1. Theorie paralleler Betriebssystem-Prozesse

Literaturhinweis: ZIMA, H.: Betriebssysteme. Parallele Prozesse. Bibl. Institut, Zürich 1986.

1.1. Prozeßsysteme und ihre Beschreibung

1.1.1. Prozesse und Betriebsmittel

- *Prozeßbegriff:* identifizierbare Folge von Aktionen eines Prozessors aufgrund einer strukturierten Menge von Anweisungen, die zu einer Folge von Zustandsänderungen im Rechensystem und in seiner Umgebung führen (nach WERNER).
- *Parallele Prozesse:* Prozesse, die sich gleichzeitig zwischen Start und Ende befinden.

Asynchronität → Wechselwirkungen

- *Koordination (Synchronisation i.w.S.):* zielgerichtete Steuerung der logischen und zeitlichen Abläufe von parallelen Prozessen entsprechend der angestrebten Wechselwirkung.
- *Betriebsmittel (BM):* Komponenten eines Rechensystems, die von den einzelnen Prozessen während ihres Ablaufs benötigt werden.

Klassifikation:

globale BM; mehrere Prozesse können gleichzeitig zugreifen; lokale BM; nur durch jeweils einen Prozeß verwendbar.

- B: Menge der globalen Betriebsmittel, n: Anzahl.
- Wert (Zustand) der BM: w_b ∈ W_b, b ∈ B für globale BM, analog für lokale Betriebsmittel.

- Zustand des Rechensystems: $z = (w_1,...,w_n,...)$.
- 1.1.2. Verarbeitungsschritte
- Verarbeitungsschritt s: besteht aus

Eingabeaktion $\,e_{\sigma}\,$ von einem Eingabebereich $\,B^{e}_{\,\,\sigma}\!\subseteq B$

Transformation f_{σ}

Ausgabeaktion a_{σ} nach einem Ausgabebereich $B^{a}_{\sigma} \subseteq B$.

 Σ : Menge aller Verarbeitungsschritte eines Prozeßsystems, m: Anzahl.

- Uninterpretiertes Prozeßsystem: Vernachlässigung der Transformation f_{σ} , Reduzierung eines Verarbeitungsschrittes auf die Form $\sigma = e_{\sigma}a_{\sigma}$
- Inzidenzmatrizen:

Eingabematrix $\mathbf{B}^{e} = (\mathbf{m}_{\sigma b}^{e})_{\sigma \in \Sigma} |_{b \in \mathbf{R}}$

 $m^e_{\sigma_b}$: Anzahl der dem Schritt σ zugeordneten BM $b \in B^e_{\sigma}$

Ausgabematrix $\mathbf{B}^{a} = (m_{\sigma,b}^{a})_{\sigma \in \Sigma, b \in B}$

 $m^a_{\sigma b}$: Anzahl der dem Schritt σ zugeordneten BM $b \in B^a_{\sigma}$

Bsp. 1.

$$\mathbf{B}^{e} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{B}^{a} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

1.1.3. Datenabhängigkeit

• Es sei für $\sigma,\sigma' \in \Sigma$:

$$B_{\sigma,\sigma} := (B^a_{\sigma} \cap B^a_{\sigma}) \cup (B^e_{\sigma} \cap B^a_{\sigma}) \cup (B^a_{\sigma} \cap B^e_{\sigma}).$$

• $\sigma, \sigma' \in \Sigma$ heißen *datenabhängig*, wenn $B_{\sigma,\sigma'} \neq \emptyset$.

Datenabhängigkeitsrelation:

$$G := \{ (\sigma, \sigma') \mid B_{\sigma, \sigma} \neq \varnothing \ \land \ \sigma \neq \sigma' \} \subseteq \Sigma \times \Sigma.$$

Bsp. 2.
$$G = \{$$

G ist per def. irreflexiv und symmetrisch.

Darstellung von G als Datenabhängigkeitsmatrix G.

