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Outline 

� How to update objects consistently? 
� that may require multiple writes for the update 

� that may be larger than one cacheline 

 

� How to build locks? 

� How to make the implementations scale? 
� Cache effects 

� Reader/Writer Locks 

 

� Lock-free synchronization 

� Transactional memory 
 

 



Atomic Hardware Instructions 

[Lipton 95]  a, b are atomic if A || B = A;B or B;A 
 
Read-Modify-Write Instructions are typically not atomic: 

        A                          B 
    add &x, 1         ||        mov &x, 2                (initially: x = 0) 

 
           is typically executes as:  
 

load  &x  → Reg 
add   Reg + 1        ||       store 2 → &x 
store Reg → &x 
 

 



Atomic Hardware Instructions 

How to make instructions atomic 
 

Bus lock 
Lock memory bus until all memory accesses of a 
RMW instruction have completed  
(e.g., Intel Pentium 3 and older x86 CPUs) 
 
lock; add [eax], 1 

 

Cache Lock 
Delay snoop traffic until all memory accesses of RMW 
instruction have completed  
(e.g., Intel Pentium 4 and newer x86 CPUs) 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Cache Lock 

last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1 
    1. read_for_ownership(&x) 
    2. load &x → R 
    3.     add R += 1 
    4. store R → &x 
    5. continue responding to snoop traffic 
 
     CPU 0 

S  | x 

CPU 1 

S  |  x 
RFO(&x) 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Cache Lock 

last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1 
    1. read_for_ownership(&x) 
    2. load &x → R 
    3.     add R += 1 
    4. store R → &x 
    5. continue responding to snoop traffic 
 
     CPU 0 

M  | x 

CPU 1 

I  |  x 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Cache Lock 

last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1 
    1. read_for_ownership(&x) 
    2. load &x → R 
    3.     add R += 1 
    4. store R → &x 
    5. continue responding to snoop traffic 
 
     CPU 0 

M  | x 

CPU 1 

I  |  x 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Cache Lock 

last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1 
    1. read_for_ownership(&x) 
    2. load &x → R 
    3.     add R += 1 
    4. store R → &x 
    5. continue responding to snoop traffic 
 
     CPU 0 

M  | x+1 

CPU 1 

I  |  x 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Cache Lock 

last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1 
    1. read_for_ownership(&x) 
    2. load &x → R 
    3.     add R += 1 
    4. store R → &x 
    5. continue responding to snoop traffic 
 
     CPU 0 

M  | x+1 

CPU 1 

I  |  x 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Cache Lock 

last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1 
    1. read_for_ownership(&x) 
    2. load &x → R 
    3.     add R += 1 
    4. store R → &x 
    5. continue responding to snoop traffic 
 
     CPU 0 

S  | x+1 

CPU 1 

S  |  x +1 
x + 1 



Atomic Hardware Instructions 

How to make instructions atomic 
 

Observe Cache 
- install cache watchdog on load  
- abort store if watchdog has detected a  
   concurrent access  
- retry operation 
(e.g., ARM, Alpha, monitor + mwait on x86) 
 
retry: 
    load_linked &x → R; 
       modify R; 
    if (! store_conditional(R → &x)) 
       goto retry: 
 

HW Transactional Memory (later) 



Atomic Hardware Instructions 

How to make instructions atomic 
 
Observe Cache 

load linked &x, R 
    1. read_for_ownership(&x) 
    2. load &x → R 
 add R += 1 
store conditional R, &x 
    3. try to store R → &x     

CPU 0 

S  | x 

CPU 1 

S  |  x 
RFO(&x) 



Atomic Hardware Instructions 

CPU 0 

M  | x 

CPU 1 

I  |  x 

How to make instructions atomic 
 
Observe Cache 

load linked &x, R 
    1. read_for_ownership(&x) 
    2. load &x → R 
 add R += 1 
store conditional R, &x 
    3. try to store R → &x     



Atomic Hardware Instructions 

CPU 0 

M  | x 

CPU 1 

I  |  x 

How to make instructions atomic 
 
Observe Cache 

load linked &x, R 
    1. read_for_ownership(&x) 
    2. load &x → R 
 add R += 1 
store conditional R, &x 
    3. try to store R → &x     



Atomic Hardware Instructions 

CPU 0 

S  | x 

CPU 1 

S  |  x 

How to make instructions atomic 
 
Observe Cache 

x 

load linked &x, R 
    1. read_for_ownership(&x) 
    2. load &x → R 
 add R += 1 
store conditional R, &x 
    3. try to store R → &x     



Atomic Hardware Instructions 

CPU 0 

M  | x + 1 

CPU 1 

I  |  x 

How to make instructions atomic 
 
Observe Cache 

load linked &x, R 
    1. read_for_ownership(&x) 
    2. load &x → R 
 add R += 1 
store conditional R, &x 
    3. try to store R → &x     



