
23 June 2014 Sandboxing

Software
 Sandboxes

 Björn Döbel

23 June 2014 Sandboxing

Outline: Isolation

● Why and what to isolate?

● Machine-Level Isolation
● Virtual Machines
● OS-level isolation: chroot, BSD Jails, OS Containers,

SELinux

● Application-Level Isolation
● Chromium Architecture
● Native Client

23 June 2014 Sandboxing

The need for isolation

● Large-scale: Multi-user systems

● Security:
 Prevent other users from reading/modifying my data...

● Sharing:
 … but allow this for certain exceptions.

● Fair distribution of resources (CPU time / network bandwidth)
among users

● Small-scale: Integrate software from differing sources

● Web browser: websites, plugins

23 June 2014 Sandboxing

What do we isolate for?

● Fault Isolation

● A faulting application shall not take down others.

● Resource Isolation

● Global resources shall be distributed fairly across all users
● What is fair?

● Security Isolation

● Applications shall not access or modify others' data.

23 June 2014 Sandboxing

Separate Physical Machines

App 1 App 2 App 3

”air gap”

23 June 2014 Sandboxing

Separate Physical Machines

● Advantages:

● Achieves isolation

● Different OS/software setups

● Disadvantages:

● Resource overcommit

● Administration effort

● Sharing difficult

1 2 3

23 June 2014 Sandboxing

Virtual Machines

● Idea: better resource utilization by running multiple virtual
machines on a single physical

App 1 App 2 App 3

Hypervisor

VM1 VM2 VM3

23 June 2014 Sandboxing

Virtual Machine Monitor

● Provides virtual hardware environment

● Guest OS runs as on real hardware
● Intercept (and emulate) privileged instructions
● Virtual devices

● Type 1 – Bare metal

● Runs as OS directly on
hardware

● e.g., VMware ESXi, Xen

● Type 2 – hosted

● Part of a native OS (e.g.,
kernel module)

● e.g., KVM, VirtualBox

23 June 2014 Sandboxing

Virtual Machines for Isolation

● Advantages

● Isolation
● Better resource utilization
● Different OS/SW setups

● Disadvantages

● Management
● Slight Performance overhead
● Sharing still difficult

1 2 3

Hypervisor
VM1 VM2 VM3

Many more implementation
issues: See lectures on
Microkernel-Based Operating
Systems and Microkernel
Construction

23 June 2014 Sandboxing

Isolation in a multi-user system

● Unix path name resolution

● Each process has a lookup root
(default: /)

● open(”/foo/bar/baz”)traverses file
system hierarchy starting from this root

● (Limited) ACLs to manage access rights

● Single group/owner not sufficient for
complex access policies

● Idea: Restrict users/programs' access to
parts of the file system → chroot

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

23 June 2014 Sandboxing

Chroot: Example

● Process A:

● Global file system access

● open(”/bin/ls”) → returns file
descriptor to /bin/ls

● A creates process B:

 pid = fork();
 if (pid == 0) // child
 {
 chroot(”/var/Domain1”);
 chdir(”/var/Domain1”);
 setuid(some_user);
 execve(”program B”);
 }

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A

23 June 2014 Sandboxing

Chroot: Example

● Process B now has /var/Domain1 set as
its lookup root

● open(”/bin/ls”) returns file
descriptor to
/var/Domain1/bin/ls

● Ideally, no access to anything outside
/var/Domain1 possible for process B

● Sharing between users:

● Make files/directories visible in
different locations (e.g. linking)

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A

23 June 2014 Sandboxing

Chroot is no security mechanism!

● Chroot is meant to restrict file access of well-behaving
applications

● Intended for software testing

● No restrictions on

● Loading kernel modules
● Opening network connections

● Reading /dev/kmem

● Tracking other processes (e.g., through ps / top)

23 June 2014 Sandboxing

Breaking out of chroot

● Step 1: Become root

● Find an exploit as described in last week's lecture

● Step 2:

fd = open(”.”, O_RDWR);
mkdir(”./tmpdir”, 0755);
chroot(”./tmpdir”);
fchdir(fd);
for (i = 0; i < 1024; ++i)
chdir(”..”);
chroot(”.”);

23 June 2014 Sandboxing

Breaking out of chroot

Starting as process B, chroot'ed
to /var/Domain1...