Bsp.
$$\mathbf{G} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

• Darstellung als *Datenabhängigkeitsgraph*:

Knoten: \square $\sigma \in \Sigma$, O $b \in B$

Kanten: \rightarrow (b, σ) bei $b \in B^e_{\sigma}$, (σ, b) bei $b \in B^a_{\sigma}$.

Bsp. 4.

1.1.4. Präzedenz und Adjazenz

• Präzedenzrelation:

 $R \subseteq \Sigma \times \Sigma$ irreflexiv, asymmetrisch; transitiv.

Schreibweise bei $(\sigma, \sigma') \in \mathbb{R}$: $\sigma < \sigma'$.

Interpretation bei $(\sigma,\sigma') \in R$: σ muß vor Beginn von σ' beendet sein. Sprechweise bei $(\sigma,\sigma') \notin R \land (\sigma',\sigma) \notin R$:

 σ , σ' sind parallel ausführbar.

Darstellung als *Präzedenzmatrix* **R**.

Bsp. 5.

$$\mathbf{R} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Adjazenzrelation:

 $A_R = \{(\sigma, \sigma') \in R \mid \sigma \text{ ist } \underline{\text{unmittelbarer}} \text{ Vorgänger von } \sigma'\}.$

Schreibweise bei $(\sigma, \sigma') \in A_R$: $\sigma \triangleleft \sigma'$.

Bsp. 6.

$$\mathbf{A} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ist R eine Halbordnungsrelation, so gilt: $A_R = R \setminus R^2$.

Bsp. 7.

Darstellung als (Präzedenz-)Graph:

1.1.5. Formale Darstellung eines Prozeßsystems

- Ein *Prozeßsystem über einer Menge B* von globalen Betriebsmitteln ist ein Quadrupel $\Pi = (\Sigma, R, Z, z_0)$ mit
- Σ : Menge der Verarbeitungsschritte; zu $\sigma \in \Sigma$ gehört Eingabebereich $B^e_{\sigma} \subseteq B$, Ausgabebereich $B^a_{\sigma} \subseteq B$, Einbageaktion e_{σ} , Ausgabeaktion a_{σ} ;
- R: Präzedenzrelation (strikte Halbordnungsrelation);
 Reihenfolge, in der Verarbeitungsschritte auszuführen sind;
- Z: Menge der möglichen Zustände; $Z = \underset{b \in B}{\times} W_b$, W_b Wertemenge von $b \in B$;
- $-z_0$: Anfangszustand, $z_0 \in Z$.
- Implizite Annahmen: Prozeßsystem ist asynchron und uninterpretiert.
- Weiter sei

T: Menge aller Ein- und Ausgabeaktionen von Σ .

R wird auf T fortgesetzt durch die zusätzliche Festlegung

$$(e_{\sigma}, a_{\sigma}) \in R \quad \forall \sigma \in \Sigma.$$

1.2. Determinierte Prozeßsysteme

1.2.1. Aktions-, Zustands- und Wertefolgen

Gegeben sei ein Prozeßsystem $\Pi=(\Sigma,R,Z,z_0)$ über B; weiter sei $|\Sigma|=m,\ |B|=n,\ Z=\underset{b\in B}{\times}W_b,\ T$ Menge aller Aktionen.

• **Zulässige Aktionsfolge** a: jede Folge der Länge 2m von Elementen aus T (Permutationen ohne Wiederholung), die R genügt.

A: Menge der zulässigen Aktionsfolgen.

- Teilaktionsfolge a' einer zulässigen Aktionsfolge a: jeder zusammenhängende Abschnitt der Länge $1 \ (0 \le 1 \le 2m)$ einer zulässigen Aktionsfolge.
- *Von* a ∈ A *erzeugte Zustandsfolge* z(a): Folge der zugehörigen Zustände des Prozeßsystems.
- Von $a \in A$ erzeugte Wertefolge $w_b(a)$ des Betriebsmittels $b \in \mathcal{B}$ \dot{e} i $b \in \mathcal{B}$, $\alpha = t_1...t_{2m} \in \mathcal{A}$, $\zeta = \zeta(\alpha) = z_1...z_{2m}$; dann werden aus ζ alle Zustände t_j ($j \in \{1,...,2m\}$) gestrichen, für die gilt:

$$\exists \ \sigma \in \Sigma \colon \ (t_{j} = e_{\sigma}) \lor (t_{j} = a_{\sigma} \land \ b \not\in B^{a}_{\sigma}).$$

Die von α erzeugte Wertefolge $w_b(\alpha)$ des Betriebsmittels b ist dann die Folge der b-ten Projektionen der verbleibenden Zustandsfolge.

