Ausgewdhlte Betriebssysteme

What is a process

¢ Fundamental concept for multiprogramming
* Instance of program in execution
- Sequential control flow
¢ Entity to which system resources are allocated

- Might be shared among processes (threads)

1
sute
ty_struet
lags | e
need_resehed 1ty assosiated with the process
counter i
priority
nest_task B struct
prev_task |1
next_run | currem directory
prev_run
optr
h:m Bles_struct
pointers 1o file deseriptars
ny
wm_struct
s
point
s
files sional_struet
mm % I
signal_lock | signals reveived
sig T :

Process state

* Field in task_struct

¢ Currently available
- TASK_RUNNING - executing or ready for execution
- TASK_INTERRUPTIBLE - suspended
- TASK_UNINTERRUPTIBLE - suspend, no signals

- TASK_STOPPED - execution has been externally
stopped

- TASK_ZOMBIE - terminated

Process descriptor handling

* Processes are dynamic entities
- Dynamic allocation

- Half of all physical memory might be used for PCB
° max_threads = nenpages / (THREAD S ZE/ PAGE SI ZE) / 2;

. 1proc/ sys/ kernel /t hr eads- nax

¢ Two different data structures per process

- Process descriptor
- Kernel stack

task_union

-“-‘1'(‘;‘;'6'1‘;_1;8'6'- 0x0154bfff

movl $0xffffe000, %ecx
andl $%esp, %ecx

7
/
i
{
:
|
¥
i
{
[
H
i
i
i
i
¢

movl %ecx, p SESP— 0x015£a878
[i S g | 0x015fa3ch

process descripior
current Mmacro ——s o0 i 0x015fa000

uni on task_union {
struct task_struct task;
unsi gned | ong stack

[2048] ;

Process List

¢ Linux keeps list of processes for different
purposses

- Special properties (e.g. runnable)
* Process List

- All processes in the system

Circular double linked list
- SET_LINKS/REMOVE_LINKS macros ensure consistency

next_task, prev_task field in task_struct

prev_task l next, task prev_task next_task prev,_task next_task

s s N S I

Doubly linked lists (implementation)
¢ Often used
¢ Reusable implementation

- Access functions and macros

:\:I:P
eyt
E xt p - ¢ | é i
struct iist_head \ \ } |
4 N \
~ - el P }‘\
~)
r §
(|
ol 314w hand S i[\

Effects ofthe 11s_enty macro

Run queue

¢ Scheduling needs only to consider runnable
processes

¢ Linked through struct list_head run_li st

¢ Select most viable process to run next

| schedul e

|do_sof tirq // manages post-|RQ work
|for each task

| cal cul ate counter
| prepare_to_switch // does anythi ng
|switch_mm// change Memory context (change CRB value)
|swtch_to (assenbier)

\VE ESP

| RESTORE fut ure_ESP
[4

| SAVE B

| push future_B1 P *** push parameter as ve did a cal|
|imp _switch_to (it does some TSS work)
| _switch_to()

|ret *** ret fromcal| using future_EIP in place of call address
new_task

9

Process identification

Address of PCB is unique in kernel address space
PID used at user level
Process list traversal to slow

Hash table for fast lookup

PCB linking

10

intt_task v - v -
next_task «[next task M next task next_task next_task
prev_task prev_task prev_task Prav task —prev_task
runlist -2 runlist |«
widhash_nex idhash_next
.4»d1ash pprev A daash_pprev
i
pidhash

task list || task list [« task list

runguede_heac }’af
pid —— ‘ flags L ‘ flags J
lock | sk task

11

Process management
Process queue
TASK_RUNNABLE
- Run queue
TASK_STOPPED, TASK_ZOMBIE
- Not grouped
TASK_(UN)INTERRUPTIBLE

- Subdivided into many classes, each of which
correspondends to a specific event

- State alone does not provide enough information

- Specific lists of processes called wait queues

12

Wait Queues

¢ Define a new wait queue if needed
- DECLARE_WAI T_QUEUE_HEAL . ..)

¢ Functions

- add_wai t _queue(..),

- sl eep_on
- wake_up

remove_wai t _queue(. ..