fd = fopen(”.”, O_RDWR);
 fd → now contains valid file descriptor

of /var/Domain1

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A

fd

23 June 2014 Sandboxing

Breaking out of chroot

Starting as process B, chroot'ed
to /var/Domain1...

fd = fopen(”.”, O_RDWR);
 fd → now contains valid file descriptor

of /var/Domain1

mkdir(”./tmpdir”, 0755);
 → creates new directory 'tmpdir' below

current one

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A

fd

tmpdir

23 June 2014 Sandboxing

Breaking out of chroot

chroot(”./tmpdir”)
 → sets B's resolution root to
/var/Domain1/tmpdir
 → so B can't access anything above,

right?

But we still have a file descriptor
pointing outside!

fchdir(fd);
→ sets the current working
directory to /var/Domain1
→ this is POSIX-certified behavior

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A

fd

tmpdir

CWD

23 June 2014 Sandboxing

Breaking out of chroot

● Now chdir(”..”) in a long loop

● At some point we will hit the real
root directory

● Now finally

chroot(”.”);

sets B's resolution root to /.

● Mission accomplished.

B
/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A

fd

tmpdir

CWD

23 June 2014 Sandboxing

*BSD: Jails

● Based on chroot + kernel modifications

● Prohibited:

● Loading kernel modules
● Modify network

configuration
● (Un-)mount file systems
● Create device nodes
● Access kernel runtime

parameters (sysctl)

● Permitted:

● Run programs within jail
(working directory...)

● Signalling processes
within a jail

● Modification of in-jail file
system

● Bind sockets to TCP/UDP
ports defined at jail
creation

23 June 2014 Sandboxing

Jails: Implementation

● Added jail system call

● Create jail structure → unmodifiable after setup

● Attached to every process

– Only processes within a jail can add processes to it

– No breaking out of chroot

● Adapted other system calls

● Limit PID/GID/TID-based system calls

● Had to adjust some drivers

● e.g., virtual terminal needs to belong to specific jails

23 June 2014 Sandboxing

Access Control: Theory

● Discretionary Access Control (DAC)
● Security (isolation) enforced based on object-subject relationship
● Linux: File System → file ownership

● Mandatory Access Control (MAC)
● Isolation based on object – (subject x operation) relationship
● e.g., Program A with UID X may read a file;

 Program B with UID X may also write it
● Linux: File System ACLs (limited to 3 operations)

● Role-Based Access Control (RBAC)
● Subjects can have dynamic roles assigned
● Access based on object-role relationship

● Principle of Least Privilege

23 June 2014 Sandboxing

SELinux

● RBAC for Linux (co-developed by NSA...)

● Type Enforcement
● Processes are placed in dedicated sandboxes

(domains)
● Fine-grained configuration per domain

– Which files can be accessed? (And how?)
– Which network ports can be bound to?
– Can the app render to an X11 window?
– Can the app fork() new processes? In which domain?

23 June 2014 Sandboxing

SELinux: Architecture

Linux Kernel

System Call Layer

Kernel Services
Linux

Security
Modules

Application

23 June 2014 Sandboxing

SELinux: Policies

● Policy files define
● User roles

user joe → role user_t

● Object types
dir /etc/selinux → policy_src_t

● Permissions
r_dir_file(user_t, policy_src_t)
→ user_t may read policy_src_t

● checkpolicy compiler generates loadable kernel module to
enforce rules

23 June 2014 Sandboxing

Linux Security Modules (LSM)

● Loadable Kernel Modules

● struct security_operations {
 [..]
 int (*file_open) (struct file *,
 const struct cred *);
 [..]
};

● extern int register_security(
 struct security_operations*);

23 June 2014 Sandboxing

LSM: Callback hooks

static int do_entry_open(struct file *f, …,
 const struct cred *cred)
{
 [...]

 error = security_file_open(f, cred);
 if (error) { … }

 [...]
}

23 June 2014 Sandboxing

Container-Based Virtualization

● Jails, SELinux: security isolation + some fault isolation
● Process cannot modify state outside its jail
● Fine-grained SELinux policies may also limit fault propagation

– But configuration is a mess...

