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Outline: Isolation

● Why and what to isolate?

● Machine-Level Isolation
● Virtual Machines
● OS-level isolation: chroot, BSD Jails, OS Containers, 

SELinux

● Application-Level Isolation
● Chromium Architecture
● Native Client
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The need for isolation

● Large-scale: Multi-user systems

● Security:
    Prevent other users from reading/modifying my data...

● Sharing:
    … but allow this for certain exceptions.

● Fair distribution of resources (CPU time / network bandwidth) 
among users

● Small-scale: Integrate software from differing sources

● Web browser: websites, plugins
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What do we isolate for?

● Fault Isolation

● A faulting application shall not take down others.

● Resource Isolation

● Global resources shall be distributed fairly across all users
● What is fair?

● Security Isolation

● Applications shall not access or modify others' data.
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Separate Physical Machines

App 1 App 2 App 3

”air gap”
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Separate Physical Machines

● Advantages:

● Achieves isolation

● Different OS/software setups

● Disadvantages:

● Resource overcommit

● Administration effort

● Sharing difficult

1 2 3
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Virtual Machines

● Idea: better resource utilization by running multiple virtual 
machines on a single physical

App 1 App 2 App 3

Hypervisor

VM1 VM2 VM3
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Virtual Machine Monitor

● Provides virtual hardware environment

● Guest OS runs as on real hardware
● Intercept (and emulate) privileged instructions
● Virtual devices

● Type 1 – Bare metal

● Runs as OS directly on 
hardware

● e.g., VMware ESXi, Xen

● Type 2 – hosted

● Part of a native OS (e.g., 
kernel module)

● e.g., KVM, VirtualBox
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Virtual Machines for Isolation

● Advantages

● Isolation
● Better resource utilization
● Different OS/SW setups

● Disadvantages

● Management
● Slight Performance overhead
● Sharing still difficult

1 2 3

Hypervisor
VM1 VM2 VM3

Many more implementation
issues: See lectures on 
Microkernel-Based Operating 
Systems and Microkernel 
Construction
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Isolation in a multi-user system

● Unix path name resolution

● Each process has a lookup root 
(default: /)

● open(”/foo/bar/baz”)traverses file 
system hierarchy starting from this root

● (Limited) ACLs to manage access rights

● Single group/owner not sufficient for 
complex access policies

● Idea: Restrict users/programs' access to 
parts of the file system → chroot
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etc
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Chroot: Example

● Process A:

● Global file system access

● open(”/bin/ls”) → returns file 
descriptor to /bin/ls

● A creates process B:

    pid = fork();
    if (pid == 0) // child
    {
        chroot(”/var/Domain1”);
        chdir(”/var/Domain1”);
        setuid(some_user);
        execve(”program B”);
    }
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Chroot: Example

● Process B now has /var/Domain1 set as 
its lookup root

● open(”/bin/ls”) returns file 
descriptor to 
/var/Domain1/bin/ls

● Ideally, no access to anything outside 
/var/Domain1 possible for process B

● Sharing between users:

● Make files/directories visible in 
different locations (e.g. linking)

/

bin

usr

etc
home

var

opt

Domain1

Domain2

bin

usr

etc

...

B

A



23 June 2014 Sandboxing

Chroot is no security mechanism!

● Chroot is meant to restrict file access of well-behaving 
applications

● Intended for software testing

● No restrictions on

● Loading kernel modules
● Opening network connections

● Reading /dev/kmem

● Tracking other processes (e.g., through ps / top)



23 June 2014 Sandboxing

Breaking out of chroot

● Step 1: Become root

● Find an exploit as described in last week's lecture

● Step 2:

fd = open(”.”, O_RDWR);
mkdir(”./tmpdir”, 0755);
chroot(”./tmpdir”);
fchdir(fd);
for (i = 0; i < 1024; ++i)
chdir(”..”);
chroot(”.”);
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Breaking out of chroot

Starting as process B, chroot'ed 
to /var/Domain1...

fd = fopen(”.”, O_RDWR);
 fd → now contains valid file descriptor 

of /var/Domain1
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Breaking out of chroot

Starting as process B, chroot'ed 
to /var/Domain1...

fd = fopen(”.”, O_RDWR);
 fd → now contains valid file descriptor 

of /var/Domain1

mkdir(”./tmpdir”, 0755);
 → creates new directory 'tmpdir' below 

current one
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Breaking out of chroot

chroot(”./tmpdir”)
 → sets B's resolution root to 
/var/Domain1/tmpdir
 → so B can't access anything above, 

right?

But we still have a file descriptor 
pointing outside!

fchdir(fd);
→ sets the current working
directory to /var/Domain1
→ this is POSIX-certified behavior
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Breaking out of chroot

● Now chdir(”..”) in a long loop

● At some point we will hit the real 
root directory

● Now finally

chroot(”.”);

sets B's resolution root to /.

● Mission accomplished.
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*BSD: Jails

● Based on chroot + kernel modifications

● Prohibited:

● Loading kernel modules
● Modify network 

configuration
● (Un-)mount file systems
● Create device nodes
● Access kernel runtime 

parameters (sysctl)

● Permitted:

● Run programs within jail 
(working directory...)

