Windows 2000 -
The I/O Structure

»<Ausgewahlte Betriebssysteme”
Institut Betriebssysteme
Fakultat Informatik

Outline

Components of I/0O System
Plug'n‘Play Management
Power Management

|/O Data Structures

— File Object

— Driver Object

— Device Object
—IRPs / DPCs

Ausgewahlte Betriebssysteme -
Windows 2000 The I/O Structure

Components of the 1/0 System

Applications Winiaz
services
Wi USEF’,;;“P"“S Setup
service faraGer compenents \

User mode inffiles,
.cat files,
Kernel mode registry

/O system

WDM WMI PnP Power 1o
routines manager manager manager
Drivers

!

| HAL |
© Mark Russinovich & David Solomon (used with permission of authors) 3
Applications Winaz
services
A i ¢ A
1
WM USGF’,:E,OGQ Setup
service manager | | | components \
A A
User mode i iles,
.cat files,
Kernel mode registry
Y k 4 A
/O system
WM WMI PnP Power [Le}
routines manager manager manager
Drivers
| HAL | 4

© Mark Russinovich & David Solomon (used with permission of authors)

Overview

I/O Manager:

— Connects applications and system components to devices
— Defines infrastructure

Device Driver:

— Provides /O interface for particular device

PnP Manager:

— Guide allocation of HW resources

— Detect and respond to arrival and removal of devices
Power Manager:

— Guides system and device drivers through power-state
transitions

Ausgewahlte Betriebssysteme -
Windows 2000 The I/O Structure

Overview (2)

Windows Management Instrumentation (WMI):

— Support routines, which allow drivers to act as Windows
Driver Model (WDM) WMI providers

Registry:
— Stores description of basic hardware devices
INF files:

— Driver installation files
— Link hardware device and driver

HAL:

— Provides API to hide platform differences
— |s bus driver for driver-less devices on motherboard

Ausgewahlte Betriebssysteme -
Windows 2000 The I/O Structure

Overview (3)

« 1/Ois
performed on
virtual files

+ Alldatais
regarded as
stream of
bytes

» Typical flow of

I/0 request
(see picture)

picture © Mark Russinovich & David

User-mode API

}

110 system services APl (Nifxxx)

/O manager {/oxxx)

Driver support i

routines /o,
Ex, Ke. Mm,
Hal, FsRtl, | = | Kernel-mode
and 50 on) device drivers

!

HAL I/O access routines

}

/O ports and registers

Solomon (used with permission of authors)

User-mode API

}

/O system services APl (Nixxx)

}

Criver support
routines (o,
Ex, Ke, Mm,

and so on)

© Mark Russinovich & David Solomon
(used with permission of authors)

VO manager (/oxxx)

Hal, FsRl, | -fim—n

'

Kernel-mode
device drivers

|

HAL I/O access routines

'

VO ports and registers

I/O Manager

» 1/O system is packet-driven (I/O request packet —
IRP)

» Creates IRP and passes reference to driver and
disposes it after completion

» Driver receives IRP, performs specified action and
passes IRP back

» Supplies common code (e.g. Call another driver,
time-out support, ...)

» Uniform, modular interface of drivers allows 1/0O
manager to call driver without special knowledge
about driver

Ausgewahlte Betriebssysteme - 9
Windows 2000 The I/O Structure

Device Drivers

» Must conform to implementation guidelines

» Kernel mode device drivers

— File system drivers (direct file 1/0 requests to mass storage)
Windows 2000 drivers (mass storage, protocol stacks, ...)
Legacy drivers (NT driver w/o power mngt., PnP)

Win32 subsystem display drivers (translate device
independent graphic into device dependant)

— WDM drivers (adhere to WDM = W2K drivers + WMI)

» User mode device drivers
— Virtual device drivers: emulate 16-bit MS-DOS applications
— Win32 subsystem printer drivers

Ausgewahlte Betriebssysteme - 10
Windows 2000 The I/O Structure

WDM drivers

» Source code compatible between Windows 2000,
Windows 98, Windows Me, Windows XP

* Bus drivers:
— Manage logical or physical bus

— Responsible for detecting devices and reporting to PnP
manager

— Manages power settings of bus
* Function drivers:
— Exports operational interface of device to OS
Filter driver:
— Layer above or below function drivers

Ausgewahlte Betriebssysteme - 11
Windows 2000 The I/O Structure

Functional separation

» Class driver:
— implement I/O processing for specific class of
devices (disk, tape, ...)
» Port driver:

— implement 1/O processing for specific port type
(ScCsi, ...)