13

Wait queue structure

J “‘_1 } J I ‘ Dwait queue pointer

-
=}
g
&

-

=
2
g
g

|:| task field
. next field

P, P,

Process creation

e fork syscall

- Copy process

- ldependent new execution context

¢ cl one syscall

- Share resources with the new context

- lightweight

14

15

Forking

I'sys_fork
|do_fork
Tall oc_task_st ruct
| __get_free_pages
| p->state = TASK_UNI NTERRUPTI BLE
| copy_f1 ags
|p->pid = get_pid
| copy_files
| copy_fs
| copy_si ghand
| copy_nm // shoul d nanage CopyOnWite (I part)
| all ocat e_nm
| i ni t
Ipgd_al loc -> get_pgd_fast
| get_pgd_s! ow
| dup_rmap
| copy_page_range
| ptep_set_wr protect
|clear_bit // set page to read-only
| copy_segments // For LDT
| copy_thread
| chi | dregs->eax = 0
| p->thread. esp = childregs // child fork returns 0
| p->thread.eip = ret_fromfork // child starts fromfork exit
|retval = p->pid // parent fork returns child pid
| SET_LINKS // insertion of task into the list pointers
| nr_threads++ // G obal variable
| vake_up_process(p) // Now ve can wake up just created child
|return retval

16

Process relationship

Kernel threads
¢ Critical tasks implemented as intermittently running
processes
- Flushing disk caches
- Swapping out unused page frames
¢ Regular scheduling
- No unbound kernel activities
¢ Special characteristics
- Mostly only one single kernel function

- No user mode part

17

18

Kernel thread creation

int kernel _thread(int (*fn)(void *), void * arg, unsigned | ong flags)
long retval, do;

asm_ _volatile_(
“movl 98esp, Wesi \ nit"
“int $0xg0\n\t" I+ Linux/i 386 systemcall */
“cnpl 98sp, Wesi\nit® /* child or parent? */
“je 1\t I+ parent - junp */
/* Load the argument into eax, and push it. That way, it does
* not matter whether the called function is conpiled with
* -megparmor not. */
“movl 9, Weax\n\t "
“pushl 9%ax\nt"

“call *9g\n\t" % call fn*/
“movl 98, 99\ n t* I*exit */
“int $0x80\n"

R

=g’ (retval), "=8s' (do)

0" (_NRclone), “i* (_NRexit),

“re (arg), “r* (fn),
b (flags | CLOEWN
: “memory”);

return retval ;

Kernel threads in action

init,1
|-(bdflush,6)
|-(keventd,2)
[-(khubd,53)
|-(kjournald,10)
|-(kjournald,89)
|-(kjournald,90)
|-(kjournald,1969)
|-(ksoftirgd_CPU0,4)
-(kswapd.5)
[-(kupdated,7)
[-(lockd,19499)

19

20

Context switch Context switch (2)

¢ For the kernel programmer context switching looks

¢ Transfer control between contexts like a ordinary function call

- Save state of current context L process A process &
¢ Interleaved activities of

- Load state of next context and resume execution other processes are

schedule

switch_to

¢ Execution context transparent

H - id hedul i d return from schedule

- Architectural (user level) cpu state void schedul e(voi d) {

/* calc next process */ schedule
switch_to

- Virtual memory

return from switch_to

-sw'tch_to(..., next, ...)

return from schedule

——— active process

21 22

Switch 1 Switch (2)

kernel kernel
code process i process 2 code process 1 process 2

[task -tftask rilkask | st

:|lask kemel code process 1 process 2

swilch to:

ol

i
stack stack | | stack

H
H
|
H
stack !
E %oesi, %edi. %oebp = stack stack
|
H
i
1
1

%besp = prev->thread.esp
next->thread.esp = %esp.
L1 = prev->thread.eip
next->thread.eip = stack

____________________________ : éip
o CPU CPU _‘Ill;:“s(a‘:kaizle“sﬁhf e %ebr CPU

23 24

Switch (3)

Kernel code

switch _to:

Tl

%esi, %eedi, %ebp = stack
%esp = prev->thread.esp

next->thread.esp = %esp
L1 = prev->thread.eip
next->thread.eip = stack
Jumpto switch to

L1: stack=%esi, %edi. %abr

process 1 process 2

ask

7T
“es!

