
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

MKC – Exercise 3

2019-06-06

Nils Asmussen



Roadmap

• Create new Execution Contexts (threads)
• Manage ECs in a (double linked ring) list
• Switch between them (cooperatively)

• Hands-on
– User-level threading
– 1st “real” system call: create_ec
– 2nd system call: yield



Get the Code

$ git clone 
https://os.inf.tu-dresden.de/repo/git/mkc.git
$ git checkout exercise3

# build it
$ make

# run it
$ make run

https://os.inf.tu-dresden.de/repo/git/mkc.git


Scheduling

• Very very simple scheduler
– No priorities, no time budgets
– Cooperative multithreading
– Single address space, uniprocessor

• Kernel: kern/include/ec.h
– Registers (state)
– Continuation (where to continue execution)
– Management information (e.g. *prev, *next)

• User: user/src/user.cc
– Code (instruction pointer)
– Most likely a Stack (stack pointer)



code

What is a Thread/EC?

EIP stack EIP

stack

ESP
EAX
EBX
. . .

ESP
EAX
EBX
. . .

cont
prev
next

cont
prev
next

kernel
user

A B



New User Level Thread

• Thread function: no parameter, nothing to 
return, but needs a stack

• Where to get the new stack from? malloc() → 
not available (so far)

• Put it statically in data segment or on local 
stack of the currently running thread:
char new_stack[64];

• Stack grows downwards, thus ESP should 
point to the end: new_stack + 
sizeof(new_stack)



Task 0 : Minimal Thread User Code

• Write a new thread function in user/src/user.cc
– Simple function doing nothing but spinning
– Later it shall call sys_yield(), thus switching to 

the next thread

• New bindings for to-be-written syscalls:
– sys_create_ec (2 arguments):

• Creates a shining new Execution Context
• EIP of new EC (thread function's address)
• ESP to be used – we need a user stack per EC

– sys_yield (no argument)
• Simply switches to the next thread



Task 1 : sys_create_ec

• Organize ECs in a ring list
– add prev and next pointer (kern/include/ec.h)
– Private enqueue() function, adding this to the 

tail of the list (kern/src/ec.cc)
– Special case when creating very first EC, 

Ec::current is not yet set, watch out!

• Add a new system call
– Two parameters (instruction and stack pointer)
– Ec::sys_regs() and kern/include/regs.h
– Create new EC, add it to the list, and sysexit
– Verbose printf, newly created EC, its EIP/ESP, 

maybe even the whole list of ECs



Task 2 : sys_yield

• Switch from currently running EC 
(Ec::current) to next one (current->next)
– Every EC has a continuation – the function to 

execute whenever becoming ready (again)
– The currently running thread shall continue 

with ret_user_sysexit, thus set cont 
accordingly

– Switch to current->next via make_current()

• Create more threads in user application,  
printf whenever they yield: EC:%p → EC:%p


	Hier steht der Titel der Power Point Präsentation.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10

