
1

Distributed Operating Systems

 Synchronization in Parallel Systems

Marcus Völp
2010

Distributed Operating Systems 2010 Marcus Völp 2

Topics

 Synchronization
 Locks
 Performance

Distributed Operating Systems 2010 Marcus Völp 3

Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)

 Properties
 Locks

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
 Synchronization with Locks (Part II)

 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

Distributed Operating Systems 2010 Marcus Völp 4

Introduction

 Example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail

Distributed Operating Systems 2010 Marcus Völp 5

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head

Distributed Operating Systems 2010 Marcus Völp 6

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer

Distributed Operating Systems 2010 Marcus Völp 7

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer

Distributed Operating Systems 2010 Marcus Völp 8

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer

Distributed Operating Systems 2010 Marcus Völp 9

Introduction

A

B

1) A,B create list elements
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer

Distributed Operating Systems 2010 Marcus Völp 10

Introduction

 First Solution
 Locks

 coarse grained: lock entire list
 lock(list);

 list->insert_element;
unlock(list);

 fine grained: lock list elements
 retry:

 lock(head);
 if (trylock(head->next)) {
 head->insert_element;
 unlock(head->next);
 } else {
 unlock(head);
 goto retry;
 }

L L

Distributed Operating Systems 2010 Marcus Völp 11

Mutual Exclusion
without Locks / Atomic Read-Modify-Write Instructions

 Last lecture: Decker / Peterson
 requires:

 atomic stores, atomic loads
 sequential consistency (or memory fences)

bool flag[2] = {false, false};

int turn = 0;

void entersection(int thread) {

int other = 1 - thread; /* id of other thread; thread in {0,1}*/

flag[thread] = true; /* show interest */

turn= other; /* give precedence to other thread */

while (turn == other && flag[other]) {}; /* wait */

}

void leavesection(int thread) {

flag[thread] = false;

}

Distributed Operating Systems 2010 Marcus Völp 12

Atomic Hardware Instructions

 [Lipton 95] a, b are atomic if A || B = A;B or B;A

 Read-Modify-Write Instructions are typically not atomic:
 A B

add &x, 1 || mov &x, 2 (x = 0)

 are typically executes as:

load &x → Reg
add Reg + 1 || store 2 → &x
store Reg → &x

Distributed Operating Systems 2010 Marcus Völp 13

Atomic Hardware Instructions

 [Lipton 95] a, b are atomic if A || B = A;B or B;A

 Read-modify-write Instructions are typically not atomic:
 A B

add &x, 1 || mov &x, 2 (x = 0)

 are typically executes as:

load &x → Reg
add Reg + 1 || store 2 → &x
store Reg → &x

 Above interleaving for A || B => x = 1
 but A;B => x = 2,

B;A => x = 3

Distributed Operating Systems 2010 Marcus Völp 14

Atomic Hardware Instructions

 How to make instructions atomic
 Bus lock

 Lock memory bus until all memory accesses of an RMW instruction
have completed (e.g., Intel Pentium 3 and older x86 CPUs)

lock; add [eax], 1
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 Observe Cache
 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

retry:
 load_linked &x → R;
 modify R;
 if (! store_conditional(R → &x))
 goto retry:

 HW Transactional Memory
 watchdog for multiple cachelines
 discard changes on concurrent access

Distributed Operating Systems 2010 Marcus Völp 15

Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x) [→ E] [→ I]
 2. load &x → R
 3. add R += 1
 4. store R → &x

CPU 0

S | x

CPU 1

S | x
RFO(&x)

Distributed Operating Systems 2010 Marcus Völp 16

Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x) [→ E] [→ I]
 2. load &x → R
 3. add R += 1
 4. store R → &x

CPU 0

E | x

CPU 1

I |

Distributed Operating Systems 2010 Marcus Völp 17

Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x) [→ E] [→ I]
 2. load &x → R
 3. add R += 1
 4. store R → &x

CPU 0

E | x

read / write &x

CPU 1

I |
request &x

Distributed Operating Systems 2010 Marcus Völp 18

Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x) [→ E] [→ I]
 2. load &x → R
 3. add R += 1
 4. store R → &x

CPU 0

E | x

read / write &x

CPU 1

I |
request &x

delay reply until store completes

Distributed Operating Systems 2010 Marcus Völp 19

Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x) [→ E] [→ I]
 2. load &x → R
 3. add R += 1
 4. store R → &x [E → M]

CPU 0

M | x

read / write &x

CPU 1

I |
request &x

Distributed Operating Systems 2010 Marcus Völp 20

Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol

add &x, 1
 1. read_for_ownership(&x) [→ E] [→ I]
 2. load &x → R
 3. add R += 1
 4. store R → &x [E → M]
 [M → S / I] [I → S / M]

