TECHNISCHE —
UNIVERSITAT omcent £
DRESDEN

Faculty of Computer Science, Operating Systems Group

The L4Re Microkernel

Adam LackorzynskKi

June 2019

TECHNISCHE
UNIVERSITAT Agenda
DRESDEN

e What is L4Re?

e History

e The L4Re Microkernel / Microhypervisor
e Fiasco Interfaces

e Multiprocessor systems

e Virtualization

IEIlE L4Re

DRESDEN

e L4Re is a microkernel-based operating system framework
e Provides building blocks to build systems

e Security

o Safety

e Real-time

e Virtualization

e Framework for building ,,uApps"

e Libraries and services, libc, pthread, libstdc++, program loading, POSIX
subset, shared libraries, memory allocators, ...

G inversitar - L4Re & Fiasco Timeline

DRESDEN

e ~1995+: Jochen Liedtke develops L4 microkernel

e New minimalistic approach; pure assembly; performance
e Interface: L4-v2

e ~1996+: First application: L4Linux
e ~1997+: Development of Fiasco starts

e Original L4 kernel restrictive
e Modern C++-based design

e DROPS project (Dresden Real-time OPerating System)
e Fiasco is a real-time kernel

e Uni Karlsruhe: L4-x0, L4-x2/v4 interfaces

e L4Env - L4 Environment
e Environment to run applications on the system

G inversitar - L4Re & Fiasco Timeline

DRESDEN

General shift of focus from real-time to security

All interfaces (v2 + x2/v4) not suited

e Global identifiers

New interface:

e Capability-based naming

e Needs redesign of whole user-level framework and applications
New: L4Re

e Capability-based run-time environment
e Kernel/user co-design

e Uniform & transparent service invocation
Today: L4Re developed & maintained by Kernkonzept

TECHNISCHE
@ UNIVERSITAT
DRESDEN

QL4Re Runtime

Virtual Machine 1§ Virtual Machine 2 J§ Virtual Machine 3 § MicroApp § MicroApp § MicroApp

Device Linux Linux Windows @ Windows Android Android
management APP App APP ApP App App

Secure GUI :
Crypto °
Service

Linux Device Drivers Windows Drivers T Realtime

Isolated Domains

c L4Re Microkernel & Hypervisor

Dl Multi-Core CPU, Memory
Devices Devices

G inversitar - L4Re Microkernel

DRESDEN

e Also called:

e |L4Re Hypervisor, L4Re Microhypervisor
e Fiasco.OC - Added with capabilities
e Fiasco

e Continuously developed since 1997

e Started as a single-processor kernel for x86-32
e Initially on the Pentium-1
e Followed by:
e ARM, 32bit
e [tanium IA64
e PPC32, Sparc

e MIPS: 32bit + 64bit (r2+r6, LE/BE)
e ARM, 64bit

G iniversitar - L4Re Microkernel — Today

DRESDEN

e Capability-based access model
e Multi-processor

e Multi-architecture: ARM, MIPS, x86 (Main architectures)
o 32 & 64 bit

e Generic virtualization approach
e Paravirtualization

e Hardware-assisted virtualization: ARM VE, MIPS VZ, Intel VT, AMD SVM
e For most people it's a hypervisor

G inversiiar - Objects and Capabilities

DRESDEN

e Every accessible function is called through an object
e C++ object, derived from L4::Kobject
e E.g. Thread, Task, Irg

e Each such object has a pointer

e A capability is such a pointer
e But protected by the kernel
e By an indirection through an array in kernel 's address space
e Invocation is done with an integer indexing into the array

e Implemented with a sparse array TEElk LTask B
L_,

| {

12345678 123456738

ST 7

Microkernel B D F]

@D RN L4nIpc_gate
DRESDEN -

e Crucial object: Communication channel (between threads)
e One thread listens to messages

e Multiple threads can send to it

Thread ~

)-—+Thread

Thread”

