
1

Ausgewählte Betriebssysteme

Processes and Threads

2

What is a process

● Fundamental concept for multiprogramming

● Instance of program in execution

– Sequential control flow

● Entity to which system resources are allocated

– Might be shared among processes (threads)

3

task_struct

4

Process state

● Field in task_struct

● Currently available

– TASK_RUNNING - executing or ready for execution

– TASK_INTERRUPTIBLE - suspended

– TASK_UNINTERRUPTIBLE - suspend, no signals

– TASK_STOPPED - execution has been externally
stopped

– TASK_ZOMBIE - terminated

5

● Processes are dynamic entities

– Dynamic allocation

– Half of all physical memory might be used for PCB
●

●

● Two different data structures per process

– Process descriptor

– Kernel stack

Process descriptor handling

 max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 2;

/proc/sys/kernel/threads-max

6

task_union

union task_union {
struct task_struct task;
unsigned long stack

[2048];
};

union task_union {
struct task_struct task;
unsigned long stack

[2048];
};

movl $0xffffe000, %ecx
andl $%esp, %ecx
movl %ecx, p

7

Process List
● Linux keeps list of processes for different

purposses

– Special properties (e.g. runnable)

● Process List

– All processes in the system

– Circular double linked list

– SET_LINKS/REMOVE_LINKS macros ensure consistency

– next_task, prev_task field in task_struct

8

Doubly linked lists (implementation)
● Often used

● Reusable implementation

– Access functions and macros

9

Run queue

● Scheduling needs only to consider runnable
processes

● Linked through struct list_head run_list

● Select most viable process to run next
|schedule
 |do_softirq // manages post-IRQ work
 |for each task
 |calculate counter
 |prepare_to__switch // does anything
 |switch_mm // change Memory context (change CR3 value)
 |switch_to (assembler)
 |SAVE ESP
 |RESTORE future_ESP
 |SAVE EIP
 |push future_EIP *** push parameter as we did a call
 |jmp __switch_to (it does some TSS work)
 |__switch_to()
 ..
 |ret *** ret from call using future_EIP in place of call address
 new_task

10

Process identification

● Address of PCB is unique in kernel address space

● PID used at user level

● Process list traversal to slow

● Hash table for fast lookup

11

PCB linking

12

Process management
● Process queue

● TASK_RUNNABLE

– Run queue

● TASK_STOPPED, TASK_ZOMBIE

– Not grouped

● TASK_(UN)INTERRUPTIBLE

– Subdivided into many classes, each of which
correspondends to a specific event

– State alone does not provide enough information

– Specific lists of processes called wait queues

13

Wait Queues

● Define a new wait queue if needed
– DECLARE_WAIT_QUEUE_HEAD(...)

● Functions
– add_wait_queue(..), remove_wait_queue(...)

– sleep_on

– wake_up

14

Wait queue structure

15

Process creation

● fork syscall

– Copy process

– Idependent new execution context

● clone syscall

– Share resources with the new context

– lightweight

16

Forking

|sys_fork
 |do_fork
 |alloc_task_struct
 |__get_free_pages
 |p->state = TASK_UNINTERRUPTIBLE
 |copy_flags
 |p->pid = get_pid
 |copy_files
 |copy_fs
 |copy_sighand
 |copy_mm // should manage CopyOnWrite (I part)
 |allocate_mm
 |mm_init
 |pgd_alloc -> get_pgd_fast
 |get_pgd_slow
 |dup_mmap
 |copy_page_range
 |ptep_set_wrprotect
 |clear_bit // set page to read-only
 |copy_segments // For LDT
 |copy_thread
 |childregs->eax = 0
 |p->thread.esp = childregs // child fork returns 0
 |p->thread.eip = ret_from_fork // child starts from fork exit
 |retval = p->pid // parent fork returns child pid
 |SET_LINKS // insertion of task into the list pointers
 |nr_threads++ // Global variable
 |wake_up_process(p) // Now we can wake up just created child
 |return retval

17

Process relationship

18

Kernel threads
● Critical tasks implemented as intermittently running

processes

– Flushing disk caches

– Swapping out unused page frames

● Regular scheduling

– No unbound kernel activities

● Special characteristics

– Mostly only one single kernel function

– No user mode part

19

Kernel thread creation

int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
 long retval, d0;