Analog für Teilaktionsfolgen.

1.2.2. Determiniertheit und Störungsfreiheit

- Ein *Prozeßsystem* heißt *determiniert*, wenn die Wertefolgen w_b(α) aller globalen Betriebsmittel b∈ B nur vom Anfangszustand, nicht aber von den zulässigen Aktionsfolgen abhängen.
- Ein $Proze\beta system$ heißt schwach determiniert, wenn der Endzustand z_{2m} nur vom Anfangszustand, nicht aber von den zulässigen Aktionsfolgen abhängt:

$$z_{2m}(\alpha) = z_{2m}(\alpha') = f(z_0) \quad \forall \alpha, \alpha' \in A.$$

• Zwei verschiedene *Verarbeitungsschritte* $\sigma,\sigma' \in \Sigma$ heißen *störungsfrei*, wenn gilt:

$$(\sigma, \sigma') \in R \lor (\sigma', \sigma) \in R \lor B_{\sigma, \sigma'} = \emptyset$$
 $(\sigma \neq \sigma').$

- $\sigma \in \Sigma$ heißt verlustfrei bei $B^a_{\sigma} \neq \emptyset$.
- Ein *Prozeβsystem* Π heißt *störungsfrei*, wenn es nur einen Verarbeitungsschritt enthält oder alle Schritte paarweise störungsfrei sind. Es heißt *verlustfrei*, wenn alle Verarbeitungsschritte verlustfrei sind.

1.2.3. Charakterisierung determinierter Prozeßsysteme

Hilfssatz. Sei $\Pi = (\Sigma, R, Z, z_0)$ ein störungsfreies Prozeßsystem über B, und es sei $\sigma = ea$ ein maximales Element bzgl. R. Wenn es eine Aktionsfolge $\alpha = \alpha_1 e \alpha_2 a \alpha_3 \in A$ gibt, so ist auch $\alpha' = \alpha_1 \alpha_2 \alpha_3 ea \in A$, und es gilt:

$$w_b(\alpha) = w_b(\alpha') \quad \forall b \in B.$$

Zum Beweis.

a) α zulässig $\rightarrow \neg(\alpha_3 < a)$

 σ maximal $\rightarrow \neg (a < \alpha_3)$

Also sind a, α_3 parallel ausführbar.

Analog für e und $\alpha_2\alpha_3$.

b) Fallunterscheidungen bzgl. $b \notin B^a_{\sigma}$ bzw. $b \in B^a_{\sigma}$; wegen a $\|\alpha_3$ bzw. $e \|\alpha_2\alpha_3$ gilt:

Störungsfreiheit \rightarrow Datenunabhängigkeit.

Damit: $w_b(\alpha) = w_b(\alpha')$.

Satz 1. Jedes störungsfreie Prozeßsystem ist determiniert.

Beweis. vollständige Induktion über $|\Sigma|$.

- a) $|\Sigma| = 1$: Π störungsfrei per def. und determiniert (trivial).
- b) $\forall \ \widetilde{\Pi} = (\widetilde{\Sigma}, \widetilde{R}, \ \widetilde{Z}, \ \widetilde{z}_0) \ \text{mit} \ \left|\widetilde{\Sigma}\right| = m \ \text{und} \ \widetilde{\Pi} \ \text{st\"orungsfrei gelte:}$ $\widetilde{\Pi} \ \text{ist determiniert.}$
- c) Sei $\Pi = (\Sigma, R, Z, z_0)$ mit $|\Sigma| = m+1$ ein störungsfreies PS.

Dann gibt es ein $\sigma = ea \in \Sigma$, das maximal bzgl. R ist.