10

TECHNISCHE

UN.VERs.m Inter-Process Communication — IPC

DRESDEN

e Inter-Process Communication (IPC)
e Actually between threads

e UTCB - ,User Thread Control Block™

e Storage space to exchange data with the kernel

e Special memory that does not fault
= Simplifies kernel code

e Capability invocation —» sending a message to an object
e Data is transferred using the UTCB
e Message transfer is a memcpy() between source and destination UTCBs

11

G inversitar - IPC: Sending Resources

DRESDEN

e IPC can transfer data and resources

e Resources:

e Access to memory pages (RAM and IO memory)
e Access to kernel objects (capabilities)

e Sending access — Granting tasks access to resources

e Data type: Flexpage
e Flexpages describing resources in the sender’s address space

e Map & Unmap operations

12

TECHNISCHE
UNIVERSITAT

DRESDEN

L4 Virtual Memory Model

Linux App

[

@

L4Linux Kernel

Native L4 App / Driver

[

|

Resource Management

@

@

©

|

RAM

Device
Mem

35?&".42.‘%‘&5 Invoking / Calling the Kernel

DRESDEN

Thread
v capability Object
UTCB . .
MRs
Message
BRs p 1w f
Opcode
TCRs > Parameters
LABEL
TAG p 1 w f

TECHNISCHE
UNIVERSITAT IPC
DRESDEN

e TAG message descriptor
e Number of words
e Number of items

e Flags
e Protocol ID (type of payload)
e LABEL protected message payload

e Secure identification of a specific capability a message was sent through

15

GDRWERE UTCB Content

DRESDEN

¢ MR message registers

e Untyped message data

e Message items (capabilities, memory pages, 10 ports)
e BR Dbuffer registers

e Receive buffers for capabilities, memory, I0-ports

e Absolute timeouts
e TCR thread control registers

e Error code

e User values

16

GD MR Communication — IPC

DRESDEN

Sender Thread Receiver Thread
UTCB — UTCB
LABEL
MRs > MRs
BRs BRs
TCRs TCRs
/J[,
LABEL il LABEL
TAG p |1 w f »C) »p I w f TAG

17

TECHNISCHE
UNIVERSITAT IPC
DRESDEN

e Synchronous

e Sender waits until the receiver is ready to receive
e Blocking can be limited by a timeout

e Data-only IPC is atomic
e Mapping IPC can block (not atomic)

e Atomic send—-receive transition in call
e Reply can have a zero timeout

18

G inversitar - Asynchronous IRQ Message

DRESDEN

Receiver Thread

UTCB
> MRs
IRQ
LABEL BRs
TCRs
> LABEL
—» p i w f TAG

G inversitar - Page-fault & Exception Message

DRESDEN

Receiver Thread

IPC GATE *

Faulting Thread capability /
UTCB

_’;paqeﬁ, — LABEL

Page-fault | g MRs

message ‘

Fault Address BRs
@ N TCRs

p | i w f \

\ . . LABEL

20

Gﬁ‘.’&"&éﬁ'ﬁ? Multi Processor Model
DRESDEN

e Supports multi-processor (SMP) on all supported architectures
e Model:

e Explicit migration by user-level (no policy in the kernel)
e Address spaces span over cores
e Transparent cross-core IPC

* Proxying, programming interface, ...

e User-level provides mechanisms to control migration

21

oniversitar Kernel Objects
DRESDEN

o | 4:
e | 4:
o | 4:
e | 4:
e |4
e | 4:
o | 4:
o | 4:
o |4
o | 4:

:Task / L4::VM
:Thread / L4::vCPU
:IPC_gate

:IRQ

:ICU

:PFC

:\Vcon

:Scheduler
:Factory
:Debugger

22

TECHNISCHE
UNIVERSITAT Tasks
DRESDEN

e Passive protection domain
e No threads

e Memory protection (incl. x86 I0-ports)
e Adress space(s)

e Access control (kernel objects, IPC)
e Object space
e User-level managed
e Managed by sparse array
e Lock free access (using RCU)