● Resource isolation still missing

● Enter: container-based virtual machines
● Recent gain in popularity:

https://linuxcontainers.org
http://www.docker.com

https://linuxcontainers.org/
http://www.docker.com/

23 June 2014 Sandboxing

Containers: Motivation

● Full virtualization is expensive
● Implementation overhead

– Need to have pass-through drivers available
● Management overhead

– VM configuration in addition to setup of guest OS
● Runtime overhead (though small)

● Often we don't need all features
● Many use cases warrant ”A Linux installation”

23 June 2014 Sandboxing

Linux VServer

● Jails-like Linux modification
● Extended chroot

– Chroot barrier: prevent breaking out
● PID / resource name spaces + filtering
● Network isolation

– only bind apps to predefined set of IP addresses / ports

● Share libraries / kernel across VM instances

23 June 2014 Sandboxing

VServer: Resource Isolation

● Goal: Fair distribution of resources (e.g. CPU time)

● But what is fair?
● Fair share → each VM gets the same amount of

compute time
● Proportional Share → VMs with more processes get

larger amount of resources

● Linux: Completely Fair Scheduler (CFS)
● All processes get the same amount of time
● No notion of process-VM mappings

23 June 2014 Sandboxing

VServer: Token-Bucket Scheduler

● Each VM has a bucket

● Every timer tick removes a token from VM's bucket

● If bucket is empty: remove all VM's processes from run
queue until threshold of tokens has been refilled

● Refill: over time according to some policy

● Allows to implement proportional and fair share

23 June 2014 Sandboxing

VServer: I/O

● Network: use existing Linux traffic shaping
mechanisms
● Bandwidth reservations
● Shares → specify how non-reserved bandwidth is

distributed between VMs

● Disk: rely on Linux disk scheduler to do the right
thing
● Disk is less about isolation, more about optimizing

accesses

23 June 2014 Sandboxing

Application-Level Isolation

● Complex applications → share code from different
sources
● Shared libraries
● Plugins
● Interpreted Languages

● Popular example: web browser
● Flash plugin
● JavaScript

23 June 2014 Sandboxing

Web-Browsing, ca. 2008
Browser

News Mail
Calen-

dar

DOM Bindings

HTML Renderer JavaScript Engine

Network

Plugins

Storage (Cookies etc.)

User Interface

23 June 2014 Sandboxing

Monolithic Browser: Problems

● Web pages communicate
through DOM

● Unrelated page can inspect
and modify data

● Access Control: Same-Origin
Policy
http://www.example.com
http://www.example.com/p2
https://www.example.com

● Web pages may include data
from different sources
(e.g., iframes)

● See lecture next week

● User credentials stored by
browser

● May be (mis-)used by other
pages

● Per-page isolation infeasible:
web apps need multiple pages

● Calendar window

● Email compose window

● ...

http://www.example.com/
http://www.example.com/p2
https://www.example.com/

23 June 2014 Sandboxing

Chromium: Isolating Web Programs

News Mail
Calen-

dar

Site Instance

23 June 2014 Sandboxing

Chromium: Isolating Web Programs

News Mail
Calen-

dar

DOM

HTML JS

Network

Plugins

Storage

UI

DOM

HTML JS

Network

Plugins

Storage

UI

Browsing Instance

23 June 2014 Sandboxing

Web Processes

Mail
Calen-

dar

DOM

HTML JS

Network

Plugins

StorageUI

Rendering Process

Browser Kernel

● No direct storage access
● Single thread of execution
● chroot to empty temp dir

● Might require
 FS access
● Fault isolation

23 June 2014 Sandboxing

Chromium & Co.

● Isolate web pages into OS processes

● Difficult:

● determine exact boundaries...

● … while maintaining compatibility

● Gain:

● Security & Fault Isolation between web pages

● Performance → parallel rendering possible

● Accountability

● Enter unlimited possibilities of cloud wonderland...