CPU 0

S / I | x

read / write &x

CPU 1

S / M | x
reply

Distributed Operating Systems 2010 Marcus Völp 21

Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S | x

CPU 1

S | x

 1. load_linked &x → R [→ E] [→ I]
 2. add R += 1
 3. store_conditional R → &x [if (E) → M else abort]

load_linked

Distributed Operating Systems 2010 Marcus Völp 22

Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

CPU 1

I |

 1. load_linked &x → R [→ E] [→ I]
 2. add R += 1
 3. store_conditional R → &x [if (E) → M else abort]

load_linked

Distributed Operating Systems 2010 Marcus Völp 23

Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

 1. load_linked &x → R [→ E] [→ I]
 2. add R += 1
 3. store_conditional R → &x [if (E) → M else abort]

&x is only in local cache
=> store_conditional succeeds

Distributed Operating Systems 2010 Marcus Völp 24

Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

CPU 1

S / M | x

 1. load_linked &x → R [→ E] [→ I]
 2. add R += 1
 3. store_conditional R → &x [if (E) → M else abort]

read / write &x

request &x

Distributed Operating Systems 2010 Marcus Völp 25

Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

 1. load_linked &x → R [→ E] [→ I]
 2. add R += 1
 3. store_conditional R → &x [if (E) → M else abort]

read / write &x

&x can be in remote caches
=> store_conditional fails

Distributed Operating Systems 2010 Marcus Völp 26

Atomic Hardware Instructions

 Read-Modify-Write Instructions
 bit test and set - bts (bit)

 if (bit clear) { set bit ; return true; } else { return false; }

 Exchange - swap (mem, R)
 &mem → tmp; R → &mem; tmp → R;

 fetch and add - xadd (mem, R)
 &mem → tmp; &mem += R; return tmp;

 compare and swap - cas (mem, old, new)
 if (&mem == old) {

 new → &mem; return true;
} else {
 return false;
}

 double “address” compare and swap –
cas (mem1, mem2, old1, old2, new1, new2)

 swap mem1 ↔ new1, mem2 ↔ new2 iff
mem1 = old1 & mem2 = old2

Distributed Operating Systems 2010 Marcus Völp 27

Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)

 Properties
 Locks

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
 Synchronization with Locks (Part II)

 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

Distributed Operating Systems 2010 Marcus Völp 28

Synchronization with Locks

 Properties
 overhead

 fine-grained locking => critical sections are short
 minimize overhead to take the lock if it is free

 fairness
 every thread should obtain the lock after a finite amount of time
 (real-time:) … latest after x * |CS| seconds

 timeouts / abort lock() operation
 kill threads that compete for the lock
 run fixup code if thread fails to acquire the lock before timeout

 reader / writer locks
 concurrent readers may enter the lock at the same time

 lockholder preemption
 avoid blocking other threads on a descheduled lockholder

 priority inversion
 ! Not covered in this lecture (RTS / MKK)

 spinning vs. blocking
 release CPU while others hold the lock

Distributed Operating Systems 2010 Marcus Völp 29

Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held

Distributed Operating Systems 2010 Marcus Völp 30

Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

Lock

CPU
0

CPU
1

CPU
2

CPU
3

l = M l = I l = I l = I

Distributed Operating Systems 2010 Marcus Völp 31

Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

LockSwap

CPU
0

CPU
1

CPU
2

CPU
3

l = I l = M l = I l = I

Distributed Operating Systems 2010 Marcus Völp 32

Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

l = I l = I l = I l = M

Lock Swap

Distributed Operating Systems 2010 Marcus Völp 33

Synchronization with Locks

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 do { } while (l == 1);

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

l = I l = I l = M l = I

Lock

Spin locally while lock is held
=> reduces bus traffic

Distributed Operating Systems 2010 Marcus Völp 34

Synchronization with Locks

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

 do {

 reg = 1;

 do { } while (l == 1);

 swap (l, reg)

 } while (reg == 1);

}

unlock (lock_var & l) {

 l = 0;

}

CPU
0

CPU
1

CPU
2

CPU
3

l = S l = S l = M l = I

Locktesttest

Distributed Operating Systems 2010 Marcus Völp 35

Synchronization with Locks

 Fairness

lock
test

test
unlock

test
lock

unlock

test

test
lock

test

free

free

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2010 Marcus Völp 36

Synchronization with Locks

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

 current_ticket ++;

}

 [my_ticket] current next

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2010 Marcus Völp 37

Synchronization with Locks

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

 current_ticket ++;

