
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Distributed Operating Systems
Synchronization

SS2014

Marcus Völp

Outline

� How to update objects consistently?
� that may require multiple writes for the update

� that may be larger than one cacheline

� How to build locks?

� How to make the implementations scale?
� Cache effects

� Reader/Writer Locks

� Lock-free synchronization

� Transactional memory

Atomic Hardware Instructions

[Lipton 95] a, b are atomic if A || B = A;B or B;A

Read-Modify-Write Instructions are typically not atomic:

 A B
 add &x, 1 || mov &x, 2 (initially: x = 0)

 is typically executes as:

load &x → Reg
add Reg + 1 || store 2 → &x
store Reg → &x

Atomic Hardware Instructions

How to make instructions atomic

Bus lock
Lock memory bus until all memory accesses of a
RMW instruction have completed
(e.g., Intel Pentium 3 and older x86 CPUs)

lock; add [eax], 1

Cache Lock
Delay snoop traffic until all memory accesses of RMW
instruction have completed
(e.g., Intel Pentium 4 and newer x86 CPUs)

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x)
 2. load &x → R
 3. add R += 1
 4. store R → &x
 5. continue responding to snoop traffic

 CPU 0

S | x

CPU 1

S | x
RFO(&x)

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x)
 2. load &x → R
 3. add R += 1
 4. store R → &x
 5. continue responding to snoop traffic

 CPU 0

M | x

CPU 1

I | x

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x)
 2. load &x → R
 3. add R += 1
 4. store R → &x
 5. continue responding to snoop traffic

 CPU 0

M | x

CPU 1

I | x

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x)
 2. load &x → R
 3. add R += 1
 4. store R → &x
 5. continue responding to snoop traffic

 CPU 0

M | x+1

CPU 1

I | x

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x)
 2. load &x → R
 3. add R += 1
 4. store R → &x
 5. continue responding to snoop traffic

 CPU 0

M | x+1

CPU 1

I | x

Atomic Hardware Instructions

How to make instructions atomic

Cache Lock

last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x)
 2. load &x → R
 3. add R += 1
 4. store R → &x
 5. continue responding to snoop traffic

 CPU 0

S | x+1

CPU 1

S | x +1
x + 1

Atomic Hardware Instructions

How to make instructions atomic

Observe Cache
- install cache watchdog on load
- abort store if watchdog has detected a
 concurrent access
- retry operation
(e.g., ARM, Alpha, monitor + mwait on x86)

retry:
 load_linked &x → R;
 modify R;
 if (! store_conditional(R → &x))
 goto retry:

HW Transactional Memory (later)

Atomic Hardware Instructions

How to make instructions atomic

Observe Cache

load linked &x, R
 1. read_for_ownership(&x)
 2. load &x → R
 add R += 1
store conditional R, &x
 3. try to store R → &x

CPU 0

S | x

CPU 1

S | x
RFO(&x)

Atomic Hardware Instructions

CPU 0

M | x

CPU 1

I | x

How to make instructions atomic

Observe Cache

load linked &x, R
 1. read_for_ownership(&x)
 2. load &x → R
 add R += 1
store conditional R, &x
 3. try to store R → &x

Atomic Hardware Instructions

CPU 0

M | x

CPU 1

I | x

How to make instructions atomic

Observe Cache

load linked &x, R
 1. read_for_ownership(&x)
 2. load &x → R
 add R += 1
store conditional R, &x
 3. try to store R → &x

Atomic Hardware Instructions

CPU 0

S | x

CPU 1

S | x

How to make instructions atomic

Observe Cache

x

load linked &x, R
 1. read_for_ownership(&x)
 2. load &x → R
 add R += 1
store conditional R, &x
 3. try to store R → &x

Atomic Hardware Instructions

CPU 0

M | x + 1

CPU 1

I | x

How to make instructions atomic

Observe Cache

load linked &x, R
 1. read_for_ownership(&x)
 2. load &x → R
 add R += 1
store conditional R, &x
 3. try to store R → &x

Atomic Hardware Instructions

Read-Modify-Write Instructions
bit test and set - bts (bit)

if (bit clear) { set bit ; return true; } else { return false; }

Exchange - swap (mem, R)

&mem → tmp; R → &mem; tmp → R;

fetch and add - xadd (mem, R)