Atomic Hardware Instructions 

Read-Modify-Write Instructions 
bit test and set - bts (bit) 

if (bit clear) { set bit ; return true; } else { return false; } 
 

Exchange - swap (mem, R) 

&mem → tmp; R → &mem; tmp → R; 
 

fetch and add - xadd (mem, R) 

&mem → tmp; &mem += R; return tmp; 
 

compare and swap - cas (mem, expected, desired) 

if (&mem == expected) {  
    desired → &mem; return true;  
} else { 
    return false; 
} 
 

double  “address”  compare  and  swap  –  
   cas (mem1, mem2, exp1, exp2, des1, des2) 

swap mem1 ↔ des1, mem2 ↔ des2 iff  
  mem1 == exp1 & mem2 == exp2 
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Synchronization with Atomic  
Reads and Writes: Dekker's Algorithm 

CPU0 

 
P: flag0 = true; 

while (flag1) { 

  If (turn == 1) { 

   flag0 = false; 

   goto P; 

  } 

 } 

// Critical section 

flag0 = false; 

turn = 1; 

CPU1 

 
P: flag1 = true; 

while (flag0) { 

  If (turn == 0) { 

   flag1 = false; 

   goto P; 

  } 

 } 

// Critical section 

flag1 = false; 

turn = 0; 

bool flag0 = false;  // intention to enter 
bool flag1 = false;  
int turn = 0;   // who's next? 

TU Dresden, 5.05.2014 
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Dekker's Algorithm on z Series 

CPU0 

 
P: flag0 = true; 

while (flag1) { 

  If (turn == 1) { 

   flag0 = false; 

   goto P; 

  } 

 } 

// Critical section 

flag0 = false; 

turn = 1; 

CPU1 

 
P: flag1 = true; 

while (flag0) { 

  If (turn == 0) { 

   flag1 = false; 

   goto P; 

  } 

 } 

// Critical section 

flag1 = false; 

turn = 0; 

Buffered 

TU Dresden, 5.05.2014 

bool flag0 = false;  // intention to enter 
bool flag1 = false;  
int turn = 0;   // who's next? 

z Series:  later reads can bypass earlier writes unless both  
  are to the same memory location 



Synchronization with Locks 

Properties to achieve 
overhead 

fine-grained locking => critical sections are short 

minimize overhead to take the lock if it is free 

fairness 
every thread should obtain the lock after a finite amount of time 

(real-time:)  …  latest  after  x  *  |CS|  seconds 
timeouts / abort lock() operation 

kill threads that compete for the lock 

run fixup code if thread fails to acquire the lock before timeout 

reader / writer locks 
concurrent readers may enter the lock at the same time 

lockholder preemption 
avoid blocking other threads on a de-scheduled lockholder 

priority inversion 
! Not covered in this lecture (RTS / MKK) 

spinning vs. blocking 
release CPU while others hold the lock 



Synchronization with Locks 

Spin Lock (Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

  } while (reg == 1); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

Pro:  1 cheap atomic OP to acquire the lock 
Cons:  high bus traffic while lock is held 

CPU 2 

L = 0 [M] 

CPU 1 CPU 0 CPU 3 



Synchronization with Locks 

Spin Lock (Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

  } while (reg == 1); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

CPU 2 

L = 0 [I] 

Pro:  1 cheap atomic OP to acquire the lock 
Cons:  high bus traffic while lock is held 

CPU 1 CPU 0 

L = 1 [M] 

CPU 3 

lockholder 



Synchronization with Locks 

Spin Lock (Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

  } while (reg == 1); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

CPU 2 

L = 0 [I] 

Pro:  1 cheap atomic OP to acquire the lock 
Cons:  high bus traffic while lock is held 

CPU 1 

L = 1 [M] 

CPU 0 

L = 1 [I] 

CPU 3 

lockholder 



Synchronization with Locks 

Spin Lock (Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

  } while (reg == 1); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

CPU 2 

L = 1 [M] 

Pro:  1 cheap atomic OP to acquire the lock 
Cons:  high bus traffic while lock is held 

CPU 1 

L = 1 [I] 

CPU 0 

L = 1 [I] 

CPU 3 

lockholder 



Synchronization with Locks 

Spin Lock (Test and Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

     if (reg == 0) break; 

     while (L == 1) {}; 

  } while (true); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

CPU 2 

L = 1 [S] 

CPU 1 

L = 1 [S] 

CPU 0 

L = 1 [I] 

CPU 3 

lockholder 



Synchronization with Locks 

CPU 2 

L = 1 [I] 