— Mostly implemented as kernel-mode library
* Miniport driver:

— Map generic I/O request to type of port into
adapter type

Ausgewahlte Betriebssysteme - 12
Windows 2000 The I/O Structure

Layered Device Drivers

* “normal” layered drivers connect to
lower and higher driver

* transparent drivers slip in between
lower-layer driver and its clients: has to
mimic behavior of lower driver

» virtual or logical device layers: expose
virtual or logical device objects (e.g.
named pipe)

Ausgewahlte Betriebssysteme - 13
Windows 2000 The I/O Structure

Layered Device Drivers (2)

« Call lower layer driver:
— retrieve stack location for next lower driver
— set up stack location (function code, parameters)

— associate completion routine with IRP to be
informed when lower driver completes

— send IRP to lower driver (is asynchronous call)
— mark IRP pending

» Complete request
» Create new IRPs to pass to lower drivers

Ausgewahlte Betriebssysteme - 14
Windows 2000 The I/O Structure

Layering example

Environment
subsystem
orDLL

User mode
@ NtWriteFile(file_handle. char buffer)

Kernel mode

System services

® Write data at specified
byte offset within a file

|
r——

@ Translate file-relative byte k
offset into a disk-relative
byte offset and call next

driver (via /O manager)
 r—

File system
driver

o
manager

Disk driver

—_—
@ Call driver to write data

at disk-relative byte offset

@ Translate disk-relative byte

offset inte physical locatien

-

and transfer data

© Mark Russinovich & David Solomon (used with permission of authors)

15

Environment
subsystem
or DLL

User mode

@ NtWriteFile(file_handle. char buffer)

Kernel mode

System services

File system
driver

@ Write data at specified

Volume

manager disk

e

lf=]

manager

byte offset within a file
e
‘-_—‘-—'J

@ Translate file-relative byte

offset into a disk-relative
byte offset and call next

driver (via 'O manager)

Example (2

@ Call next driver to write

data at disk-relative byte
offset

driver

Disk driver

R
Mr——— e

@ Translate disk-relative

L

byte offset into disk
number and offset, and

call next driver (via /O
manager)

—
(© Call next driver to write
data to disk 3 at disk-
relative byte offset

@ Translate disk-relative byte offset into physical
location on disk 3 and transfer data

© Mark Russinovich & David Solomon
(used with permission of authors)

Driver Object

Unique object for each loaded driver
Consist of set of routines

Routines process various stages of an 1/0
request e.g. load, unload, start I/O, etc.

Linked list of device object, serviced by driver

I/O Manager uses “back pointer” to find driver
for object

Driver removes device objects during unload

Ausgewahlte Betriebssysteme - 17
Windows 2000 The I/O Structure

Key Device Driver Routines

Initialization routine (when loading a driver)
Add-device routine (PnP)
Dispatch routines (process IRPs)

Start I/O routine (initiate data transfer via I/O
manager)

Interrupt service routine (ISR — executed
when interrupt occurs, queues DPC)

Interrupt-servicing DPC routine (DPC:
deferred procedure call = interrupt handling at
lower IRQL)

Ausgewahlte Betriebssysteme - 18
Windows 2000 The I/O Structure

Key Device Driver Routines

(2)
I/O completion routines (used to notify
stacked drivers of /0O completion)
Cancel 1/O routine (cancel IRP processing)
Unload routine (release system resources)

System shutdown notification routine (called
before system shuts down)

Error-logging routine (write errors to error-log)

Ausgewahlte Betriebssysteme - 19
Windows 2000 The I/O Structure

Outline

Components of I/0O System
Plug'n‘Play Management
Power Management

|/O Data Structures

— File Object

— Driver Object

— Device Object
—IRPs / DPCs

Ausgewahlte Betriebssysteme - 20
Windows 2000 The I/O Structure

10

Plug and Play Manager

« Automatically recognizes installed devices
(enumerates devices during boot process,
detect addition or removal)

Hardware resource allocation and

reallocation for devices (interrupts, DMA
addresses, etc.)