&mem → tmp; &mem += R; return tmp;

compare and swap - cas (mem, expected, desired)

if (&mem == expected) {
 desired → &mem; return true;
} else {
 return false;
}

double “address” compare and swap –
 cas (mem1, mem2, exp1, exp2, des1, des2)

swap mem1 ↔ des1, mem2 ↔ des2 iff
 mem1 == exp1 & mem2 == exp2

Distributed Operating Systems Slide 75

Synchronization with Atomic
Reads and Writes: Dekker's Algorithm

CPU0

P: flag0 = true;

while (flag1) {

 If (turn == 1) {

 flag0 = false;

 goto P;

 }

 }

// Critical section

flag0 = false;

turn = 1;

CPU1

P: flag1 = true;

while (flag0) {

 If (turn == 0) {

 flag1 = false;

 goto P;

 }

 }

// Critical section

flag1 = false;

turn = 0;

bool flag0 = false; // intention to enter
bool flag1 = false;
int turn = 0; // who's next?

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 76

Dekker's Algorithm on z Series

CPU0

P: flag0 = true;

while (flag1) {

 If (turn == 1) {

 flag0 = false;

 goto P;

 }

 }

// Critical section

flag0 = false;

turn = 1;

CPU1

P: flag1 = true;

while (flag0) {

 If (turn == 0) {

 flag1 = false;

 goto P;

 }

 }

// Critical section

flag1 = false;

turn = 0;

Buffered

TU Dresden, 5.05.2014

bool flag0 = false; // intention to enter
bool flag1 = false;
int turn = 0; // who's next?

z Series: later reads can bypass earlier writes unless both
 are to the same memory location

Synchronization with Locks

Properties to achieve
overhead

fine-grained locking => critical sections are short

minimize overhead to take the lock if it is free

fairness
every thread should obtain the lock after a finite amount of time

(real-time:) … latest after x * |CS| seconds
timeouts / abort lock() operation

kill threads that compete for the lock

run fixup code if thread fails to acquire the lock before timeout

reader / writer locks
concurrent readers may enter the lock at the same time

lockholder preemption
avoid blocking other threads on a de-scheduled lockholder

priority inversion
! Not covered in this lecture (RTS / MKK)

spinning vs. blocking
release CPU while others hold the lock

Synchronization with Locks

Spin Lock (Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 } while (reg == 1);

}

unlock (lock_var & L) {

 L = 0;

}

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

CPU 2

L = 0 [M]

CPU 1 CPU 0 CPU 3

Synchronization with Locks

Spin Lock (Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 } while (reg == 1);

}

unlock (lock_var & L) {

 L = 0;

}

CPU 2

L = 0 [I]

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

CPU 1 CPU 0

L = 1 [M]

CPU 3

lockholder

Synchronization with Locks

Spin Lock (Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 } while (reg == 1);

}

unlock (lock_var & L) {

 L = 0;

}

CPU 2

L = 0 [I]

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

CPU 1

L = 1 [M]

CPU 0

L = 1 [I]

CPU 3

lockholder

Synchronization with Locks

Spin Lock (Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 } while (reg == 1);

}

unlock (lock_var & L) {

 L = 0;

}

CPU 2

L = 1 [M]

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

CPU 1

L = 1 [I]

CPU 0

L = 1 [I]

CPU 3

lockholder

Synchronization with Locks

Spin Lock (Test and Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 if (reg == 0) break;

 while (L == 1) {};

 } while (true);

}

unlock (lock_var & L) {

 L = 0;

}

CPU 2

L = 1 [S]

CPU 1

L = 1 [S]

CPU 0

L = 1 [I]

CPU 3

lockholder

Synchronization with Locks

CPU 2

L = 1 [I]

CPU 1

L = 1 [I]

CPU 0

L = 1 [I]

CPU 3

L = 1 [M]

lockholder

Spin Lock (Test and Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 if (reg == 0) break;

 while (L == 1) {};

 } while (true);

}

unlock (lock_var & L) {

 L = 0;

}

swap

Synchronization with Locks

CPU 2

L = 1 [S]

CPU 1

L = 1 [S]

CPU 0

L = 1 [I]

CPU 3

L = 1 [S]

lockholder

Spin Lock (Test and Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 if (reg == 0) break;

 while (L == 1) {};