CPU 1 

L = 1 [I] 

CPU 0 

L = 1 [I] 

CPU 3 

L = 1 [M] 

lockholder 

Spin Lock (Test and Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

     if (reg == 0) break; 

     while (L == 1) {}; 

  } while (true); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

swap 



Synchronization with Locks 

CPU 2 

L = 1 [S] 

CPU 1 

L = 1 [S] 

CPU 0 

L = 1 [I] 

CPU 3 

L = 1 [S] 

lockholder 

Spin Lock (Test and Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

     if (reg == 0) break; 

     while (L == 1) {}; 

  } while (true); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

read read read 



Spin Lock (Test and Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

     if (reg == 0) break; 

     while (L == 1) {}; 

  } while (true); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 

Synchronization with Locks 

CPU 2 

L = 1 [I] 

CPU 1 

L = 1 [I] 

CPU 0 

L = 0 [M] 

CPU 3 

L = 1 [I] 

unlock 



Synchronization with Locks 

CPU 2 

L = 0 [S] 

CPU 1 

L = 0 [S] 

CPU 0 

L = 0 [S] 

CPU 3 

L = 0 [S] 

read read read 

Spin Lock (Test and Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

     if (reg == 0) break; 

     while (L == 1) {}; 

  } while (true); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 



Synchronization with Locks 

CPU 2 

L = 0 [I] 

CPU 1 

L = 0 [I] 

CPU 0 

L = 0 [I] 

CPU 3 

L = 1 [M] 

lockholder 

Spin Lock (Test and Test and Set Lock) 
atomic swap 

 
lock (lock_var & L) { 

  do { 

     reg = 1; 

     swap (L, reg) 

     if (reg == 0) break; 

     while (L == 1) {}; 

  } while (true); 

} 

 

unlock (lock_var & L) { 

  L = 0; 

} 



Synchronization with Locks 

�Fairness 

lock 

test 
test 

unlock 

test 
lock 

unlock 

test 

test 
lock 

test 

free 

free 

CPU 0 CPU 1 CPU 2 
starves because lock is only ever  
passed between CPU0, CPU1 



Synchronization with Locks 

Fairness: Ticket Lock 
fetch and add (xadd) 
 

lock_struct { 

  next_ticket, 

  current_ticket 

} 

 

ticket_lock (lock_struct & l) { 

  my_ticket = xadd (&l.next_ticket, 1) 

  do { } while (l.current_ticket != my_ticket); 

} 

 

unlock (lock_struct & l) { 

  current_ticket ++; 

} 

 

 [my_ticket]  current     next 
 

CPU 0 CPU 1 CPU 2 



Synchronization with Locks 

Fairness: Ticket Lock 
fetch and add (xadd) 
 

lock_struct { 

  next_ticket, 

  current_ticket 

} 

 

ticket_lock (lock_struct & l) { 

  my_ticket = xadd (&l.next_ticket, 1) 

  do { } while (l.current_ticket != my_ticket); 

} 

 

unlock (lock_struct & l) { 

  current_ticket ++; 

} 

 

CPU 0 CPU 1 CPU 2 

 [my_ticket]  current     next 
                   0    0 
L.CPU0 [0]:    0        1 => CPU0 
L.CPU1 [1]:    0        2 
L.CPU2 [2]:    0        3 
 
U.CPU0 [0]:    1        3 => CPU1 
 
L.CPU3 [3]:    1        4 
L.CPU0 [4]:    1        5 
 
U.CPU1 [1]:    2        5 => CPU 2 
 



Synchronization with Locks 

Fairness: Ticket Lock 
fetch and add (xadd) 
 

lock_struct { 

  next_ticket, 

  current_ticket 

} 

 

ticket_lock (lock_struct & l) { 

  my_ticket = xadd (&l.next_ticket, 1) 

  do { } while (l.current_ticket != my_ticket); 

} 

 

unlock (lock_struct & l) { 

  current_ticket ++; 

} 

 

CPU 0 CPU 1 CPU 2 

Spin on global variable 

only lockholder writes current ticket 

CPU1, CPU3 updates not required (not next) 

However: 
- signal all CPUs not only next 
- abort / timeout of competing threads 



Synchronization without Locks 

A quick intermezzo to lock-free synchronization 

 
prev 

new 

next 

insert(new_elem, prev) { 
  retry: 
    new_elem.next = prev.next; 
    if (not CAS(prev.next == prev.next, new_elem)) goto retry; 
} 

prev 

new 

next 

insert(new_elem, prev) { 
  retry: 
    next = prev.next; 
    new_elem.next = prev.next; 
    new_elem.prev = prev; 
    if (not DCAS(prev.next == next && next.prev ==prev, 
                         prev.next = new_elem, next.prev = new_elem)) 
      goto retry; 
} 