Seien
$$\alpha = \alpha_1 e \alpha_2 a \alpha_3 \in A$$
, $\beta = \beta_1 e \beta_2 a \beta_3 \in A$, $b \in B$ bel.

Dann ist nach obigem Hilfssatz auch

$$\alpha' = \alpha_1 \alpha_2 \alpha_3 ea \in A$$
, $\beta' = \beta_1 \beta_2 \beta_3 ea \in A$

mit

$$w_b(\alpha) = w_b(\alpha'), \qquad w_b(\beta) = w_b(\beta') \qquad \forall b \in B.$$
 (*)

Aus Π werde $\widetilde{\Pi}$ gebildet mit

Nach b) ist $\tilde{\Pi}$ determiniert, also

$$w_b(\tilde{\alpha}) = w_b(\tilde{\beta}) \quad \forall b \in B.$$

Dann gilt für α bzw. β :

$$-b \notin B^a_{\sigma}$$
: $w_b(\alpha') = w_b(\widetilde{\alpha}), \quad w_b(\beta') = w_b(\widetilde{\beta}).$

 $-b\in B^a{}_\sigma\! :$ Sowohl nach $\widetilde{\alpha}$ als auch nach $\widetilde{\beta}$ liegt gleicher Zustand vor \to gleicher Ausgabewert x, mithin

$$w_b(\alpha') = w_b(\widetilde{\alpha})x, \quad w_b(\beta') = w_b(\widetilde{\beta})x.$$

Also gilt in beiden Fällen:

$$w_b(\alpha') = w_b(\beta')$$

und wegen (*)

$$w_b(\alpha) = w_b(\beta)$$
.

Satz 2. Jedes determinierte und verlustfreie Prozeßsystem ist störungsfrei.

Beweis. Indirekt.

Ang., es gebe determiniertes, verlustfreies Prozeßsystem Π über B, das nicht störungsfrei ist.

Dann gibt es σ , $\sigma' \in \Sigma$: parallel ausführbar und datenabhängig.

Damit:

$$\alpha = \alpha_1 \sigma \sigma' \alpha_2 \in \ A, \qquad \beta = \beta_1 \sigma' \sigma \beta_2 \in \ A.$$

a)
$$\mathbf{B}_{s}^{\mathbf{a}} \mathbf{C} \mathbf{B}_{s'}^{\mathbf{a}_{1}} \mathbf{E}$$
:

$$\exists b \in B^a_{\sigma} \cap B^a_{\sigma}$$
;

Konstruktion zweier Interpretationen:

$$f_{\sigma}$$
 schreibt x auf b , f_{σ} schreibt y auf b mit $x \neq y$.

Dann ist

$$w_b(\alpha) = w_b(\alpha_1) xy w_b(\alpha_2)$$

$$w_b(\beta) = w_b(\beta_1) yx w_b(\beta_2).$$

b)
$$\mathbf{B}_{S}^{a} \subset \mathbf{B}_{S'}^{a} = AE \stackrel{`}{\mathbf{U}} \mathbf{B}_{S}^{a} \subset \mathbf{B}_{S'}^{e} \stackrel{1}{A} E$$
:

$$\exists b \in B^a_{\sigma} \cap B^e_{\sigma};$$

$$\Pi$$
 verlustfrei $\rightarrow \exists b' \in B^a_{\sigma} \setminus B^a_{\sigma}$

Konstruktion zweier Interpretationen:

$$f_{\sigma}$$
 ändert Wert x von b in x',

$$f_{\sigma}$$
 ist 1-1-Abbildung von b nach b': $\phi: W_b \to W_{b'}$.

Dann erzeugen α und β unterschiedliche Wertefolgen auf b':

$$\alpha$$
: $\sigma\sigma'$ schreibt auf b' $\phi(x')$

$$β$$
: $σ'σ$ schreibt auf b' $φ(x)$

c)
$$\mathbf{B}_{s}^{a} \subsetneq \mathbf{B}_{s'}^{a} = A$$
 Ù $\mathbf{B}_{s}^{e} \subsetneq \mathbf{B}_{s'}^{a}$ A: analog.