 } while (true);

}

unlock (lock_var & L) {

 L = 0;

}

read read read

Spin Lock (Test and Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 if (reg == 0) break;

 while (L == 1) {};

 } while (true);

}

unlock (lock_var & L) {

 L = 0;

}

Synchronization with Locks

CPU 2

L = 1 [I]

CPU 1

L = 1 [I]

CPU 0

L = 0 [M]

CPU 3

L = 1 [I]

unlock

Synchronization with Locks

CPU 2

L = 0 [S]

CPU 1

L = 0 [S]

CPU 0

L = 0 [S]

CPU 3

L = 0 [S]

read read read

Spin Lock (Test and Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 if (reg == 0) break;

 while (L == 1) {};

 } while (true);

}

unlock (lock_var & L) {

 L = 0;

}

Synchronization with Locks

CPU 2

L = 0 [I]

CPU 1

L = 0 [I]

CPU 0

L = 0 [I]

CPU 3

L = 1 [M]

lockholder

Spin Lock (Test and Test and Set Lock)
atomic swap

lock (lock_var & L) {

 do {

 reg = 1;

 swap (L, reg)

 if (reg == 0) break;

 while (L == 1) {};

 } while (true);

}

unlock (lock_var & L) {

 L = 0;

}

Synchronization with Locks

�Fairness

lock

test
test

unlock

test
lock

unlock

test

test
lock

test

free

free

CPU 0 CPU 1 CPU 2
starves because lock is only ever
passed between CPU0, CPU1

Synchronization with Locks

Fairness: Ticket Lock
fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

 current_ticket ++;

}

 [my_ticket] current next

CPU 0 CPU 1 CPU 2

Synchronization with Locks

Fairness: Ticket Lock
fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

 current_ticket ++;

}

CPU 0 CPU 1 CPU 2

 [my_ticket] current next
 0 0
L.CPU0 [0]: 0 1 => CPU0
L.CPU1 [1]: 0 2
L.CPU2 [2]: 0 3

U.CPU0 [0]: 1 3 => CPU1

L.CPU3 [3]: 1 4
L.CPU0 [4]: 1 5

U.CPU1 [1]: 2 5 => CPU 2

Synchronization with Locks

Fairness: Ticket Lock
fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

 current_ticket ++;

}

CPU 0 CPU 1 CPU 2

Spin on global variable

only lockholder writes current ticket

CPU1, CPU3 updates not required (not next)

However:
- signal all CPUs not only next
- abort / timeout of competing threads

Synchronization without Locks

A quick intermezzo to lock-free synchronization

prev

new

next

insert(new_elem, prev) {
 retry:
 new_elem.next = prev.next;
 if (not CAS(prev.next == prev.next, new_elem)) goto retry;
}

prev

new

next

insert(new_elem, prev) {
 retry:
 next = prev.next;
 new_elem.next = prev.next;
 new_elem.prev = prev;
 if (not DCAS(prev.next == next && next.prev ==prev,
 prev.next = new_elem, next.prev = new_elem))
 goto retry;
}

Synchronization without Locks

Load Linked, Store Conditional

insert (prev, new_elem) {

 retry:

 load_linked (prev.next);

 new_elem.next = prev.next;

 if (! store_conditional (prev.next, new_elem)) goto retry;

}

MCS-Lock

Fairness + Local Spinning
 by Mellor-Crummey and Scott

next L

next L

next L

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

MCS-Lock

Fairness + Local Spinning
 by Mellor-Crummey and Scott

next L

next L

next L

Tail T

CPU 0 CPU 1 CPU 2 CPU 3

MCS Locks

Fair, local spinning
atomic compare exchange: cmpxchg (T == Expected, Desired)

lock(Node * & T, Node * I) {

 I->next = null;

 I->Lock = false;

 Node * prev = swap(T, I);

 if (prev) {

 prev->next = I;

 do {} while (I->Lock == false);

 }

}

unlock (Node * & T, Node * I) {

 if (!I->next) {

 if (cmpxchg (T == I, 0)) return; // no waiting cpu

 do { } while (!I->next); // spin until the following process

 updates the next pointer

 }

 I->next->Lock = true;

}

Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory
through log4(depth) switched network; Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]:
“Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”

