
17/05/11

Distributed OS

Parallel Systems Software,

short overview → MosiX

Hermann Härtig

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 2

Linux, Small kernels, and Linux‏

SMP (Linux, K42,
…)

● Shared Memory
SMP

● Linux syscall
interface

● Balance Load,
Optimise locality
and concurrency

MPP (Tianhe-1A,
Jaguar, Blue Gene,
 …)

● Distributed
Memory

● Message Passing
Interface

● Partition

Clusters
(MosiX, …)

● COTS networks

● Distribute Linux

● Balance Load
dynamically

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 3

SMP: Shared Memory / Symmetric MP

● Characteristics of SMP Systems:
○ Highly optimised interconnect networks
○ Shared memory (with several levels of caches)‏
○ Sizes: 2 .. ~1024 CPUs

● Successful Applications:
○ Large Linux (Windows) machines / servers
○ Transaction-management systems

● Not usually used for:
○ CPU intensive computation, massively parallel

Applications

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 4

MPP: Massively Parallel Multiprocessors

● Characteristics of MPP Systems:
○ Highly optimised interconnect networks
○ Distributed memory
○ Size today: up to few 100000 CPUs (cores) + XXL GPU

● Successful Applications:
○ CPU intensive computation, massively parallel

Applications, small execution/communication ratios
○ Cloud ?

● Not optimal for:
○ Transaction-management systems
○ Unix-Workstation + Servers

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 5

“Clusters”

● Characteristics of Cluster Systems:
○ Use COTS (common of the shelf) PCs/Servers and COTS

networks
○ Size: No principle limits

● Successful Applications:
○ CPU intensive computation, massively parallel

Applications, larger execution/communication ratios
○ Data Centers, google apps
○ Cloud

● Not optimal for:
○ Transaction-management systems
○ Unix-Workstation + Servers

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 6

The Limitation of CC

Example:
a numerical application that computes what happens during car crash.

Such simulations typically compute one time step, require some
communications about the boundaries and some global variables, and then
next time step and so on.
If you compute bus crash, the problem is fairly big, so each time step takes a
lot of time - e.g. 1 minute. Even if you use 600 computers efciently, you’ll
have 0.1 second per time step, which is a usually enough in terms of
communications. So this is coarse-grain.
Same simulations, you check what happens when a hammer left in space
impacts a space ship shield. This time the problem is very small, but the
velocities and the materials are higher, so the time step is smaller (the
physical time) and you need 1,000,000 time steps. Each time step may take
10msec. Impossible to parallelize efcient even on a 100 nodes CC since
communication cost is large. This is fne grain, and you’ll have to wait A LOT
until it fnishes.

Oren Laadan/Hermann Härtig (199x)

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 7

Parallel Programming Models

● Organisation of Work
○ Independent, unstructured processes (normally executing

diferent programs) independently on nodes (make and
compilers, ...), “pile of work”

○ SPMD: single program on multiple data
asynchronous handling of partitioned data

● Communication
○ Shared Memory, shared fle system
○ Message Passing:

Process cooperation through explicit message passing

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 8

● Task queues
● Amnon's slides
● Map/reduce as additional paradigm
● Evt central dispatch

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 9

Programming Model: SPMD

● Floyd: SISD, SIMD, MIMD, (MISD)

SIMD: Single Instruction Multiple Data
Vector Computers, specialized instructions, ...

● SPMD: Single Program Multiple Data

Same program runs on “all” nodes
works on split-up data
asynchronously but with explicit synch points

implementations: message passing/shared memory/...

paradigms:
“map/reduce” (google) / GCD (apple) / task queues / ...

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 10

SPMD continued

● SPMD often:
while (true) {
 work
 exchange data (barrier)
}

● Common for many MPP:
“All” participating CPUs: active / inactive

● “All” techniques:
○ Partitioning (HW)‏
○ Gang Scheduling

● Problem to solve for all variants: Load Balancing (→ later)

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 11

Gang Scheduling

● The OS schedules all members of a group of processes at the
same time

● Using: priorities (mostly), time-driven scheduling
● Why?

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 12

Amdahl's Law and the importance of low-jitter
computation and low-latency communication

Compute; communicate; compute; …

Examples (idealized, take with grain of salt !!!):
● Compute: 10 micro, 100 micro, 1 ms
● Communicate: 5 micro, 10 micro, 100 micro, 1ms

assuming here: communication cannot be sped up

Interpretation of Amdahl's law for parallel systems:
○ P: section that can be parallelized
○ 1-P: serial section
○ N: number of CPUs

Speedup(P,N) =
1

(1−P+
P
N)

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 13

Amdahl and communication

Compute(= parallel section),
communicate(= serial section):
possible speedup for N=∞

● 1ms, 100 µs: 1/0.1 → 10
● 1ms, 1 μs: 1/0.001 → 1000
● 10 μs, 1 μs: 0.01/0.001 → 10
● ...

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 14

Amdahl and compute jitter

Jitter:
● Ocassional addition to computation time in one or more

processes
● Holds up all other processes

Compute(= parallel section),
jitter (→ add to serial section),
communicate(= serial section):
possible speedup for N=∞

● 1ms, 100μs, 100 µs: 1/0.2 → 5
● 1ms, 100μs, 1 μs: 1/0.101 → 10
● 10 μs, 10μs, 1 μs: 0.01/0.011 → 100
● ...

