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Introduction

 Example: Request Queue

Request

Head

Tail

free

free

free

free

Circular Buffer

Head

Tail
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Introduction

A

B

1) A,B create list elements 
2) A,B set next pointer to head
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Introduction
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1) A,B create list elements 
2) A,B set next pointer to head
3) B set prev pointer
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Introduction

A

B

1) A,B create list elements 
2) A,B set next pointer to head
3) B set prev pointer
4) A set prev pointer
5) A update head pointer
6) B update head pointer
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Introduction

 First Solution
 Locks

 coarse grained: lock entire list
 lock(list); 

  list->insert_element;
unlock(list);

 fine grained: lock list elements
 retry:

  lock(head);
  if (trylock(head->next)) {
    head->insert_element;
    unlock(head->next);
  } else {
    unlock(head);
    goto retry;
  }

L L
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Mutual Exclusion 
without Locks / Atomic Read-Modify-Write Instructions

 Last lecture: Decker / Peterson
 requires: 

 atomic stores, atomic loads 
 sequential consistency (or memory fences)

bool flag[2] = {false, false};

int turn = 0;

void entersection(int thread) {

int other = 1 - thread; /* id of other thread; thread in {0,1}*/

flag[thread] = true; /* show interest */

turn= other; /* give precedence to other thread */

while (turn == other && flag[other]) {}; /* wait */

}

void leavesection(int thread) {

flag[thread] = false;

}



Distributed Operating Systems 2010 Marcus Völp 12

Atomic Hardware Instructions

 [Lipton 95]  a, b are atomic if A || B = A;B or B;A

 Read-Modify-Write Instructions are typically not atomic:
         A                          B

add &x, 1             ||        mov &x, 2                     (x = 0)

           are typically executes as: 

load &x  → Reg
add Reg + 1         ||       store 2 → &x
store Reg → &x
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Atomic Hardware Instructions

 [Lipton 95]  a, b are atomic if A || B = A;B or B;A

 Read-modify-write Instructions are typically not atomic:
         A                          B

add &x, 1             ||        mov &x, 2                     (x = 0)

           are typically executes as: 

load &x  → Reg
add Reg + 1         ||       store 2 → &x
store Reg → &x

 Above interleaving for A || B => x = 1  
 but A;B => x = 2, 

B;A => x = 3
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Atomic Hardware Instructions

 How to make instructions atomic
 Bus lock

 Lock memory bus until all memory accesses of an RMW instruction 
have completed (e.g., Intel Pentium 3 and older x86 CPUs)

lock; add [eax], 1
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 Observe Cache
 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

retry:
    load_linked &x → R;
       modify R;
    if (! store_conditional(R → &x))
       goto retry:

 HW Transactional Memory
 watchdog for multiple cachelines
 discard changes on concurrent access
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Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1
    1. read_for_ownership(&x) [→ E]                                        [→ I]
    2. load &x → R
    3.     add R += 1
    4. store R → &x               
    

CPU 0

S  | x

CPU 1

S  |  x
RFO(&x)
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Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1
    1. read_for_ownership(&x) [→ E]                                        [→ I]
    2. load &x → R
    3.     add R += 1
    4. store R → &x               
    

CPU 0

E  | x

CPU 1

I  |  
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Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1
    1. read_for_ownership(&x) [→ E]                                        [→ I]
    2. load &x → R
    3.     add R += 1
    4. store R → &x               

CPU 0

E  | x

read / write &x

CPU 1

I  |  
request &x
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Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1
    1. read_for_ownership(&x) [→ E]                                        [→ I]
    2. load &x → R
    3.     add R += 1
    4. store R → &x               

CPU 0

E  | x

read / write &x

CPU 1

I  |  
request &x

delay reply until store completes
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Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1
    1. read_for_ownership(&x) [→ E]                                        [→ I]
    2. load &x → R
    3.     add R += 1
    4. store R → &x              [ E → M ]              

CPU 0

M  | x

read / write &x

CPU 1

I  |  
request &x
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Atomic Hardware Instructions

 How to make instructions atomic
 Cache Lock

 Delay snoop traffic until all memory accesses of RMW instruction have 
completed (e.g., Intel Pentium 4 and newer x86 CPUs)

 last lecture: M(O)ESI Cache Coherence Protocol 

add &x, 1
    1. read_for_ownership(&x) [→ E]                                        [→ I]
    2. load &x → R
    3.     add R += 1
    4. store R → &x              [ E → M ]
                                                  [ M → S / I]                               [I → S / M]