Weiter gilt: Ein schwach determiniertes verlustfreies Prozeßsystem ist nicht notwendig störungsfrei.

1.2.4. Maximal parallele Prozeßsysteme

• Ein störungsfreies Prozeßsystem $\Pi = (\Sigma, R^p, Z, z_0)$ über B heißt *maximal parallel*, wenn es nach Streichen eines Elements aus der zu R^p gehörigen Adjazenzmatrix A_R^p nicht mehr störungsfrei ist.

Satz 3. Sei $\Pi = (\Sigma, R, Z, z_0)$ ein störungsfreies Prozeßsystem über B und G seine Datenabhängigkeitsmatrix. Dann ist das Prozeßsystem $\Pi^p = (\Sigma, R^p, Z, z_0)$, wobei R^p die transitive Hülle von $U = R \cap G$ ist, maximal parallel.

Beweis. Sei A_U die Adjazenzrelation von U (und damit von R_p). Offenbar ist $A_U \subseteq U$. Nun werde für ein beliebiges $(\sigma, \sigma') \in A_U$ die Relation

$$S = A_U \setminus \{(\sigma, \sigma')\}$$

betrachtet. Dann gilt weiterhin $(\sigma,\sigma') \in G$, d.h. $B_{\sigma,\sigma'} \neq \emptyset$. Ferner ist wegen $(\sigma,\sigma') \in R$ und der Asymmetrie von R

$$(\sigma',\sigma) \notin R$$
, damit $(\sigma',\sigma) \notin S$.

Mit

S: transitive Hülle von S

folgt

 $\widetilde{S} \subseteq R$ und damit $(\sigma', \sigma) \notin \widetilde{S}$

und weiter

$$(\sigma,\sigma') \notin \widetilde{S}$$
,

also ist Π nach Streichen von (σ,σ') nicht störungsfrei.

• *Bemerkung*. Das so konstruierte maximale Prozeßsystem ist bis auf Äquvalenz eindeutig bestimmt.

Bsp. 8.

$$\mathbf{B}^{e} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}, \quad \mathbf{B}^{a} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{R} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Datenabhängigkeitsgraph:

$$\mathbf{G} = \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

1.3. Überlagerung von Prozeßsystemen

- (Serielle) Verkettung von Prozeßsystemen
- Parallelität von Prozeßsystemen
- Verwaltete Betriebsmittel

1.4. Koordinierung paralleler Prozesse

1.4.1. Begriffe

- *Konkurrenz:* mehrere Prozesse bewerben sich unabhängig voneinander um die zeitweilig exklusive Nutzung von verwalteten Betriebsmitteln.
- Kritischer Abschnitt: Gegeben sei ein Prozeßsystem Π sowie eine Menge K von Teilaktionsfolgen. Dann heißt κ∈ K kritischer Abschnitt zur Klasse K, wenn κ nicht gleichzeitig mit einer anderen Teilaktionsfolge aus K aktiv sein darf.

(aktiv: mind. 1 Verarbeitungsschritt ist noch nicht beendet)

- Wechselseitiger Ausschluß: Koordinierung der Abläufe von Prozeßsystemen Π_1 , Π_2 ,... so, daß kritische Abschnitte derselben Klasse nur von 1 Prozeßsystem betreten werden können.
- Protokoll: Steueralgorithmus, der der gegenseitigen Verständigung von parallelen, asynchronen Prozessen zwecks Koordinierung ihrer Abläufe dient.

Vorprotokoll: Herstellen einer zweckgebundenen logischen Verbindung zu einem oder mehreren Prozessen;

Nachprotokoll: Lösen der logischen Verbindung.

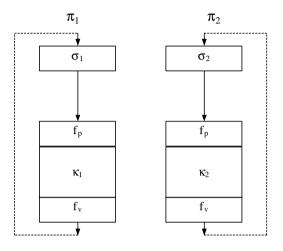
- Anforderungen an Protokolle, unabhängig von Geschwindigkeit der Prozesse:
- Sicherheit: wechselseitiger Ausschluß muß gewährleistet sein;
- Lebendigkeit: Jeder Prozeß muß nach endlicher Zeit k.A. betreten können.