}

 [my_ticket] current next
 0 0
L.CPU0 [0]: 0 1 => Lockholder = CPU0
L.CPU1 [1]: 0 2
L.CPU2 [2]: 0 3

U.CPU0 [0]: 1 3 => Lockholder = CPU1

L.CPU3 [3]: 1 4
L.CPU0 [4]: 1 5

U.CPU1 [1]: 2 5 => Lockholder = CPU 2

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2010 Marcus Völp 38

Synchronization with Locks

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

 next_ticket,

 current_ticket

}

ticket_lock (lock_struct & l) {

 my_ticket = xadd (&l.next_ticket, 1)

 do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct &l) {

 current_ticket ++;

}

Spin on global variable

write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU
0

CPU
1

CPU
2

CPU
3

However:
- Signal all CPUs not only next
- Abort / timeout of competing threads

Distributed Operating Systems 2010 Marcus Völp 39

parallel readswrite

More Local Spinning

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to forward write on Bus 2-3

CPU 0 CPU 1

CPU 2 CPU 3

msg

3 Network Messages

16 core AMD Opteron:
 4 chips with 4 cores + partitioned RAM
 internal crossbar to access L1 / L2 on local chip

source: [corey08]

Distributed Operating Systems 2010 Marcus Völp 40

Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)

 Properties
 Locks

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
 Synchronization with Locks (Part II)

 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

Distributed Operating Systems 2010 Marcus Völp 41

Synchronization without Locks

prev

new

next

insert(new_elem, prev) {
 retry:
 new_elem.next = prev.next;
 if (not CAS(prev.next == prev.next, new_elem)) goto retry;
}

prev

new

next

insert(new_elem, prev) {
 retry:
 next = prev.next;
 new_elem.next = prev.next;
 new_elem.prev = prev;
 if (not DCAS(prev.next == next && next.prev ==prev,
 prev.next = new_elem, next.prev = new_elem))
 goto retry;
}

 A quick intermezzo to lock-free synchronization

Distributed Operating Systems 2010 Marcus Völp 42

Synchronization without Locks

 Load Linked, Store Conditional

insert (prev, new_elem) {

 retry:

 load_linked (prev.next);

 new_elem.next = prev.next;

 if (! store_conditional (prev.next, new_elem)) goto retry;

}

Distributed Operating Systems 2010 Marcus Völp 43

Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)

 Properties
 Locks

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
 Synchronization with Locks (Part II)

 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

Distributed Operating Systems 2010 Marcus Völp 44

MCS-Lock
 Fairness + Local Spinning

by Mellor-Crummey and Scott

nextl

nextl

nextl

Lock L

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2010 Marcus Völp 45

MCS-Lock

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2010 Marcus Völp 46

MCS-Lock

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU
0

CPU
1

CPU
2

CPU
3

Distributed Operating Systems 2010 Marcus Völp 47

MCS Locks

 Fair, local spinning
 atomic compare exchange: cmpxchg (L == Old, New)

lock(Node * & L, Node * I) {
 I->next = null;
 I->lock = false;
 Node * prev = swap(L, I);
 If (prev) {
 prev->next = I;
 do {} while (I->lock == false);
 }
}

unlock (Node * & L, Node * I) {
 if (!I->next) {
 if (cmpxchg (L == I, 0)) return; // no waiting cpu
 do { } while (!I->next); // spin until the following process
 updates the next pointer
 }
 I->next->lock = true;
}

Distributed Operating Systems 2010 Marcus Völp 48

Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory through log4(depth) switched network
Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]: “Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”

Distributed Operating Systems 2010 Marcus Völp 49

Performance

16 core AMD Opteron

Source: [corey 08]

Distributed Operating Systems 2010 Marcus Völp 50

Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)

 Properties
 Locks

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
 Synchronization with Locks (Part II)

 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait

Distributed Operating Systems 2010 Marcus Völp 51

Special Issues

 No longer apply for lock
 after timeout
 to kill / signal competing thread

 Spin Lock: (trivial: stop spinning)
 Ticket Lock: my_ticket current

 0 0

 1 1

 2

 3 spin forever

 MCS Lock: (see Exercises)
 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2010 Marcus Völp 52

Special Issues

 No longer apply for lock
 after timeout
 to kill / signal competing thread

 Spin Lock: (trivial: stop spinning)
 Ticket Lock: my_ticket current

 0 0

 1 +1 => lock is unsafe

 2

 3

 MCS Lock: (see Exercises)
 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3

Distributed Operating Systems 2010 Marcus Völp 53

Special Issues

 No longer apply for lock
 after timeout
 to kill / signal competing thread

 Spin Lock: (trivial: stop spinning)
 Ticket Lock: my_ticket current

 0 0

 1

 2

 3

 MCS Lock: (see Exercises)
 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3
adjust my_ticket of others:

tricky (my_ticket is local)