23 June 2014 Sandboxing

Browsers & Plugins

23 June 2014 Sandboxing

Plugin Problems

● Goals:

● Native code execution
(JIT or interpreted)

● Access to local resources
(disk, …)

● Problems:

● Circumvent browsers'
security mechanisms

● Arbitrary code execution
possible

● Solutions

● Ask for user approval before
running plugin

● Language-level security
(e.g. Java Class Loader) →
often open up new attack
surface

● Process Isolation → protects
web pages, can still exploit
system call interface

23 June 2014 Sandboxing

Native Client

● Allow plugins (NaCl
modules) compiled to native
x86 code

● Inner Sandbox: limit
execution to module's code
and data

● Outer Sandbox: System Call
Policy Enforcement
(think: SELinux)

Web Application
(Browsing Instance)

Outer Sandbox

Inner Sandbox

NaCl Module

23 June 2014 Sandboxing

Native Client: Application Model
Web Browser

Image
Viewer

DOM

HTML JS

NaCl Module

Native
Imaging

Application

Plugin API

Service Runtime

System
Calls

23 June 2014 Sandboxing

NaCl Modules

● NaCl module and service runtime in same address
space
● Module code must not break out of its text/data region
● But we need well-defined ways to

– Perform system calls (if policy permits)
– Communicate with web page through plugin API

● Solution: Dedicated compiler (adapted GCC) that
enforces rules on NaCl modules

23 June 2014 Sandboxing

NaCl: Module Rules (1)

● Once loaded, the binary is not writable

● Enforced using mprotect()
● Prevents self-modifying code

● Binary is statically linked
(start address == 0, entry point = 64 kB)

● No dynamically loaded code → allows static validation during
startup

● Predefined starting point required for load-time validation
● Address restrictions: later

23 June 2014 Sandboxing

NaCl: Module Rules (2)

● All indirect control transfers use a nacljmp pseudo-
instruction

● Disable ret / function pointers → harden stack smashing

● The binary is padded up to the nearest page with at least
one hlt instruction

● Prevent jump to arbitrary address → will trigger hlt

23 June 2014 Sandboxing

NaCl: Module Rules (3)

● The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary

● Alignment restrictions for indirect jumps (coming soon)

● All valid instruction addresses are reachable by
disassembly that starts at the base address

● Need access to all code for analysis

● All direct control transfers target valid instructions

● Prevent jump into middle of instruction

23 June 2014 Sandboxing

Address Space

NaCl: Execution/Data Confinement

● Service Runtime loads NaCl
module into address space

NaCl Data

NaCl Code

NaCl
Module

23 June 2014 Sandboxing

Address Space

NaCl: Execution/Data Confinement

● Service Runtime loads NaCl
module into address space

● HW Segmentation restricts
code and data accesses

● Example: EIP = 0xF00BA4
translates to
0xF00BA4 + CS.Base

● GPF on segment overrun

NaCl Data

NaCl CodeCode
Segment

Data
Segment

23 June 2014 Sandboxing

NaCl: Data Flow Integrity

● Problem: x86 code may jump to
arbitrary address (e.g., using ret
or
jmp *%<register>)

● NaCl: Alignment makes sure that
every 32-byte aligned address is
a valid instruction

● Use nacljmp instead of indirect
control flow:
and %<reg>, 0xFFFFFFE0
jmp *%<reg>

● Result: code only contains jumps
to valid targets

● Disallowed instructions

● x86 segment modifications

● ret

● syscall / int 0x*

● No support for POSIX signals

● They use the SS segment
themselves

● Remaining issue: controlled
calls into/out of the sandbox

23 June 2014 Sandboxing

NaCl: Out of the Sandbox
● NaCl code may jump into

trampoline (32-byte aligned)

● Each 32-byte aligned word is
either

● An entry to a service
routine call

– mmap / sbrk
– thread creation
– Plugin API calls

● Or a HLT instruction
● Trampoline may contain

unsafe code

NaCl Data

NaCl Code
Service
Runtime

Trampoline

23 June 2014 Sandboxing

Native Client: Summary

● Plugins in isolated process

● Compiler enforces

● Reliable Disassembly

● Sandbox enforces

● Data Integrity
● Control Flow Integrity
● No unsafe instructions

Result: We can play
Quake in the browser!

23 June 2014 Sandboxing

Reading List

● Kamp, Watson: ”Jails: Confining the omnipotent root”, FreeBSD
Tech Report, 2000

● Soltesz et al. ”Container-based operating system virtualization: A
scalable, high-performance alternative to hypervisors”, EuroSys
2007

● Reis, Gribble ”Isolating Web Programs in Modern Browser
Architectures”, EuroSys 2009

● Yee et al. ”Native Client: A Sandbox for portable, untrusted x86
native code”, IEEE Security & Privacy 2009

● Goldberg et al. ”A Secure Environment for Untrusted Helper
Applications”, Usenix SSYM 1996

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53

