicit RPC (message), we:

» Send a compact high-level description of the operation
» Reduce the time spent blocked, waiting for the interconnect

» Potential for more efficient use of interconnect bandwidth

Systems Group | Department of Computer Science | ETH Zurich

Message-passing vs. sharing: tradeoff

16

Latency (cycles x 1000)

2 cores, shared ——
8 cores, shared ——=—
2 cores, message ——+——
8 cores, message —+—

/X/M:’a*il W/’I(1 1 1 1 1
2 4 6 8 10 12 14 16 18
Cache lines

» Shared: Client cores modify shared array (no locking)
» Message: Clients send URPC messages to server core

8th April 2009

Systems Group | Department of Computer Science | ETH Zurich

Change of programming model: why wait?

» Inatraditional OS, blocking operations are the norm
» eg: unmap, global TLB shootdown

Idea: change programming model:
» Don’t wait: do something else in the meantime
» Make long-running operations split-phase from user space
= tradeoff latency vs. overhead

Systems Group | Department of Computer Science | ETH Zurich

Replication

Given no sharing, what do we do with the state?

» Some state naturally partitions
» Other state must be replicated and kept consistent
» How do we maintain consistency?

TLBs (unmap) single-phase commit
Capabilities (retype/reallocation) two-phase commit
Cores come and go (power management, hotplug) agreement

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Optimisation
Sharing as an optimisation in multikernels
» We've replaced shared memory with explicit messaging

» But sharing/locking might be faster between some cores
» Hyperthreads, or cores with shared L2/3 cache

\ Traditional OSes > < Multikernel |

Shared state, Finer-grained Clustered objects, Distributed state,

one-big-lock locking partitioning replica maintenance

— Re-introduce shared memory as optimisation
» Hidden, local
» Only when faster
» Basic model remains split-phase

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Outline

Implementation and results

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Non-original ideas in Barrelfish

Techniques we liked

vV V. vV vV YV VvV VvV VvY

Capabilities for all resource management (sel4)

Minimise shared state (Tornado, K42, Corey)

Upcall processor dispatch (Psyche, Sched. Activations, K42)
Push policy into application domains (Exokernel, Nemesis)
User-space RPC decoupled from IPIs (URPC)

Lots of information (Infokernel)

Single-threaded non-preemptive kernel per core (K42)

Run drivers in their own domains (ukernels, Xen)

EDF as per-core CPU scheduler (RBED)

Specify device registers in a little language (Devil)

Systems Group | Department of Computer Science | ETH Zurich

Barrelfish structure

Monitors and CPU drivers

User

space:

Kernel

space:

Hardware:

Interrupts

Application Application Application Application
e
! 1
' S '
[] f 3 3
' Monitor Monitor URPC Monitor :
! 1
I-------l------------------------l

CPU CPU <:> CPU
driver driver Send IPI driver
ARM ia32-64 ia32-64
CcPU CPU/APIC| <> | CPU/APIC
MMU MMU Cache-coherence, MMU

» CPU driver serially handles traps and exceptions

» Monitor mediates local operations on global state

8th April 2009

Systems Group | Department of Computer Science | ETH Zurich

Messaging implementation on current hardware

» Current hardware provides one communcation mechanism:
cache-coherent shared memory
» Can we “trick” cache-coherence protocol to send messages?
» User-level RPC (URPC) [Bershad et al., 1991]

Systems Group | Department of Computer Science | ETH Zurich

URPC implementation

Channel is shared-memory ring buffer

Messages are cache-line sized

sender

K_receiver

Sender writes message into next line

Receiver polls on last word

\J

vV v . v. v Y

Marshalling/demarshalling, naming,

binding all implemented above

» Slight performance gain (< 5%) possible if
sender uses 128-bit SSE instructions

» Buffer placement matters on AMD (NUMA effect)

Systems Group | Department of Computer Science | ETH Zurich

URPC performance

System Cache Latency Throughput
cycles ns cycles/msg

2x4-core Intel shared 168 632 49
non-shared 169 635 49

2x2-core AMD shared 450 160.7 145
non-shared 532 190.0 145

8x4-core AMD shared 583 2915 138
non-shared 623 3115 137

» Non-shared corresponds to two HyperTransport requests

» Batching/pipelining comes for free

Systems Group | Department of Computer Science

ETH Zurich

Local vs. remote messaging
2x2-core AMD system

Latency Throughput Cache lines touched

cycles cycles/msg Icache Dcache
URPC 450 145 7 8
LRPC 978 978 33 24
L4 IPC 424 424 25 13

» Barrelfish LRPC could be improved

» Also invokes user-level thread scheduler
» URPC to a remote core compares favourably with IPC

» No context switch: TLB unaffected
» Lower cache impact

» Higher throughput for pipelined messages

Systems Group | Department of Computer Science

ETH Zurich

Polling for receive

...not as stupid as it sounds

» It's cheap: line is local to receiver until message arrives

» Memory prefetcher helps
» Some channels need only be polled when awaiting a reply
» Ifacore is doing something useful, why interrupt it?