 __asm__ __volatile__(
 "movl %%esp,%%esi\n\t"
 "int $0x80\n\t" /* Linux/i386 system call */
 "cmpl %%esp,%%esi\n\t" /* child or parent? */
 "je 1f\n\t" /* parent - jump */
 /* Load the argument into eax, and push it. That way, it does
 * not matter whether the called function is compiled with
 * -mregparm or not. */
 "movl %4,%%eax\n\t"
 "pushl %%eax\n\t"
 "call *%5\n\t" /* call fn */
 "movl %3,%0\n\t" /* exit */
 "int $0x80\n"
 "1:\t"
 :"=&a" (retval), "=&S" (d0)
 :"0" (__NR_clone), "i" (__NR_exit),
 "r" (arg), "r" (fn),
 "b" (flags | CLONE_VM)
 : "memory");
 return retval;
}

20

Kernel threads in action

init,1
 |-(bdflush,6)
 |-(keventd,2)
 |-(khubd,53)
 |-(kjournald,10)
 |-(kjournald,89)
 |-(kjournald,90)
 |-(kjournald,1969)
 |-(ksoftirqd_CPU0,4)
 |-(kswapd,5)
 |-(kupdated,7)
 |-(lockd,19499)

21

Context switch

● Transfer control between contexts

– Save state of current context

– Load state of next context and resume execution

● Execution context

– Architectural (user level) cpu state

– Virtual memory

22

Context switch (2)
● For the kernel programmer context switching looks

like a ordinary function call.

● Interleaved activities of
other processes are
transparent

● void schedule(void){
 .
 /* calc next process */
 .
 switch_to(..., next, ...)
 .
 .
}

23

Switch 1

24

Switch (2)

25

Switch (3)

26

Switch (4)

27

Switch(5)

28

Switch (6)

29

Switch (7)

30

Switch (8)

31

Switch (9)

32

Switch (10)

33

Process switch Code

#define switch_to(prev,next,last) do { \
unsigned long esi,edi; \
asm volatile("pushfl\n\t" \

 "pushl %%ebp\n\t" \
 "movl %%esp,%0\n\t" /* save ESP */ \
 "movl %5,%%esp\n\t" /* restore ESP */ \
 "movl $1f,%1\n\t" /* save EIP */ \
 "pushl %6\n\t" /* restore EIP */ \
 "jmp __switch_to\n" \
 "1:\t" \
 "popl %%ebp\n\t" \
 "popfl" \
 :"=m" (prev->thread.esp),"=m" (prev->thread.eip),

\
 "=a" (last),"=S" (esi),"=D" (edi) \
 :"m" (next->thread.esp),"m" (next->thread.eip), \
 "2" (prev), "d" (next)); \

} while (0)

34

Threads
● LinuxThreads is the standard POSIX thread library for

Linux (1996)

● Based on principles of kernels of that time

– Cheap kernel thread switches

– Missing thread aware ABI

● Thread local data with fixed relation to stack

– Management thread necessary for creation etc.

– No adequate kernel synchronization support

● Signals abused

● Kernel is not aware of threads

– Processes cooperate

35

LinuxThreads problems
● Signal handling is not POSIX compliant

● Extra management thread

● ps shows all threads in a process, procfs littered

● Core dumps do not contain the stack and machine
registers for all threads

● getpid() returns different results for each thread

● Threads cannot wait for threads created by another
thread

● Parent-child relationship instead of being peers

● Threads do not share user and group ids

36

Kernel support added

● TLS (thread local storage) support in the kernel

● Clone syscall extensions

– Flag indicates that thread is created

● POSIX signal handling in the kernel

– SIGSTOP forwarded to all threads of a process

● exit in two flavors for thread and process

● User level synchronization support

– futex (fast user mutex)

37

Native POSIX thread library (NPTL)

● Better POSIX compliance

● Low startup/teardown costs

● Scalability

– Enormous (100000) number of threads supported

● NUMA support

– Node aware memory allocation

● Integration with C++