Nichtvorhandensein von Fernwirkung – Ausgrenzung – Verklemmung.

1.15

1.4.2. Dezentrale Lösung für 2 Prozesse nach DEKKER/DIJKSTRA

• Grobstruktur



• Algorithmus DD

• Temporale Logik:

KRÖGER, F.: Temporal Logic of Programs. Springer 1987.

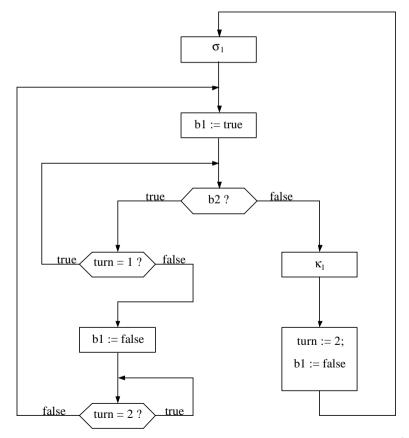
Zeit: unendliche diskrete linear geordnete Menge mit kleinstem Element. Operatoren u. a.:

ALWAYS A \Box A gilt von nun an zu jedem Zeitpunkt SOMETIMES A \Diamond A gilt zu einem zukünftigen Zeitpunkt A WHILE B A gilt, solange B gilt.

Satz 4. Das Protokoll des Algorithmus DD ist sicher.

Satz 5. Das Protokoll des Algorithmus DD ist lebendig.

bi: Anmeldung, turn: Vorrecht b1 := false; b2 := false; turn := 1; anderer Verarbeitungsschritt $\{\sigma_1\}$ b1 := true; Anmeldung while b2 do warten, bis **p**₂ Anmeldung zurücknimmt if turn = 2 then begin b1 := false; **p**₂ hat Vorrang: Anmeldung zurückn. warten, bis **p**₂ Vorrang abgibt while turn = 2 do: b1 := trueAnmeldung wiederholen end; $\{\kappa_1\}$ kritischer Abschnitt Vorrang abgeben, Anmeld. zurückn. turn := 2; b1 := false;



Beweis von Satz 4. DD ist sicher.

Offenbar gilt zu jedem Zeitpunkt:

$$\pi_1$$
 tritt in κ_1 ein $\rightarrow \neg b_2$

$$\pi_2$$
 ist in $\kappa_2 \rightarrow b_2$

d.h.

$$\neg b_2 \rightarrow \neg (\pi_2 \text{ ist in } \kappa_2),$$

woraus unmittelbar folgt

$$\pi_1$$
 tritt in κ_1 ein $\rightarrow \neg(\pi_2$ ist in κ_2). (*)

Analog ergibt sich:

$$\pi_1$$
 ist in $\kappa_1 \rightarrow b_1$
 $b_1 \rightarrow \neg(\pi_2 \text{ tritt in } \kappa_2 \text{ ein}),$

also zusammengefaßt

$$\pi_1$$
 ist in $\kappa_1 \rightarrow \neg(\pi_2 \text{ tritt in } \kappa_2 \text{ ein})$

und damit

$$\neg(\pi_2 \text{ tritt in } \kappa_2 \text{ ein}) \text{ WHILE } (\pi_1 \text{ ist in } \kappa_1).$$

Mit (*) folgt daher insgesamt:

$$\neg(\pi_2 \text{ ist in } \kappa_2) \text{ WHILE } (\pi_1 \text{ ist in } \kappa_1).$$

Entsprechend für vertauschte Indizes.

Beweis von Satz 5. DD ist lebendig.

Voraussetzungen.