Synchronization without Locks 

Load Linked, Store Conditional 

 
insert (prev, new_elem) { 

  retry: 

   load_linked (prev.next); 

   new_elem.next = prev.next; 

   if (! store_conditional (prev.next, new_elem)) goto retry; 

} 



MCS-Lock 

Fairness + Local Spinning  
 by Mellor-Crummey and Scott 

next L 

next L 

next L 

Tail T 

CPU 0 CPU 1 CPU 2 CPU 3 



MCS-Lock 

Fairness + Local Spinning  
 by Mellor-Crummey and Scott 

next L 

next L 

next L 

Tail T 

CPU 0 CPU 1 CPU 2 CPU 3 



MCS Locks 

Fair, local spinning 
atomic compare exchange: cmpxchg (T == Expected, Desired) 

 
lock(Node * & T, Node * I) { 

  I->next = null; 

  I->Lock = false; 

  Node * prev = swap(T, I); 

   if (prev) { 

      prev->next = I; 

      do {} while (I->Lock == false); 

   } 

} 

 

unlock (Node * & T, Node * I) { 

  if (!I->next) { 

     if (cmpxchg (T == I, 0)) return;  // no waiting cpu 

     do { } while (!I->next);   // spin until the following process 

                                      updates the next pointer 

  } 

  I->next->Lock = true; 

} 

    



Performance 

on BBN Butterfly: 256 nodes, local memory; each node can access other memory  
through log4(depth) switched network; Anderson: array-based queue lock 

Source: Mellor Crummey, Scott [1990]:  
“Algorithms  for  Scalable  Synchronization  on  Shared  Memory  Multiprocessors” 



Performance 

16 core AMD Opteron 

Source: [corey 08] 



Reader Writer Locks 

Lock differentiates two types of lock holders: 

Readers: 

Don't modify the lock-protected object 

Multiple readers may hold the lock at the 
same time 

Writers: 

Modify the protected object 

Writers must hold the lock exclusively 

 

Fairness 

Improve reader latency by allowing readers to  
overtake writers (=> unfair lock) 



Reader Writer Locks 

Fair Ticket Reader-Writer Lock 
co-locate reader tickets and writer tickets 

lock read (next, current) { 
  my_ticket = xadd (next, 1); 
  do {} while (current.write != my_ticket.write); 
} 
        
lock write (next, current) { 
   my_ticket = xadd (next, 1 << WRITE_SHIFT); 
   do {} while (current != my_ticket); 
} 
 
 
unlock_read () { 
   xadd (current.read, 1); 
} 
 
unlock write () { 
   current.write ++; 
} 
 

read write 

current      next      R0    R1     W2     R3 
   0 0      0 0          0 0 
                  0 1                   0 1 
                  0 2                            0 2 
                  1 2                                     1 2 



Hardware Transactional Memory 

M  | x 

CPU 0 

M  | y 

M  | z 

struct Foo { 
    int x; 
    int y;  
    int z; 
} 

M    |  x’ 

M    |  y’ 

M    |  z’ 



Lockholder Preemption 

Spinning-time of other CPUs increase by the time the lockholder is 
preempted 
 

worse for ticket lock / MCS: grant free lock to preempted thread 

 
=> do not preempt lock holders 
 

spin_lock(lock_var) { 

   

  do { 

      sti; // enable interrupts 

      reg = 1; 

      do {} while (lock_var == 1);   spin_unlock(lock_var) { 

             lock_var = 0; 

      cli; // disable interrupts       sti; 

      swap(lock_var, reg);     } 

  } while (reg == 1); 

} 

 



Lockholder Preemption 

Spinning-time of other CPUs increase by the time the lockholder is 
preempted 
 

worse for ticket lock / MCS: grant free lock to preempted thread 

 
=> do not preempt lock holders 
 

spin_lock(lock_var) { 

  pushf; // store whether interrupts were already closed 

  do { 

      popf; 

      reg = 1; 

      do {} while (lock_var == 1);   spin_unlock(lock_var) { 

      pushf;          lock_var = 0; 

      cli;               popf; 

      swap(lock_var, reg);     } 

  } while (reg == 1); 

} 

 



Monitor / MWait 

MWait:  

  stop CPU / Hyperthread 

  wait for cacheline to be written 

  => save power by allowing CPU to enter sleep state 

  => free resources for other hyperthread 

 

Monitor: 

  set watchdog to cacheline 

  watchdog may also be triggered by other events (interrupts) 

 
CPU 0 CPU 1 

mwait 

write to trigger 

t 

while (trigger[0] != value) { 
   monitor (&trigger[0]) 
   if (trigger[0] != value) { 
      mwait 
   } 
} 
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