23

ISt Thread

DRESDEN

e Executes in a task
e Access to virtual memory and capabilities of that task

e States: ready, running, blocked

e UTCB

e Active endpoint in synchronous IPC
e Needs scheduling parameters to run
e VCPU mode (later)

24

TECHNISCHE
UNIVERSITAT Factory
DRESDEN

e Create (kernel) objects
e Limited by kernel-memory quota

e Secondary kernel memory also accounted: page tables, KU memory, FPU
state buffers, mapping nodes, ..

e Generic interface
e User for kernel and user-level objects

25

IS IPC_gate
DRESDEN -

e Messages forwarded to a thread

e Including protected label for secure identification
e Fundamental primitive for user-level objects

26

TECHNISCHE
@ UNIVERSITAT I RQ
DRESDEN

e Asynchronous signaling

Signal forwarded as message to thread

No payload

Including protected label for identification

Fundamental primitive for hardware IRQs and software signaling

27

TECHNISCHE
UNIVERSITAT ICU
DRESDEN

e Interrupt controller abstraction
e Binds an IRQ object to a hardware IRQ pin / source
e TRQ object gets triggered by hardware interrupt
e Control parameters of IRQ pin / source
e Generic interface
e Also used for virtual IRQ sources (triggered by software)

28

IS Scheduler

DRESDEN

e Manage CPUs and CPU time
e Bind thread to CPU
e Control scheduling parameters
e Gather statistics
e Generic interface
e Used to define resource management policies

29

TECHNISCHE

G inversitar - Remaining Kernel objects

DRESDEN

e PFC: Platform control:

e Enable/disable CPUs

e Suspend/resume

e Reset / Poweroff (depending on platform)
e \Vcon:

e Console access
e Debugger:

e Access to in-kernel debugger

30

G inversitar - Virtualization

DRESDEN

e Generic virtualization approach

e Paravirtualization
= Making an OS a native L4Re application, e.g. L4Linux

e Hardware-assisted virtualization
= Using CPU features: Intel VT-x, AMD SVM, ARM VE, MIPS VZ

e Based on concept of a vCPU

31

GE‘.’&"AE.‘%‘E Standard Threads & Virtualization

DRESDEN

e Standard threads are synchronous in execution, i.e.:
e (Can execute, OR
e Can receive messages

e The execution of a CPU is asynchronous, i.e. interrupt driven
e Can execute, AND
e Can be ready to receive messages

i.e. message can be received while code is executed

— Standard threads are hard to use for executing OS kernels

32

IEms yCPU

DRESDEN

e A vCPU is a unit of execution
e It's a thread with more features
e Every thread can be a vCPU

e Enhanced execution mode: Interrupt-style execution

- Events (incoming IPCs and exceptions) transition the execution to a
user-defined entry point

- Virtual interrupt flag allows control
* Behaves like a thread with disabled virtual interrupts
* Virtual user mode
- A vCPU can temporarily switch a different task (address space)
- Returns to kernel task for any receiving event

33

I,E‘.’\?'E"R'éﬁ'ﬁ vCPU State Area

DRESDEN

e Entry information
e Entry-point program counter
e Entry stack pointer

e vCPU state

e Current mode
e Exception, page-fault, interrupt acceptance, FPU

34

G inversitar - VCPU State Area (2)

DRESDEN

e State save area
e Entry cause code
e Complete CPU register state
e Saved vCPU state, saved version of the vCPU state

e IPC/IRQ receive state

35

G inversitar - VCPU — User Processes with Separate L4 Tasks

DRESDEN

User Task

Oy
4

Kernel / Host
Task

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Concurrency control

Control flow
transfer

State recovery

MMU

Protection

Physical CPU
Interrupt flag

Interrupt entry vector(s)

Kernel stack or registers
by CPU, mostly kept

Page-tables

Modes: Kernel / User

vCPU
Virtual interrupt flag

Entry point

State-save area

Host tasks

vCPU User / vCPU Kernel

Gﬁ‘.’&"&éﬁ'ﬁ? Hardware-Assisted Virtualization

DRESDEN

e Requires privileged instructions
- Implemented in the host kernel (hypervisor) using the vCPU

execution model.
e State save area extended to hold
e x86: VMCB / VMCS (hardware defined data structures, see manuals)
e ARM / MIPS: kernel-mode state + interrupt controller state

e Gust memory for VM
e Hardware provides nested paging
e x86: L4::VM, a specialized L4::Task
e ARM / MIPS: L4::Task
e Maps guest physical memory to host memory

38

Gﬁ‘.’&"&éﬁ'ﬁ? vCPU extended mode

DRESDEN

e Extended mode: has hardware state
e vCPU-resume implements VM handling
e Plus sanity checking of provided values
e VMM can run with open and closed vCPU interrupts

e Open: VMM continues in entry upon VM-exit
e Closed: VMM continues after resume call upon VM-exit

e Nested paging vs. VTLB

39

TECHNISCHE

UNIVERSITAT L4Re and Virtualization

DRESDEN

* Type-1 Hypervisor

Microkernel has virtualization features
- “Microhypervisor”

* Split functionality:

- Hypervisor: privileged mode functionality (e.g. VM switching)
- VMM: user-level program providing the virtual platform for VMs

40

ISsclE VMM

DRESDEN

e Used with hardware-assisted virtualization
e VMM: Virtual Machine Monitor

e Typical model: One VMM per VM

e Application-specific VMM (simple vs. feature-rich)

e Multi-VM VMMs possible
e VMM is an untrusted user application

VM VM
Guest OS Guest OS
VMM-A VMM-B

Hypervisor

41

6D BN VMM Example - uvmm
DRESDEN

® uvmm.

VMM for ARM and MIPS
uvmm for x86 is WiP
Small

Uses VirtIO for guests

VM
Guest OS

uvimm

Hypervisor

42

D REMERE VMM Example — KVM/L4

DRESDEN

e Feature-full virtulization

e Runs Windows

e X86-based

e Uses L*Linux to run KVM & QEMU
e Used in production

VM
QEMU Guest OS
L4Linux
with KVM

Hypervisor

43

Gﬁ‘.’&"&éﬁ'ﬁ? Type Safety in the Kernel

DRESDEN

e Use C++ to get type-safety in the kernel

e Kernel handles different kind of integer types, e.q.
e Physical addresses
e Virtual addresses
e Page-frame numbers
e Prevent that one can easily convert one into another
e I.e.: unsigned long phys, virt;
virt = phys; « This should not work
e Explicit types:

e Virt_addr, Phys_addr, V_pfn, Cpu_number, Cpu_phys_id, ...

44

ISRt TO-MMUS

DRESDEN

e Provides virtual memory for devices
— Needs page-table
e Kernel provides mechanisms
e User-level component manages the page-table (task)
e Uses standard mapping/unmapping mechanism

45

onversitar - Scheduling

DRESDEN

e Each cores run an independent scheduler

e Scheduling type selected at compile time

e Standard: Fixed-priority round-robin
e WFQ

e Further topics
e Scheduling contexts

Flattening hierarchical scheduling
VMs

Budgets / Quotas / QoS

46

G inversitar - L4Re Applications & Users

DRESDEN

e Security Appliances 8er‘da

e (Application) Firewalls, Data-Diodes, ... Security first.
e Up to level GEHEIM / NATO SECRET
o IoT devices .

e Automotive Infodaso

e New industry-wide paradigm: Consolidate ECUs LOGNE IT SOLUTIONS ¢
e Central High Performance Controllers
e Need virtualization etc.

e ...and more...

Elektrobit

47

TECHNISCHE
@ UNIVERSITAT
DRESDEN

14re.org

kernkonzept.com

Q KERNKONZEPT

jobs@kernkonzept.com

it

Fiasco.0C
48

https://l4re.org/
https://kernkonzept.com/
mailto:jobs@kernkonzept.com