stack

Switch (4)

kernel code process 1 process 2

fhask

swilch to:

et

stack

%esi, %edi, %ebp = stack
%esp = prev->thread.esp

nexi->thread.esp = %esp

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

L1: stack=%esi. %eedi. %ebl

25

26

Switch(5)

kernel code

swilch to:

ret

%eesi, %edi, %ebp = stack
%esp = prev->thread.esp
next->thread.esp = %esp
L1 = prev->thread.eip

nexi->thread.eip = stack
Jumpto switch to

L1: stack=%esi. %edi. %ebl

process 1 process 2
ask riftask
g
vied
e

stack stack

Switch (6)

Kernel code process 1 process 2

switch _to:

el

%esi, %edi. %ebp = stack
%esp = prev->thread.esp
next->thread.esp = %esp
L1 = prev->thread.eip
next->thread.eip = stack
Jumpto switch to

L1: stack=%esi, %edi. %ebr

27

28

Switch (7)

kenel code process 1 process 2
ask
swilch to:
ret BT
“od
ol
Yoesi, %edi, %ebp = stack ack

%esp = prev->thread.esp
next->thread.esp = %esp
L1 = prev->thread.eip
next->thread.eip = stack
[Jump to__swilch o

L1: slacka%esif %eedi, %sbr

Switch (8)

kernel Gode process 1 process 2

switch to:

ol

2eesi, %eedi, %eebp = stack
2eesp = prev->thread.esp
next->thread.esp = %esp
L1 = prev->thread.eip
next->thread eip = stack

Jumpto switch to
L1: stack=%esi. %edi. %eb]

29

30

Switch (9)

kernel code process 1 process 2
-idftask
il

switch to:

Tt

%esi, %edi, %ebp = stack
%esp = prev->thread.esp
next->thread.esp = %esp
L1 = prev->thread.eip
next->thread.eip = stack
Jumpto switch 1o b

L1: stack=%esi, %edi. %ebr

stack

Switch (10)

kerel code process 2
task
il
swilch to:
ot
%oesi, %edi. %ebp = stack STk

%esp — prev->thread.esp
next->thread.esp — %esp

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

L1: stack=%esi. %edi. %ebl

31

32

Process switch - Code

#define switch_to(prev, next,last) do { \

unsi gned |ong esi, edi; \

asm vol atile("pushfl\n\t" \
"pushl 9%ebp\n\t" \
"nmovl %esp, O\ n\t" /* save ESP */ \
"movl %, Wesp\n\t” /* restore ESP */ \
"movl $1f,%d\n\t" /* save EIP */ \
"pushl 96\ n\t" /* restore EIP */ \
"jnmp __switch_to\n" \
"Lt \
"popl %ebp\n\t" \
"popfl”

\
:"=nm'" (prev->thread.esp),"=n" (prev->thread.eip),

"=a" (last),"=S" (esi),"=D" (edi) \
;"' (next->thread.esp),"n' (next->thread.eip), \
"2" (prev), "d" (next)); \
} while (0)

33

Threads

¢ LinuxThreads is the standard POSIX thread library for
Linux (1996)

¢ Based on principles of kernels of that time

- Cheap kernel thread switches

Missing thread aware ABI

* Thread local data with fixed relation to stack

Management thread necessary for creation etc.

No adequate kernel synchronization support
¢ Signals abused
¢ Kernel is not aware of threads

LinuxThreads problems
Signal handling is not POSIX compliant
Extra management thread
ps shows all threads in a process, procfs littered

Core dumps do not contain the stack and machine
registers for all threads

get pi d() returns different results for each thread

Threads cannot wait for threads created by another
thread

Parent-child relationship instead of being peers

Threads do not share user and group ids

- Processes cooperate,

35

Kernel support added

TLS (thread local storage) support in the kernel
* d one syscall extensions

- Flag indicates that thread is created

POSIX signal handling in the kernel
- SIGSTOP forwarded to all threads of a process
e exit intwo flavors for thread and process

User level synchronization support

- futex (fast user mutex)

36

Native POSIX thread library (NPTL)

Better POSIX compliance

Low startup/teardown costs

Scalability

- Enormous (100000) number of threads supported
NUMA support

- Node aware memory allocation

Integration with C++

37