● Signalling processes 
within a jail

● Modification of in-jail file 
system

● Bind sockets to TCP/UDP 
ports defined at jail 
creation
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Jails: Implementation

● Added jail system call

● Create jail structure → unmodifiable after setup

● Attached to every process

– Only processes within a jail can add processes to it

– No breaking out of chroot

● Adapted other system calls

● Limit PID/GID/TID-based system calls

● Had to adjust some drivers

● e.g., virtual terminal needs to belong to specific jails
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Access Control: Theory

● Discretionary Access Control (DAC)
● Security (isolation) enforced based on object-subject relationship
● Linux: File System → file ownership

● Mandatory Access Control (MAC)
● Isolation based on object – (subject x operation) relationship
● e.g., Program A with UID X may read a file;

        Program B with UID X may also write it
● Linux: File System ACLs (limited to 3 operations)

● Role-Based Access Control (RBAC)
● Subjects can have dynamic roles assigned
● Access based on object-role relationship

● Principle of Least Privilege
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SELinux

● RBAC for Linux (co-developed by NSA...)

● Type Enforcement
● Processes are placed in dedicated sandboxes 

(domains)
● Fine-grained configuration per domain

– Which files can be accessed? (And how?)
– Which network ports can be bound to?
– Can the app render to an X11 window?
– Can the app fork() new processes? In which domain?
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SELinux: Architecture

Linux Kernel

System Call Layer

Kernel Services
Linux

Security
Modules

Application
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SELinux: Policies

● Policy files define
● User roles

user joe → role user_t

● Object types
dir /etc/selinux → policy_src_t

● Permissions
r_dir_file(user_t, policy_src_t)
→ user_t may read policy_src_t

● checkpolicy compiler generates loadable kernel module to 
enforce rules
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Linux Security Modules (LSM)

● Loadable Kernel Modules

● struct security_operations {
   [..]
   int (*file_open) (struct file *,
                     const struct cred *);
   [..]
};

● extern int register_security(
            struct security_operations*);
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LSM: Callback hooks

static int do_entry_open(struct file *f, …,
                  const struct cred *cred)
{
   [...]

   error = security_file_open(f, cred);
   if (error) { … }

 [...]
}
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Container-Based Virtualization

● Jails, SELinux: security isolation + some fault isolation
● Process cannot modify state outside its jail
● Fine-grained SELinux policies may also limit fault propagation

– But configuration is a mess...

● Resource isolation still missing

● Enter: container-based virtual machines
● Recent gain in popularity:

https://linuxcontainers.org
http://www.docker.com 

https://linuxcontainers.org/
http://www.docker.com/
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Containers: Motivation

● Full virtualization is expensive
● Implementation overhead

– Need to have pass-through drivers available
● Management overhead

– VM configuration in addition to setup of guest OS
● Runtime overhead (though small)

● Often we don't need all features
● Many use cases warrant ”A Linux installation”
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Linux VServer

● Jails-like Linux modification
● Extended chroot

– Chroot barrier: prevent breaking out
● PID / resource name spaces + filtering
● Network isolation

– only bind apps to predefined set of IP addresses / ports

● Share libraries / kernel across VM instances



23 June 2014 Sandboxing

VServer: Resource Isolation

● Goal: Fair distribution of resources (e.g. CPU time)

● But what is fair?
● Fair share → each VM gets the same amount of 

compute time
● Proportional Share → VMs with more processes get 

larger amount of resources

● Linux: Completely Fair Scheduler (CFS)
● All processes get the same amount of time
● No notion of process-VM mappings
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VServer: Token-Bucket Scheduler

● Each VM has a bucket

● Every timer tick removes a token from VM's bucket

● If bucket is empty: remove all VM's processes from run 
queue until threshold of tokens has been refilled

● Refill: over time according to some policy

● Allows to implement proportional and fair share
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VServer: I/O

● Network: use existing Linux traffic shaping 
mechanisms
● Bandwidth reservations
● Shares → specify how non-reserved bandwidth is 

distributed between VMs

● Disk: rely on Linux disk scheduler to do the right 
thing
● Disk is less about isolation, more about optimizing 

accesses
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Application-Level Isolation

● Complex applications → share code from different 
sources
● Shared libraries
● Plugins
● Interpreted Languages

● Popular example: web browser
● Flash plugin
● JavaScript
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Web-Browsing, ca. 2008
Browser

News Mail
Calen-

dar

DOM Bindings

HTML Renderer JavaScript Engine

Network

Plugins

Storage (Cookies etc.)