CPU 0

S / I  | x

read / write &x

CPU 1

S / M  |  x
reply
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Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S | x

CPU 1

S |  x

    1. load_linked &x → R [→ E]                                        [→ I]
    2.     add R += 1
    3. store_conditional R → &x   [ if (E) → M else abort]

load_linked
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Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

CPU 1

I  |   

    1. load_linked &x → R [→ E]                                        [→ I]
    2.     add R += 1
    3. store_conditional R → &x   [ if (E) → M else abort]

load_linked
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Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

E | x

    1. load_linked &x → R [→ E]                                        [→ I]
    2.     add R += 1
    3. store_conditional R → &x   [ if (E) → M else abort]

&x is only in local cache
=> store_conditional succeeds
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Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

CPU 1

S / M |  x

    1. load_linked &x → R [→ E]                                        [→ I]
    2.     add R += 1
    3. store_conditional R → &x   [ if (E) → M else abort]

read / write &x

request &x
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Atomic Hardware Instructions

 How to make instructions atomic
 Observe Cache

 Install cache watchdog on load
 Abort store if watchdog has detected a concurrent access; retry OP

(e.g., ARM, Alpha, monitor + mwait on x86)

CPU 0

S / I | x

    1. load_linked &x → R [→ E]                                        [→ I]
    2.     add R += 1
    3. store_conditional R → &x   [ if (E) → M else abort]

read / write &x

&x can be in remote caches
=> store_conditional fails
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Atomic Hardware Instructions

 Read-Modify-Write Instructions
 bit test and set - bts (bit)

 if (bit clear) { set bit ; return true; } else { return false; }

 Exchange - swap (mem, R)
 &mem → tmp; R → &mem; tmp → R;

 fetch and add - xadd (mem, R)
 &mem → tmp; &mem += R; return tmp;

 compare and swap - cas (mem, old, new)
 if (&mem == old) { 

    new → &mem; return true; 
} else {
    return false;
}

 double “address” compare and swap – 
cas (mem1, mem2, old1, old2, new1, new2)

 swap mem1 ↔ new1, mem2 ↔ new2 iff 
mem1 = old1 & mem2 = old2



Distributed Operating Systems 2010 Marcus Völp 27

Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)

 Properties
 Locks 

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
 Synchronization with Locks (Part II)

 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait
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Synchronization with Locks

 Properties
 overhead

 fine-grained locking => critical sections are short
 minimize overhead to take the lock if it is free

 fairness
 every thread should obtain the lock after a finite amount of time
 (real-time:) … latest after x * |CS| seconds

 timeouts / abort lock() operation
 kill threads that compete for the lock
 run fixup code if thread fails to acquire the lock before timeout

 reader / writer locks
 concurrent readers may enter the lock at the same time

 lockholder preemption
 avoid blocking other threads on a descheduled lockholder

 priority inversion
 ! Not covered in this lecture (RTS / MKK)

 spinning vs. blocking
 release CPU while others hold the lock
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Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

Pro: 1 cheap atomic OP to acquire the lock
Cons: high bus traffic while lock is held
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Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

Lock

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = M l = I l = I l = I
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Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

LockSwap

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = I l = M l = I l = I
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Synchronization with Locks

 Spin Lock (Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = I l = I l = I l = M

Lock Swap
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Synchronization with Locks

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     do { } while (l == 1);

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = I l = I l = M l = I

Lock

Spin locally while lock is held 
=> reduces bus traffic
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Synchronization with Locks

 Spin Lock (Test and Test and Set Lock)
 atomic swap

lock (lock_var & l) {

  do {

     reg = 1;

     do { } while (l == 1);

     swap (l, reg)

  } while (reg == 1);

}

unlock (lock_var & l) {

  l = 0;

}

CPU 
0

CPU 
1

CPU 
2

CPU 
3

l = S l = S l = M l = I

Locktesttest
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Synchronization with Locks

 Fairness

lock
test

test
unlock

test
lock

unlock

test

test
lock

test

free

free

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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Synchronization with Locks