Load appropriate drivers:
— Determine driver and instruct I/O Manager to load

— If none found install driver via user-mode PnP
manager = “Found new Hardware”

Ausgewahlte Betriebssysteme - 21
Windows 2000 The I/O Structure

P‘n‘P Manager (2)

Implements mechanisms for
applications and drivers to detect
configuration changes (notification)

Support level depends on attached
devices and installed drivers

Ausgewahlte Betriebssysteme - 22
Windows 2000 The I/O Structure

11

Device PnP state transitions

Not started

start-device

v command

- Started

*

guery-remove
command

start-device query-stop
command ¥ command

Gy

stop
command
Y

Stopped

© Mark Russinovich & David Solomon (used with permission of authors)

surprise-remove
command

remaove

command

_’! Removed
remove
command

i

23

P‘n‘P state transitions

* Pending remove:
— Finish pending I/O requests
— Do not accept further I/O requests
— Power down device
» Surprise remove:
— Immediately stop running I/O requests
— Remove pending I/O requests

Ausgewahlte Betriebssysteme -

Windows 2000 The 1/O Structure

24

12

Outline

Components of I/O System
Plug'n‘Play Management
Power Management

|/O Data Structures

— File Object

— Driver Object

— Device Object

— IRPs / DPCs

Ausgewahlte Betriebssysteme - 25
Windows 2000 The I/O Structure

Power Management

Requires hardware that complies with
Advanced Configuration and Power Interface
(ACPI) specification

6 system power states

Power manager request driver to move to
other power state

If driver is busy it rejects request > system
stays at current power level

Ausgewahlte Betriebssysteme - 26
Windows 2000 The I/O Structure

13

Power Management (2)

« Multiple driver objects associated with one

device:

— Only one driver designated as device power-policy
owner

— Decides device’s power state based on system
power state

— Asks power manager to inform other drivers

— Thus power manager can control number of power

commands in system (e.g. number of devices
powering up)

Ausgewahlte Betriebssysteme - 27
Windows 2000 The I/O Structure

ACPI standard and Win2K

Defines various power levels for:

— System: SO (fully on) — S5 (fully off)

— Devices: DO (fully on) — D3 (fully off)

D1 and D2 are free to be defined by device

Driver reports supported power level to PnP
manager at load time

Bus driver provides mapping from system
power states to device power states

Ausgewahlte Betriebssysteme - 28
Windows 2000 The I/O Structure

14

Outline

Components of I/O System
Plug'n‘Play Management
Power Management

|/O Data Structures

— File Object

— Driver Object

— Device Object
—IRPs / DPCs

Ausgewahlte Betriebssysteme -
Windows 2000 The I/O Structure

29

File objects

Kernel-mode construct for handles to files or devices

Provide memory-based representation of resources

which can be read or written

Protected by security descriptor (including ACL)

Contains data unique to object handle (byte offset, ...)

Every time a new file handle is opened a new file

object is created

File object is unique to process, except:

— Child inherits from parent
— Duplicate handle to another process

Ausgewahlte Betriebssysteme -
Windows 2000 The I/O Structure

30

15

Win3s2 Win32
@ fp = fopen("D:\myfile.dat". r} application subsystem
run-(iime Winaz
DLL DLL
\ d .

@ CreateFile("D:\myfile.dat’, ...)

@ Fr‘etu:'n file handle

@ NtCreateFile("D:\myfile.dat". ...)

© Mark Russinovich & David Solomon \

(used with permission of authors) User mode

\ Kernel mode
4 H N
System services =

T
@ Create file object

T
S PTRPRRRRT T **(®) Return object handle,

= P10 manager
File systems

Security Local Virtual = i
. Device drivers
Object reference procedure memory
manager monitor S call facility manager Network drivers

Kernel

31

Device and Driver Objects

» Driver object:
— Represents an individual driver
— |I/P manager obtains address of dispatch routines from it

» Device object:

— Represents physical or logical device and its characteristics
(e.g. buffer alignment and location of device queue for IRPSs)

+ Driver creates device object when PnP manager
informs it

» Driver may export a name for device to allow
applications to open it

» One driver can have multiple device objects
» Device objects have back-link to driver

Ausgewahlte Betriebssysteme -
Windows 2000 The I/O Structure

32

16

Driver object

Function

ot ——-
Function > Write

code 2

Function Devi trol
code n ——- [evice control

——- Start 1O

——- | | oad

—— (0

—— Device Device Device Devices
; operated by
object object object = 3
this driver

(Disk) ({Disk {Disk
\ partition partition)

© Mark Russinovich & Dayéq 78707193102 (L{sgd W@Fhrpermission of authors) 33
IRP
« Header contains (fixed part):
—Type and size of request
—Synchronous or asynchronous
request
—Pointer to buffer for buffered 1/O
— State information
Ausgewahlte Betriebssysteme - 34

Windows 2000 The 1/O Structure

17

IRP (2)

« Stack location contains (one or more):

— Function code and parameters (identifies
driver‘s dispatch routine)

— Pointer to caller’s file object

— Used to find “answer point” for layered
drivers (I/O completion routine)

— Number of stack locations determined by
number of driver layers

Ausgewahlte Betriebssysteme - 35
Windows 2000 The I/O Structure

Environment
subsystem or
DLL

@ An application writes a
file to the printet, passing
a handle to the file object.

User mode

l Kernel mode

1/O system services

/O manager
© Mark Russinovich & David Solomon
(used with permission of authors)

@ The 110 manager creates an
IRP and initializes the first

stack location.
IRP header
5w WRITE
IRP stack parameters [
location

@ The 110 manager uses the

File Device Driver
> >
Q..
+

RS

driver object to locate the IRP ot
WRITE dispatch routine and . -
calls it, passing the IRP. o
o
¥
Dispatch | o 10 ISR pee
routine(s) routine
36

Device driver

IRP Buffer Management

* 1/O Manager perform three types of /O buffer
management:

— Buffered 1/0: /O manager allocates memory from
non-paged pool and copies data from/to user's
buffer

— Direct I/0O: user’s buffer is locked by I1/O manager
(DMA)

— Neither 1/O: I/0O manager does not do any buffer
management (driver might do it)

Driver registers type of buffer management in

device object

Ausgewahlte Betriebssysteme - 37
Windows 2000 The I/O Structure

IRP Buffer Management (2)

Drivers usually use buffered I/O if
smaller than one page (4KB)

copy operation = overhead of memory lock
File systems driver usually use Neither
I/O, because no buffer management
needed for copy from/to file system
cache

Ausgewahlte Betriebssysteme - 38
Windows 2000 The I/O Structure

19

/O Completion Ports

Introduced for servers with multiple
parallel threads

Threads wait for I/O packets to arrive at
port

System controls number of currently
running threads (should be the same as
number of processors)

Can be regarded as thread pool

Ausgewahlte Betriebssysteme - 39
Windows 2000 The I/O Structure

Driver Loading/Initialization

Enumeration-based loading: PnP manager
dynamically loads drivers for devices that bus
driver reports

Explicit loading: is guided by
HKLM\SYSTEM\CurrentControlSet\Services
Registry key ,Start” value:

— 0 — at boot time (loaded by System)

— 1 — after initialization (loaded by I/O manager)

— 2 — auto-start (after System started)

— 3 — demand-start (started when first called)

Ausgewahlte Betriebssysteme - 40
Windows 2000 The I/O Structure

20

Types of I/O

» Synchronous I/O:
— Application waits for 1/0O to complete
— I/O manager mimics synchronous behavior to
application
» Asynchronous 1/O:
— Allows application to continue
— APC is queued after completion

— Has to synchronize with completion of 1/0 using a
synchronization object

Ausgewahlte Betriebssysteme - 41
Windows 2000 The I/O Structure

Types of /O (2)

» Fast I/O:
— Special mechanism, that bypasses IRP
generation
— Entry points have to be registered in driver
object

— Used to signal completed I/O request

— E.g. used by File System to check if file is
in file cache

Ausgewahlte Betriebssysteme - 42
Windows 2000 The I/O Structure

Types of 1/0 (3)

» Mapped File I/0 and File Caching

— File (or parts of it) loaded into memory, and paging
mechanism does I/0O

— Mapped Files used by Cache Manager

e Scatter/Gather I/O

— Allow single read or write from multiple buffers in
memory to a contiguous area on disk

— Buffers have to be page aligned
— 1/0 must be aligned on device sector boundary

Ausgewahlte Betriebssysteme - 43
Windows 2000 The I/O Structure

I/Q to Single-Layered Driver

110 request passes
through subsystem DLL Environment
subsystem or
DLL

@ NtWriteFile(file_handle. ... @ Complete IRP and return
char_buffer) success or error status
User mode
\ } Kernel mode
Services
/0 manager
@ Create IRP and send
it to device driver 1
@ Handle interrupt and
return success or
error status
Device
driver
@ Transfer data
specified in IRP
)]) i ﬁ;ﬁ:ﬂormt /O and
© Mark Russinovich & David Solomon Interrup: 44
(used with permission of authors) =

22

Servicing an Interrupt

Device driver

Dispatch | ot 110 1SR DFC

routine(s) routine(s)

@ The ISR stops the device
interrupt and queues a DPC.
4.....(.......-
DPC queue

@ The kemner's interrupt
dispatcher transters control
tothe device’s service routine.

High

@ The device
interrupts for

Device IRQL -
service. ;’

-
'
DPC/dispatch
. . . APC
© Mark Russinovich & David Solomon Pasaive 45

(used with permission of authors)

1=1ell

Servicing an Interrupt (2)

Device driver

Dispatch ; DPC
routine(s) Start 110 ISR routine(s)

@ The DPC routine starts the next 11O
request in the device queus and
then completes interrupt servicing,

@ The interrupt dispatcher
transfers control to the
driver's DPC routine.

High

© Mark Russinovich & David Solomon
. . . Device IRQL

(used with permission of authors)
(D The IRQL drops, and
DPC processing oceurs. DRC/dispatch i

APC
Passive

IRQL

46

DPC gueue

23

Completing a

n I/O Request

1/O manager

@ The 110 manager queues an
APC to complete the 11O request
inthe caller's context.

@ The DPC routine calls the /O
manager to complete the
original 1O request.

IRP
APC Device driver
Dispatch Start /O ISR DPC.
routine(s) routine(s)
© Mark Russinovich & David Solomon
AP IRP (used with permission of authors)
n -)
APC APG 47

Thread's APC gueue

Completing an

/O Request (2)

Environment
subsystem or
DLL

User mode
Kernel mode
10 manager
APC @ The kernel-mode
routine APC routine writes

data to the thread’s
address space, sets

High the original file

© Mark Russinovich & David Solomon
(used with permission of authors)

handle to the
signaled state,
queues any user-
mode APCs for
execution, and

Device printer disposes of the IRP.

@ The next time the
callers thread
rung, an APC
interrupt occurs.

IRP IRP DPC/dispatch

@ The interrupt
dispatcher transfers
control to the 11O
manager’s APC
routine.

48

IRAL

24

@ Call 11O service

Environment
subsystem or
DLL

User mode

\

Kernel mode

\ @ Return 1O pending status

Sel

rvices

I/O manager

@ 'O manager creates IRP, fills
in first stack location, and calls
a file system driver.
© Return IO pending status
Current 2
L1 File
system
@ File system driver fills in a Ariver
second IRP stack location
and calls the disk driver.
@ Return YO pending status
CUITENT m—
Disk
driver
/O to L d Dri
@ Send IRP data to device (or O aye re rl Ve r
queue IRP) and return
© Mark Russinovich & David Solomon
(used with permission of authors) 49

Environment
subsystem or
DLL

@ During
returned to the caller's address space.

11O completion, results are

User mode

)

Services

File
system [
driver

Kernel mode

-] Completing Layered 1/O

@ The file system driver performs
any necessary cleanup work.

-—— Current

@ The disk driver services the interrupt

and then queues a DPC to complete
i @ the 110, which will “pop” the second
Disk = Current stack location off the IRP stack and

driver call the file system driver.
{ ® Device-level interrupt occurs
| © Mark Russinovich & David Solomon 50
| — (used with permission of authors)

25

Synchronization

 Drivers have to synchronize using
kernel-synchronization routines

» On single processor by raising IRQL
» On multiple processors also using spin

locks

Ausgewahlte Betriebssysteme - 51
Windows 2000 The I/O Structure

26