User Interface
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Monolithic Browser: Problems

● Web pages communicate 
through DOM

● Unrelated page can inspect 
and modify data

● Access Control: Same-Origin 
Policy
http://www.example.com
http://www.example.com/p2
https://www.example.com

● Web pages may include data 
from different sources
(e.g., iframes)

● See lecture next week

● User credentials stored by 
browser

● May be (mis-)used by other 
pages

● Per-page isolation infeasible: 
web apps need multiple pages

● Calendar window

● Email compose window

● ...

http://www.example.com/
http://www.example.com/p2
https://www.example.com/
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Chromium: Isolating Web Programs

News Mail
Calen-

dar

Site Instance
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Chromium: Isolating Web Programs

News Mail
Calen-

dar

DOM 

HTML JS

Network

Plugins

Storage

UI

DOM 

HTML JS

Network

Plugins

Storage

UI

Browsing Instance
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Web Processes

Mail
Calen-

dar

DOM 

HTML JS

Network

Plugins

StorageUI

Rendering Process

Browser Kernel

● No direct storage access
● Single thread of execution
● chroot to empty temp dir

● Might require 
  FS access
● Fault isolation
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Chromium & Co.

● Isolate web pages into OS processes

● Difficult:

● determine exact boundaries...

● … while maintaining compatibility

● Gain:

● Security & Fault Isolation between web pages

● Performance → parallel rendering possible

● Accountability

● Enter unlimited possibilities of cloud wonderland...
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Browsers & Plugins
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Plugin Problems

● Goals:

● Native code execution
(JIT or interpreted)

● Access to local resources 
(disk, …)

● Problems:

● Circumvent browsers' 
security mechanisms

● Arbitrary code execution 
possible

● Solutions

● Ask for user approval before 
running plugin

● Language-level security 
(e.g. Java Class Loader) → 
often open up new attack 
surface

● Process Isolation → protects 
web pages, can still exploit 
system call interface



23 June 2014 Sandboxing

Native Client

● Allow plugins (NaCl 
modules) compiled to native 
x86 code

● Inner Sandbox: limit 
execution to module's code 
and data

● Outer Sandbox: System Call 
Policy Enforcement
(think: SELinux)

Web Application
(Browsing Instance)

Outer Sandbox

Inner Sandbox

NaCl Module
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Native Client: Application Model
Web Browser

Image
Viewer

DOM 

HTML JS

NaCl Module

Native
Imaging

Application

Plugin API

Service Runtime

System
Calls
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NaCl Modules

● NaCl module and service runtime in same address 
space
● Module code must not break out of its text/data region
● But we need well-defined ways to

– Perform system calls (if policy permits)
– Communicate with web page through plugin API

● Solution: Dedicated compiler (adapted GCC) that 
enforces rules on NaCl modules
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NaCl: Module Rules (1)

● Once loaded, the binary is not writable

● Enforced using mprotect()
● Prevents self-modifying code

● Binary is statically linked
(start address == 0, entry point = 64 kB)

● No dynamically loaded code → allows static validation during 
startup

● Predefined starting point required for load-time validation
● Address restrictions: later
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NaCl: Module Rules (2)

● All indirect control transfers use a nacljmp pseudo-
instruction

● Disable ret / function pointers → harden stack smashing

● The binary is padded up to the nearest page with at least 
one hlt instruction

● Prevent jump to arbitrary address → will trigger hlt
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NaCl: Module Rules (3)

● The binary contains no instructions or pseudo-instructions 
overlapping a 32-byte boundary

● Alignment restrictions for indirect jumps (coming soon)

● All valid instruction addresses are reachable by 
disassembly that starts at the base address

● Need access to all code for analysis

● All direct control transfers target valid instructions

● Prevent jump into middle of instruction
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Address Space

NaCl: Execution/Data Confinement

● Service Runtime loads NaCl 
module into address space

NaCl Data

NaCl Code

NaCl
Module
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Address Space

NaCl: Execution/Data Confinement

● Service Runtime loads NaCl 
module into address space

● HW Segmentation restricts 
code and data accesses

● Example: EIP = 0xF00BA4 
translates to
0xF00BA4 + CS.Base

● GPF on segment overrun

NaCl Data

NaCl CodeCode
Segment

Data
Segment
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NaCl: Data Flow Integrity

● Problem: x86 code may jump to 
arbitrary address (e.g., using ret 
or 
jmp *%<register>)

● NaCl: Alignment makes sure that 
every 32-byte aligned address is 
a valid instruction

● Use nacljmp instead of indirect 
control flow:
and   %<reg>, 0xFFFFFFE0
jmp  *%<reg>

● Result: code only contains jumps 
to valid targets

● Disallowed instructions

● x86 segment modifications

● ret

● syscall / int 0x*

● No support for POSIX signals

● They use the SS segment 
themselves

● Remaining issue: controlled 
calls into/out of the sandbox
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NaCl: Out of the Sandbox
● NaCl code may jump into 

trampoline (32-byte aligned)

● Each 32-byte aligned word is 
either

● An entry to a service 
routine call

– mmap / sbrk
– thread creation
– Plugin API calls

● Or a HLT instruction
● Trampoline may contain 

unsafe code

NaCl Data

NaCl Code
Service
Runtime

Trampoline
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Native Client: Summary

● Plugins in isolated process

● Compiler enforces

● Reliable Disassembly

● Sandbox enforces

● Data Integrity
● Control Flow Integrity
● No unsafe instructions

Result: We can play 
Quake in the browser!
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