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

  next_ticket,

  current_ticket

}

ticket_lock (lock_struct & l) {

  my_ticket = xadd (&l.next_ticket, 1)

  do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

  current_ticket ++;

}

 [my_ticket]  current     next

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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Synchronization with Locks

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

  next_ticket,

  current_ticket

}

ticket_lock (lock_struct & l) {

  my_ticket = xadd (&l.next_ticket, 1)

  do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct & l) {

  current_ticket ++;

}

 [my_ticket]  current     next
                 0   0
L.CPU0 [0]:    0       1 => Lockholder = CPU0
L.CPU1 [1]:    0       2
L.CPU2 [2]:    0       3

U.CPU0 [0]:    1       3 => Lockholder = CPU1

L.CPU3 [3]:    1       4
L.CPU0 [4]:    1       5

U.CPU1 [1]:    2       5 => Lockholder = CPU 2

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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Synchronization with Locks

 Fairness: Ticket Lock
 fetch and add (xadd)

lock_struct {

  next_ticket,

  current_ticket

}

ticket_lock (lock_struct & l) {

  my_ticket = xadd (&l.next_ticket, 1)

  do { } while (l.current_ticket != my_ticket);

}

unlock (lock_struct &l) {

  current_ticket ++;

}

Spin on global variable

write

my_ticket: 0 my_ticket: 1

CPU1, CPU3 updates not required (not next)

CPU 
0

CPU 
1

CPU 
2

CPU 
3

However:
- Signal all CPUs not only next
- Abort / timeout of competing threads
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parallel readswrite

More Local Spinning 

CPU 0 CPU 1 CPU 2 CPU 3

CPU 0 CPU 1

CPU 2 CPU 3

Need to forward write on Bus 2-3 

CPU 0 CPU 1

CPU 2 CPU 3

msg

3 Network Messages 

16 core AMD Opteron:
  4 chips with 4 cores + partitioned RAM
  internal crossbar to access L1 / L2 on local chip

source: [corey08]
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 Ticket Locks
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 Monitor, Mwait
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Synchronization without Locks

prev

new

next

insert(new_elem, prev) {
  retry: 
    new_elem.next = prev.next;
    if (not CAS(prev.next == prev.next, new_elem)) goto retry;
}

prev

new

next

insert(new_elem, prev) {
  retry: 
    next = prev.next;
    new_elem.next = prev.next;
    new_elem.prev = prev;
    if (not DCAS(prev.next == next && next.prev ==prev, 
                         prev.next = new_elem, next.prev = new_elem)) 
      goto retry;
}

 A quick intermezzo to lock-free synchronization
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Synchronization without Locks

 Load Linked, Store Conditional

insert (prev, new_elem) {

  retry:

   load_linked (prev.next);

   new_elem.next = prev.next;

   if (! store_conditional (prev.next, new_elem)) goto retry;

}
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Overview
 Introduction
 Hardware Primitives
 Synchronization with Locks (Part I)
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 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
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 MCS Locks
 Performance

 Special Issues
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 Monitor, Mwait



Distributed Operating Systems 2010 Marcus Völp 44

MCS-Lock
 Fairness + Local Spinning 

by Mellor-Crummey and Scott

nextl

nextl

nextl

Lock L

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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MCS-Lock 

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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MCS-Lock 

 Fair Lock with Local Spinning

nextl

nextl

nextl

Lock L

nextl

CPU 
0

CPU 
1

CPU 
2

CPU 
3
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MCS Locks

 Fair, local spinning
 atomic compare exchange: cmpxchg (L == Old, New) 

lock(Node * & L, Node * I) {
  I->next = null;
  I->lock = false;
  Node * prev = swap(L, I);
   If (prev) {
      prev->next = I;
      do {} while (I->lock == false);
   }
}

unlock (Node * & L, Node * I) {
  if (!I->next) {
     if (cmpxchg (L == I, 0)) return; // no waiting cpu
     do { } while (!I->next);  // spin until the following process 
                                   updates the next pointer
  }
  I->next->lock = true;
}
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Performance

on BBN Butterfly: 256 nodes, local memory; each node can access other memory through log4(depth) switched network
Anderson: array-based queue lock

Source: Mellor Crummey, Scott [1990]: “Algorithms for Scalable Synchronization on Shared Memory Multiprocessors”
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Performance