Performance

16 core AMD Opteron

Source: [corey 08]

Reader Writer Locks

Lock differentiates two types of lock holders:

Readers:

Don't modify the lock-protected object

Multiple readers may hold the lock at the
same time

Writers:

Modify the protected object

Writers must hold the lock exclusively

Fairness

Improve reader latency by allowing readers to
overtake writers (=> unfair lock)

Reader Writer Locks

Fair Ticket Reader-Writer Lock
co-locate reader tickets and writer tickets

lock read (next, current) {
 my_ticket = xadd (next, 1);
 do {} while (current.write != my_ticket.write);
}

lock write (next, current) {
 my_ticket = xadd (next, 1 << WRITE_SHIFT);
 do {} while (current != my_ticket);
}

unlock_read () {
 xadd (current.read, 1);
}

unlock write () {
 current.write ++;
}

read write

current next R0 R1 W2 R3
 0 0 0 0 0 0
 0 1 0 1
 0 2 0 2
 1 2 1 2

Hardware Transactional Memory

M | x

CPU 0

M | y

M | z

struct Foo {
 int x;
 int y;
 int z;
}

M | x’

M | y’

M | z’

Lockholder Preemption

Spinning-time of other CPUs increase by the time the lockholder is
preempted

worse for ticket lock / MCS: grant free lock to preempted thread

=> do not preempt lock holders

spin_lock(lock_var) {

 do {

 sti; // enable interrupts

 reg = 1;

 do {} while (lock_var == 1); spin_unlock(lock_var) {

 lock_var = 0;

 cli; // disable interrupts sti;

 swap(lock_var, reg); }

 } while (reg == 1);

}

Lockholder Preemption

Spinning-time of other CPUs increase by the time the lockholder is
preempted

worse for ticket lock / MCS: grant free lock to preempted thread

=> do not preempt lock holders

spin_lock(lock_var) {

 pushf; // store whether interrupts were already closed

 do {

 popf;

 reg = 1;

 do {} while (lock_var == 1); spin_unlock(lock_var) {

 pushf; lock_var = 0;

 cli; popf;

 swap(lock_var, reg); }

 } while (reg == 1);

}

Monitor / MWait

MWait:

 stop CPU / Hyperthread

 wait for cacheline to be written

 => save power by allowing CPU to enter sleep state

 => free resources for other hyperthread

Monitor:

 set watchdog to cacheline

 watchdog may also be triggered by other events (interrupts)

CPU 0 CPU 1

mwait

write to trigger

t

while (trigger[0] != value) {
 monitor (&trigger[0])
 if (trigger[0] != value) {
 mwait
 }
}

Distributed Operating Systems Slide 105

References

� A Primer on Memory Consistency and Cache Coherence
Sorin, Hill, Wood; 2011

� atomic<> Weapons: The C++ Memory Model and
Modern Hardware (Video)
Sutter; 2013

� Shared memory consistency models: a tutorial
Adve, Gharachorloo; 1996

� IA Memory Model
Richard Hudson; Google Tech Talk 2008

� Memory Ordering in Modern Microprocessors
McKenney; Linux Journal 2005

� How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs
Lamport, 1979

� PowerPC Storage Model

 TU Dresden, 5.05.2014

References

Scheduler-Conscious Synchronization
 Leonidas Kontothanassis, Robert Wisniewski, Michael Scott

Scalable Reader- Writer Synchronization for Shared-Memory Multiprocessors
 John M. Mellor-Crummey, Michael L. Scottt

Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors
 John Mellor-Crummey, Michael Scott

Concurrent Update on Multiprogrammed Shared Memory Multiprocessors
 Maged M. Michael, Michael L. Scott

Scalable Queue-Based Spin Locks with Timeout
 Michael L. Scott and William N. Scherer III

References

Reactive Synchronization Algorithms for Multiprocessors
 B. Lim, A. Agarwal

Lock Free Data Structures
 John D. Valois (PhD Thesis)

Reduction: A Method for Proving Properties of Parallel Programs
 R. Lipton - Communications of the ACM 1975

Decoupling Contention Management from Scheduling (ASPLOS 2010)
 F.R. Johnson, R. Stoica, A. Ailamaki, T. Mowry

Corey: An Operating System for Many Cores (OSDI 2008)
 Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
 Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
 Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang

