
1

Agenda

❑ Programming Model

❑ Linux

❑ x86

❑ Architecture and respective adaption

❑ Memory

❑ Exceptions / Interrupts

❑ Multiprocessing

2

References

❑ Understanding the Linux Kernel,
 Bovet and Cesati

❑ Linux Device Drivers, Rubini

❑ 2.2.18

❑ lxr.linux.no

❑ http://os.inf.tu-dresden.de/dxr

3

Linux Kernel

4

IRQ - arch. Independent

❑ IRQ Handler

❑ irq_desc array

❑ irq_action for interrupt sharing

❑ Execution Modell

❑ Top Half

❑ Bottom Half

❑ Dynamic Management

5

IRQ - arch. Dependent

❑ CPU interrupt delivery

❑ Entering to

❑ Returning from

❑ Interrupt controller

❑ enabling/disabling

❑ Switch to kernel stack

6

Memory - arch. Independent

❑ Process

❑ VMA , logical segmentation

❑ 3 - level page table

❑ Physical Memory

❑ Page frame

❑ Memory areas

❑ Non-contiguous memory areas

7

Memory - arch. Dependent

❑ x86 - Architecture

❑ Segmentation

❑ Paging

❑ 2 - level

❑ 4k and 4M pages
❑ 2M for PAE....

8

Address generation

9

Address Generation (2)

10

Segment Descriptors

❑ 8-Byte representation in gdt or ldt

❑ Address generation

❑ 32-bit Base

❑ 20-bit Limit

❑ Protection

❑ 2-bit Privilege level

❑ Type

❑ 4-bit Type field

11

Global Descriptor Table

❑ Manipulation

❑ lgdt
❑ load global descriptor table

❑ sgdt
❑ store global descriptor table

struct pdesc{
 short pad;
 unsigned short limit;
 unsigned long linear_base;
};
struct pdesc pd;
asm volatile("sgdt %0"
 : :"m" ((pd)->limit));

12

Assembly (off thread)

❑ AT&T syntax

❑ operation src, dest (e.g. movl $0xf5, %eax)

❑ 7(+1) registers (eax, edx, ecx, ebx, ebp, esi ,edi, esp)

❑ 2-address instructions

❑ GCC inlining
 asm volatile

 ("movl %%ebp, %0\n"
 "movl %%esp, %1\n"
 :"=q"(_ebp),"=q"(_esp));

13

Segment Selectors
❑ Part of logical address

❑ Hold in segment register

❑ 13-bit index in gdt or ldt

❑ TI Table indicator (gdt or ldt)

❑ RPL requested privilege level

❑ RPL of cs denotes the current privelege level

❑ Manipulation
❑ mov %ax, %ds

❑ jmp $0x10, $0x800000

14

Logical Address

❑ Logical address

❑ Segment identifier (16 bit)

❑ Implicit in segment registers

❑ Explicit by prefix

❑ Offset in segment (32 bit)

❑ Part of the assembly instruction

15

Segment registers

❑ Implicitly used

❑ Invisible part caches descriptor

❑ Segment registers for fast access

❑ cs current privilege level

❑ ds data

❑ ss stack

❑ es, fs, gs extra addressing

16

Segment Types

❑ Code segment

❑ Executable code

❑ Data segment

❑ Operands

❑ Implicitly used movl 0xc0080000, %eax

❑ Prefix applicable gs; movl 0xc0080000, %eax

❑ Task state segment

❑ Local descriptor table

17

x86 Memory Addressing

❑ Protected mode

❑ 32-bit addressing

❑ Logical address

❑ Linear address

❑ Physical addess (optional)

❑ Real mode
❑ Compatibility

❑ Virtual Mode x86

18

Gates

❑ Entry points

❑ Privilege supervision

❑ IDT interrupt descriptor table

 GDT IDT
Call Gate X

Interrupt Gate X

Trap Gate X

Task Gate X X

Segments X

19

Segment Terminology (x86)

20

Linux Segments

Code Segment Data Segment

User Mode (DPL 3)

Kernel Mode (DPL 0)

User Code User Data

Kernel DataKernel Code

 Kernel code segment = Application segment with kernel privilege

Logical abstraction of the processor address space.

21

Segments in Linux

❑ x86 segments

❑ Intel originally introduced segmentation without
paging

❑ used in a limited way were inevitable in Linux

❑ Paging preferred for address space seperation
❑ Easier memory management with shared linear addresses

❑ Segmentation is not portable

❑ Don't confuse with VMA's

22

Linux Segments (2)

❑ Segments overlap totally

❑ Flat 32 bit address space

❑ Code and Data segment for kernel and user

❑ Shared by all processes

23

Linux System Segments

❑ TSS Task State Segment per process (2.2)

❑ DPL 0, no user access

❑ Important for user -> kernel transition

❑ Default LDT, shared by all processes

❑ One entry (null selector) - empty

❑ Filled when needed (e.g. windows emulation)

24

Segments and Processes

❑ 2 segments per process

❑ 4 main segment descriptors

❑ 4 segments for APM

❑ 4 left unused

❑ 8192 entries in GDT

❑ NR_TASKS <= (8192- 12) / 2

❑ 2.4 will overcome this limitations

25

Paging

❑ Translation from linear into physical addresses

❑ Privilege check

❑ Access type check

❑ Page fault exception on violation

❑ Enabled by bit 31 (PG) in cr0

26

Paging

❑ 2 Level paging

❑ 4KB page size (12 bit offset)

❑ 10bit page directory

❑ 10bit page table

❑ PG flag in cr0

❑ pdbr Page Directory Base register (cr3)

27

Extended Paging

❑ Extended paging

❑ One Level paging

❑ starting with Pentium

❑ 4MB page size, 10bit page directory

❑ Saves TLB entries

❑ Enabled through PSE (page size extension) in cr4

❑ Page size flag in page directory entry

❑ Coexists with 4kb pages

28

Paging visualized

29

Paging in Linux

❑ 3 level paging modell

❑ feasible for 64 bit architectures

❑ 43 bits used on Alpha

❑ Page middle directories are eliminated on x86

❑ macro magic

❑ Each process has its own paging structures

❑ address space protection

❑ cr3 saved in TSS during task switch

30

Arch. dependent paging

❑ include/asm-i386/page.h
❑ pte_t, pmd_t, pgd_t

❑ include/asm-i386/pgtable.h
❑ pte_read, pte_write

❑ mm/memory.c
❑ pte_alloc, pte_free

31

Interrupts and Exceptions

❑ Event that alters the sequence of instructions
executed by a processor

❑ Synchronous interrupts

❑ system calls

❑ page faults

❑ privilege violations

❑ Exception in Intel terminology

❑ Asynchronous interrupts

❑ Generated by hardware devices

32

Interrupt Types

❑ Maskable interrupts

❑ Sent to the INTR pin of the processor

❑ Disabled by clearing the IF flag of the eflags register

❑ cli / sti

❑ Nonmaskable interrupts

❑ Sent to the NMI pin of the processor

❑ Nothing can prevent them

❑ Only for critical events

33

Exception Types
❑ Processor detected exceptions

❑ Faults
❑ eip (instruction pointer) of the instruction that caused the

exception is saved on stack

❑ e.g. page faults, general protection fault

❑ Traps
❑ eip of the instrunction that should be executed next to the

instruction that caused the trap is saved

❑ e.g. debug exceptions

❑ Aborts
❑ Serious error condition

❑ No feasible eip available

❑ e.g. double faults

34

Exception Types (2)

❑ Programmed exceptions

❑ encoded in the instruction stream

❑ also called software interrupts

❑ handled as traps (eip of the following instr. is saved)

❑ int

❑ int3

❑ into (check for overflow)

❑ bound (check address on bound)

❑ Used to implement system calls

35

Vectors

❑ each interrupt or exception has a 8bit identifier

❑ fixed for exceptions and nmi

❑ Maskable interrupts can be assigned to different
vectors (programming the PIC)

❑ 0-31 exceptions and nmi

❑ 32-47 maskable interrupts (IRQ) (2.2)

❑ 48-255 for software interrupts

❑ 0x80 system call entry

36

IRQ

❑ 16 external interrupt sources in AT specification

❑ Programmable Interrupt Controler maps irqs to
vectors and prioritizes them

❑ 8 input pins per PIC

❑ 2 PICs cascaded

37

PIC

38

Exceptions and Signals

Exception Exception Handler Signal
0 „divide error divide_error() SIGFPE
3 Breakpoint Int3() SIGTRAP
6 Invalid opcode invalid_op() SIGILL
13 Gerneral protection fault general_protection() SIGSEGV
14 Page fault page_fault() SIGSEGV

39

Interrupt descriptor table

❑ Associates each vector with the address of the
corresponding handler

❑ idtr register in cpu

❑ lidt/sidt used for manipulation

❑ Entry format similar to gdt and ldt

40

IDT entries

❑ Only three descriptor types possible

❑ Task gate descriptor

❑ Interrupt gate descriptor

❑ Trap gate descriptor

❑ Descriptor content

❑ Segment selector (tss for task gates, code otherwise)

❑ offset in segment (except for task gates)

❑ privilege level

41

Hardware Handling

❑ Prior execution of each instruction, check on if an
interrupt or exception has occured

❑ If so:

(1) Determine the vector associated with the event

(2) Read the ith entry from the idt (designated by idtr)
(we assume an interrupt or task gate)

(3) Read the descriptor from the gdt identified by the
selector of the gate

(4) Check privilege level

42

Hardware Handling (2)

(5) Check if a change in privilege level has taken place, if
so:

(a) Read the tr register to access the TSS of the current process

(b) Load the ss and esp registers with the proper values

(c) Save the old values of esp and ss in the new stack

(6) If a fault has occured, adjust eip and cs to old values

(7) Save eflags, cs and eip in the stack

(8) Push error code if available

(9) Load cs and eip with the values from the gate
descriptor

43

Exception Stack

44

Returning from interrupts

❑ After interrupt processing relinquish control with
iret instruction

(1) Load cs, eip and eflags from stack. An error code
needs to be removed before.

(2) Check if the CPL has changed. If not, resume
execution in old context.

(3) Load ss and esp from the stack.

(4) Clear ds, es, fs and gs if they hold selectors for higher
privilegded segments.

45

Interrupt Infrastructure

46

SMP Basics

❑ Shared memory

❑ Hardware cache synchronization

❑ consistency (MESI protocol)

❑ Atomic operation

❑ Symmetry with respect to I/O-interactions

❑ Compatibility with uni-processor systems

❑ Interaction between cpus

47

SMP memory map

48

Local APIC

❑ Memory mapped control registers

❑ Processing local interrupts

❑ Interaction via the APIC - bus

❑ High precision timer

49

APIC schematics