» Tradeoff between timeslicing overhead and message latency

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Alternatives to polling

» Alternatives available on current (x86) hardware:
» |PI: few cycles to send, hundreds to receive
» MONITOR/MWAIT: core enters low-power state until
designated cache line is modified
» General idea:

» Receiver sends message to indicate they are not polling
» Sender uses appropriate mechanism to notify receiver core

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Unmap (TLB shootdown)

v

Send a message to every core with a mapping,
wait for all to be acknowledged
Linux/Windows:

1. Kernel sends IPIs

2. Spins on acknowledgement
Barrelfish:

1. User request to local monitor
2. Single-phase commit to remote monitors

v

v

Possible worst-case for a multikernel

v

v

How to implement communication?

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Unmap communication protocols

Raw messaging cost

Latency (cycles x1000)

8th April 2009

14

12

10

Broadcast ——

Unicast ——

Multicast —»—
NUMA-Aware Multicast

4 6 8 10 12 14 16 18 20
Cores

Systems Group | Department of Computer Science

22 24 26 28 30 32

ETH Zurich

Why multicast?

8x4-core AMD system

SATA

PCle <:I PCIe
R

‘ RAM ‘ ‘ RAM ‘
CPU, || CPU, CPU, || CPU,
L2 L2 L2 L2
e | S
L2 L2 L2 L2

SATA

PCle <::| PCle
GbE <:|

Floppy disk drive

8th April 2009

ceu, |[cpu, cpy, [cpu,
ol e [ESN e

<::> cpu, <::> cru, |[cpu,
L2 L2 L2

CPU, (| CPU,
L2 L2

CPU, || CPU,
L2 L2
v]

‘ RAM ‘ ‘ RAM ‘

‘ RAM

Systems Group | Department of Computer Science

ETH Zurich

Unmap latency

50
45
40
35
30
25
20
15
10

Latency (cycles x 1000)

8th April 2009

Windows —*—
Linux —e—

Barrelfish ———

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Cores

Systems Group | Department of Computer Science | ETH Zurich

Application-level results

» Shared-memory apps (OpenMP, SPLASH-2) uninteresting
» Network I0: placement on cores matters
» 887.9 MBit/s vs. 502.7 Mbit/s UDP echo

» Pipelined web server

1000 Webserver/ .
SQOlite

driver

Application

1]
il

» Static: 14180 requests per second vs. 5700 for Apache/Linux
» Dynamic: =1500 requests per second (bottlenecked on SQL)

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Outline

Direct representation of heterogeneity

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Managing heterogeneity

» Multikernel architecture handles core diversity
» Can specialise CPU driver / data structures to cores

» Doesn't deal with heterogeneity in general
» Want to optimise on complex HW representation without
affecting fast-paths
Idea: specialise mechanisms,
reason on explicit HW representation for policy
» We deploy a system knowledge base

Systems Group | Department of Computer Science | ETH Zurich

The system knowledge base

Representing the execution environment

» Representation of hardware and current state
in a subset of first-order logic

Runs as an OS service

Off the fast-path

Queried from applications for application level policies
Used by OS to derive system policies

vV v.v. v Y

Reduces code complexity

Initial implementation: port of the ECL'PS® constraint solver

Systems Group | Department of Computer Science | ETH Zurich

Populating the SKB

Information sources

» Resource discovery and monitoring
» Device enumeration
» ACPI...
» Online measurement and profiling
» Devices
» Interconnect links
» CPU performance counters
» Application performance and behaviour
» Asserted a priori knowledge
» Data sheets, documentation
» Device identifiers

Systems Group | Department of Computer Science | ETH Zurich

8th April 2009

SKB example

Uniquely assign IRQ numbers to devices
» Each device supports some IRQ numbers
» Need to find unique allocation

device(el1000,...,supported_irqgs([1, 3, 41))
device (SATA,...,supported_irqs([1, 4, 6]))

constrain_irq(L,I) :-
i(_,supported_irqs(List)) = L,
I::List.

allocate_irqgs(DevIRQ,IRQList) :-
findall(i(Loc,I),device(_,Loc,_,_,_,I),DevIRQ),
maplist(constrain_irq,DevIRQ,IRQList),
alldifferent(IRQList),
labeling (IRQList) .

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Outline

Status & Conclusion

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

Current status

What's working this week?

vV V. vV V. YV VvV VvV VY

x86-64 CPU/APIC driver, multiple cores
Capability system & memory management
Monitor implementation

Low-level IDC/LRPC/URPC messaging
High-level OSGi-like component system
User-space libraries, incl. threads

Devices: PCl, ACPI, 3 NICs, framebuffer, ...
IwlIP, NFS stacks

SQOLite, Python, OpenMPp, ...

currently serving www.barrelfish.org

Systems Group | Department of Computer Science | ETH Zurich

www.barrelfish.org

Conclusions

1. Treat the machine as a distributed system:

» Concurrency, communication, heterogeneity

» Tailor messaging mechanisms and algorithms to the
machine

» Hide sharing as an optimisation

2. Tackle the heterogeneity and complexity head-on:

» Discover, measure, or just assert it
» Spend cycles to reason about it

3. Build a real system!

8th April 2009 Systems Group | Department of Computer Science | ETH Zurich

	Introduction and goals
	Who's involved

	Why should we write a new OS?
	Many cores
	Increasing heterogeneity

	The Multikernel architecture
	Implementation and results
	Direct representation of heterogeneity
	Status & Conclusion