16 core AMD Opteron

Source: [corey 08]
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 Locks 

 Spin Lock (Test & Set Lock)
 Test & Test & Set Lock
 Ticket Locks

 Synchronization without Locks
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 MCS Locks
 Performance

 Special Issues
 Timeouts
 Reader Writer Locks
 Lockholder Preemption
 Monitor, Mwait
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Special Issues

 No longer apply for lock 
 after timeout
 to kill / signal competing thread

 Spin Lock: (trivial: stop spinning)
 Ticket Lock:    my_ticket   current

                           0            0

                           1            1

                           2

                           3 spin forever

 MCS Lock: (see Exercises)
 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3
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Special Issues

 No longer apply for lock 
 after timeout
 to kill / signal competing thread

 Spin Lock: (trivial: stop spinning)
 Ticket Lock:    my_ticket   current

                           0            0

                           1            +1 => lock is unsafe

                           2

                           3

 MCS Lock: (see Exercises)
 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3
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Special Issues

 No longer apply for lock 
 after timeout
 to kill / signal competing thread

 Spin Lock: (trivial: stop spinning)
 Ticket Lock:    my_ticket   current

                           0            0

                           1            

                           2

                           3

 MCS Lock: (see Exercises)
 dequeue nodes of competing threads

CPU 1

CPU 0

CPU 2

CPU 3
adjust my_ticket of others:

tricky (my_ticket is local)
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Special Issues

 Reader Writer Locks
 Lock differentiates two types of lock holders:

 Readers:
 Don't modify the lock-protected object
 Multiple readers may hold the lock at the same time

 Writers:
 Modify the protected object
 Writers must hold the lock exclusively

 Fairness
 Improve reader latency by allowing readers to 

overtake writers (=> unfair lock)



Distributed Operating Systems 2010 Marcus Völp 55

Special Issues

 Fair Ticket Reader-Writer Lock
 co-locate reader tickets and writer tickets 

lock read (next, current) {
  my_ticket = xadd (next, 1);
  do {} while (current.write != my_ticket.write);
}
       
lock write (next, current) {
   my_ticket = xadd (next.write, 1);
   do {} while (current != my_ticket);
}

unlock_read () {
   xadd (current.read, 1);
}

unlock write () {
   current.write ++;
}

readwrite

current next  R0   R1    W2    R3
  0 0       0 0         0 0
              0 1                   0 1
              0 2                            0 2
              1 2                                     1 2
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Special Issues

 Fair Ticket Reader-Writer Lock
 combine read, write ticket in single word

Correctness of Lock:

1) no counter must overflow:
   => 
 max count value >= 
  max #threads that simultaneously 

attempt to acquire the lock

2) no overflow from read to write:

   e.g., 8-bit counter: read = 0xff, write = 5 

   xadd(next, 1) => read = 0, write = 6

  => 1-bit to separate read from write field 
        always clear this bit before xadd

readwrite

readwrite

readwrite

xadd => overflow

1

0

clear flag before next xadd

Read won't overflow again unless 2^n 
CPUs are preempted after clear flag 
(i.e. 2^n xadds in sequence)
   => Condition (1) prevents this
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Special Issues

Source: [corey 08]
Source: [johnson 10]
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Special Issues

 Lockholder preemption
 Spinning-time of other CPUs increase by the time the 

lockholder is preempted
 worse for ticket lock / MCS

 grant free lock to preempted thread

=> do not preempt lock holders

spin_lock(lock_var) {
  pushf; // store whether interrupts were already closed
  do {
      popf;
      reg = 1;
      do {} while (lock_var == 1); spin_unlock(lock_var) {
      pushf;   lock_var = 0;
      cli;       popf;
      swap(lock_var, reg); }
  } while (reg == 1);
}
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Special Issues

 Monitor, Mwait
 Stop CPU / HT while waiting for lock (signal)

 Saves power
 Frees up processor resources (HT)

 Monitor: watch cacheline
 Mwait: stop CPU / HT until: 

 cacheline has been written, or 
 interrupt occurs

while (trigger[0] != value) {

   monitor (&trigger[0])

   if (trigger[0] != value) {

      mwait

   }

}

CPU 0 CPU 1

mwait

write to trigger

t
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