- $-\alpha_1,...\alpha_8$ bzw. $\beta_1,...,\beta_8$ bezeichnen die logischen Variablen dafür, daß im PAP der Prozeß π_1 bzw. π_2 die entsprechende Stelle erreicht hat.
- Da b_i nur von π_i (i = 1,2) geändert werden kann, gilt:

$$\begin{vmatrix}
b_1 \iff \alpha_3 \lor \alpha_4 \lor \alpha_5 \lor \alpha_6 \lor \alpha_7 \\
b_2 \iff \beta_3 \lor \beta_4 \lor \beta_5 \lor \beta_6 \lor \beta_7
\end{vmatrix} (1)$$

– Zu beweisen: $\alpha_2 \rightarrow \delta \alpha_5$.

Beweis indirekt: Es gelte

$$\alpha_2 \wedge \neg \Diamond \alpha_5$$
.

a) Angenommen, es gilt

$$\Box(\text{turn} = 2). \tag{2}$$

Dann hat π_1 folgenden Ablauf:

$$\alpha_2$$
 – α_3 – α_4 – α_6 – α_8 – Schleife.

Damit wäre von nun an immer $\neg b_1$ erfüllt. Daher könnte nun π_2 in κ_2 eintreten. Nach Verlassen von κ_2 folgt nach β_7

$$turn := 1$$

b) Also kann ausgegangen werden von

$$\alpha_2 \wedge \neg \Diamond \alpha_5 \wedge \Diamond \text{ (turn = 1)}.$$
 (3)

Dann folgt auch $\neg \Diamond \alpha_7$; da aber turn := 2 nur nach α_7 ausgeführt wird, folgt aus (3) sogar

$$\Diamond \Box \text{ (turn = 1)}. \tag{4}$$

Mithin käme π_1 irgendwann nach α_4 in eine Schleife:

$$\Diamond \square (\pi_1 \text{ in Schleife } \alpha_3 - \alpha_4). \tag{5}$$

In dieser Schleife wäre offenbar b₁ erfüllt, mithin folgt

$$\Diamond \Box b_1. \tag{6}$$

c) Betrachtung in dieser Situation von π_2 :

$$\beta_2 - \beta_3 - \beta_4 - \beta_6 - \beta_8 -$$
Schleife,

und nach (1) gälte dann $\neg b_2$, also

$$\Diamond \Box \neg b_2. \tag{7}$$

Dann folgt aus (5) und (7) für π_1 :

$$\Diamond (\alpha_3 \land \neg b_2)$$

und somit

 $\Diamond \alpha_5$

q.e.d.

Aufgaben I.

- 1. Ein System bestehe aus 2 Verarbeitungsschritten (parallel ausführbar) σ_1 , σ_2 und besitze 2 globale Betriebsmittel b_1 , b_2 (Werte: natürliche Zahlen). Die Summe der Werte der Betriebsmittel wird durch σ_1 auf b_1 geschrieben, durch σ_2 auf b_2 ; der Anfangszustand sei
- (1) Geben Sie die formale Beschreibung als Prozeßsystem an, untersuchen Sie die Datenabhängigkeit!
- b) Ermitteln Sie alle zulässigen Aktionsfolgen und die zugehörigen Wertefolgen der beiden Betriebsmittel!
- 2. Gegeben seien

$$\Sigma = \{1,...,7\}, B = \{a,...,g\},\$$

$$\boldsymbol{B}^{c} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}, \quad \boldsymbol{B}^{a} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \boldsymbol{R} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Bestimmen Sie

- a) den Datenabhängigkeitsgraphen
- b) die Datenabhängigkeitsmatrix
- c) die zu R gehörige Adjazenzrelation
- d) den Präzedenzgraphen!
- 3. Es sei

$$\begin{split} \Sigma = & \{\sigma_1, \, \sigma_2, \, \sigma_3 \,\}, \quad R = \{(\sigma_1, \, \sigma_3), \, (\sigma_2, \, \sigma_3)\}, \quad B = \{b_1, b_2\}, \quad z = (x \ y)^T \ (x, y \in \ \mathbb{N}), \quad z_0 = (2 \ 1)^T, \\ f_1 : x \mapsto 2x, \quad f_5 : \ y \mapsto 3y, \quad f_3 : x \mapsto 2x, \ y \mapsto 3y. \end{split}$$

Untersuchen Sie die Datenabhängigkeit und die Determiniertheit!