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 15

Sources of computation jitter

● Hardware ???
● Application:

computation imbalance → load balancing (by hand, dynamic)
● Operating systems/libraries/... :

○ Context switch times (gang scheduling)
○ Mutual exclusion
○ „noise“: uncontrolled side activities
○ …

○

● → HPC should run micro kernels

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 16

OS-jitter consequences

● Keep critical sections as „small“ as possible
● Specialize OS functionality for application (e.g. MPI)
● Common: Remove OS from the critical path:

○ Process communication without OS (DMA)
○ Application isolation without OS (special networks)
○ Broadcast/combination/reduction (→ next slides)

thru special network

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 17

MPI, very brief overview

● Library for message-oriented parallel programming.
● Programming-model:

○ MPI program is started on all processors
○ Static allocation of processes to CPUs .
○ Processes have “Rank”: 0 ... N-1
○ Each process can obtain its Rank (MPI_Comm_rank).

● Typed messages
● Communicator: collection of processes that can

communicate, e.g., MPI_COMM_WORLD
● MPI_Spawn (MPI – 2)‏

○ Dynamically create and spread processes

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 18

MPI - Operation

● Init / Finalize

● MPI-Comm-Rank delivers “rank” of calling process,
for example

MPI_Comm_Rank (MPI_COMM_WORLD, &my-rank)

if (my_rank != 0)
...
else

● MPI_barrier(comm) blocks until all processes called it
● MPI_Comm_Size how many processes in comm

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 19

MPI – Operations Send, RCV

● MPI_Send (
void* message,
int count,

 MPI-Datatype,
int dest, /*rank of destination process, in */
int tag,
MPI_Comm comm) /* communicator*/

● MPI_RCV(
void* message,
int count,

 MPI-Datatype,
int src, /* rank of source process, in */

 /* can be MPI_ANY-SRC */
int tag, /* can be MPI_ANY_TAG */
MPI_Comm comm, /* communicator*/
MPI_Status* status); /* source, tag, error*/

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 20

MPI – Operations Broadcast

● MPI_BCAST(
void * message,
int count,
MPI-Datatype,
int root,
MPI_Comm comm)‏

● process with rank == root sends,
all others receive message

● implementation optimised for particular interconnect

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 21

MPI – Operations

● Aggregation:
○ MPI_Reduce

‒ Each process holds partial value,
‒ All processes reduce partial values to fnal result
‒ Store result in RcvAddress feld of Root process

○ MPI_Scan
‒ Combine partial results into n fnal results and store them in

RcvAddress of all n processes

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 22

MPI - Operations

root

Compute: a[0] a[1] a[2] a[3]

a

MPI reduce

root

Compute: a[0] a[1] a[2] a[3]

MPI scan

a

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 23

MPI – Operations

● MPI_Reduce(
void* operand, /* in*/
void * result, /* out*/
int count, /* in */
MP_Datatype datatype,
MPI_Op operator,
int root,
MPI_Comm comm)

predefned MPI_OPs:
sum, product, minimum, maximum,
logical ops, ...

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 24

Common MPP Operating-System-Model
 (for example Blue Gene)

● Processing elements/nodes:
compute intensive part of application
○ Micro-Kernel or stripped down Linux
○ Start + Synchronisation of Application
○ elementary Memory Management (no demand paging)

● all other OS functionality on separate servers or dedicated
nodes (“I/O nodes“)

● strict space sharing:
only one application active per partition at a time

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 25

“Space” Allocation in MPP

● Assign partition of feld of PEs
○ Applications are pair wise isolated
○ Applications self responsible for PEs
○ shared segments for processes within partition (Cray)‏

● Problems:
○ debugging (relatively long stop-times)‏
○ Long-running jobs block shorter jobs

● Isolation of application with respect to:
○ Security
○ Efciency

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 26

“Space” Allocation in MPP

● Hardware-Supported assignment of nodes to applications

● Partitions
○ static at confguration

Installed by operator for longer period of time
○ Variable(Blue Gene/L):

Selections and setup on start of Job
established by “scheduler”

○ Very flexible (not in any MPP I know):
‒ increase and shrink during operation
‒ Applications need to deal with varying CPU numbers

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 27

Alternative: Distribution of Load

● Static
○ Place processes at startup, don’t reassign
○ Requires a priori knowledge

● Dynamic Balancing
○ Process-Migration
○ Adapts dynamically to changing loads

● Problems
○ Determination of current load
○ Distribution algorithm
○ Oscillation possible

● successful in SMPs and clusters, not (yet ?) used in MPPs
● Most advanced dynamic load balancing: MosiX

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 28

Challenges for Load Balacing in Clusters (++)

View provided for users/programming model
How to distribute load,
● The mechanism to migrate load
● The mechanisms to use remote resources
● Optimal placement (an NP-Hard problem)
● …

Information distribution, acting on partial knowledge
Cope with addition of nodes, subclusters, …
Administration
Lots of practical details

NOW: Amnon Barak's slides on MosiX

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 29

Special Case: fork()‏

Deputy Remote

Deputy(child)‏

Remote(child)‏

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 30

Process Migration

Process migdaemon

Deputy

Remote

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 31

Ping Pong and Flooding

Prevent

● flooding (all processes jump to one new empty node):
decide immediately before migration commitment (extra
communication, piggy packed)‏

● ping pong:
if thresholds are very close, processes moved back and forth
=> tell a little higher load than real

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 32

The Ping Pong Problem

Scenario:
● compare load on nodes 1

and 2
node 1 moves process to
equal. loads
...

Solutions:
● add one + little bit to load
● average over time

Solves short peaks problem as
well
(short cron processes)‏

Node 1 Node 2

One process two nodes

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 33

The Flooding Problem

Scenario 1: new node comes in
Scenario 2: node becomes unloaded suddenly
=> “everybody joins the party”

Solution:
● use expected load (committed load) instead of run

queue length
● check again before committing

SS 2011 Distributed OS / Parallel Systems Software, short overview - Hermann Härtig 34

IPC

● IPC and load are contradictive
optimum: NP hard

● apply heuristics: exchange locally

	Titelfolie
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34