Distributed Operating Systems 2010 Marcus Völp 54

Special Issues

 Reader Writer Locks
 Lock differentiates two types of lock holders:

 Readers:
 Don't modify the lock-protected object
 Multiple readers may hold the lock at the same time

 Writers:
 Modify the protected object
 Writers must hold the lock exclusively

 Fairness
 Improve reader latency by allowing readers to

overtake writers (=> unfair lock)

Distributed Operating Systems 2010 Marcus Völp 55

Special Issues

 Fair Ticket Reader-Writer Lock
 co-locate reader tickets and writer tickets

lock read (next, current) {
 my_ticket = xadd (next, 1);
 do {} while (current.write != my_ticket.write);
}

lock write (next, current) {
 my_ticket = xadd (next.write, 1);
 do {} while (current != my_ticket);
}

unlock_read () {
 xadd (current.read, 1);
}

unlock write () {
 current.write ++;
}

readwrite

current next R0 R1 W2 R3
 0 0 0 0 0 0
 0 1 0 1
 0 2 0 2
 1 2 1 2

Distributed Operating Systems 2010 Marcus Völp 56

Special Issues

 Fair Ticket Reader-Writer Lock
 combine read, write ticket in single word

Correctness of Lock:

1) no counter must overflow:
 =>
 max count value >=
 max #threads that simultaneously

attempt to acquire the lock

2) no overflow from read to write:

 e.g., 8-bit counter: read = 0xff, write = 5

 xadd(next, 1) => read = 0, write = 6

 => 1-bit to separate read from write field
 always clear this bit before xadd

readwrite

readwrite

readwrite

xadd => overflow

1

0

clear flag before next xadd

Read won't overflow again unless 2^n
CPUs are preempted after clear flag
(i.e. 2^n xadds in sequence)
 => Condition (1) prevents this

Distributed Operating Systems 2010 Marcus Völp 57

Special Issues

Source: [corey 08]
Source: [johnson 10]

Distributed Operating Systems 2010 Marcus Völp 58

Special Issues

 Lockholder preemption
 Spinning-time of other CPUs increase by the time the

lockholder is preempted
 worse for ticket lock / MCS

 grant free lock to preempted thread

=> do not preempt lock holders

spin_lock(lock_var) {
 pushf; // store whether interrupts were already closed
 do {
 popf;
 reg = 1;
 do {} while (lock_var == 1); spin_unlock(lock_var) {
 pushf; lock_var = 0;
 cli; popf;
 swap(lock_var, reg); }
 } while (reg == 1);
}

Distributed Operating Systems 2010 Marcus Völp 59

Special Issues

 Monitor, Mwait
 Stop CPU / HT while waiting for lock (signal)

 Saves power
 Frees up processor resources (HT)

 Monitor: watch cacheline
 Mwait: stop CPU / HT until:

 cacheline has been written, or
 interrupt occurs

while (trigger[0] != value) {

 monitor (&trigger[0])

 if (trigger[0] != value) {

 mwait

 }

}

CPU 0 CPU 1

mwait

write to trigger

t

Distributed Operating Systems 2010 Marcus Völp 60

References
 Scheduler-Conscious Synchronization

LEONIDAS I. KONTOTHANASSIS, ROBERT W. WISNIEWSKI, MICHAEL L.
SCOTT

 Scalable Reader- Writer Synchronization for Shared-Memory
Multiprocessors
John M. Mellor-Crummey, Michael L. Scottt

 Algorithms for Scalable Synchronization on Shared-Memory
Multiprocessors
JOHN M. MELLOR-CRUMMEY, MICHAEL L.

 Concurrent Update on Multiprogrammed Shared Memory
Multiprocessors
Maged M. Michael, Michael L. Scott

 Scalable Queue-Based Spin Locks with Timeout
Michael L. Scott and William N. Scherer III

Distributed Operating Systems 2010 Marcus Völp 61

References
 Reactive Synchronization Algorithms for Multiprocessors

B. Lim, A. Agarwal

 Lock Free Data Structures

John D. Valois (PhD Thesis)

 Reduction: A Method for Proving Properties of Parallel Programs

R. Lipton - Communications of the ACM 1975

 Decoupling Contention Management from Scheduling (ASPLOS 2010)

F.R. Johnson, R. Stoica, A. Ailamaki, T. Mowry

 Corey: An Operating System for Many Cores (OSDI 2008)

Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang

Distributed Operating Systems 2010 Marcus Völp 62

MESI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

