Ausgewahlte Betriebssysteme

Processes and Threads

What is a process

* Fundamental concept for multiprogramming

* |Instance of program in execution
- Sequential control flow
* Entity to which system resources are allocated

- Might be shared among processes (threads)

siate

Flaps
need_resched
codnter

priogity

next task
priv_task
XL
PIey _run

P
P_pprE

thy

155

ts

tiles

mim
sipnal_lock

5L

task struct

L e e e e e e e e e e e e e e e e e e e g

i e s s e — — —— — — — ——— — —

By _siruct

Fo_sqruet

Fifes_soreect

FEEILT__SECEECE

sipnal_struct

Hy assoclited with the process

crerent directory

pointers 1o file descriptors

podneers 1o memory area descriptars

stznals recebved

Process state

* Field in task_struct

* Currently available

- TASK RUNNING - executing or ready for execution
- TASK _INTERRUPTIBLE - suspended
- TASK_UNINTERRUPTIBLE - suspend, no signals

- TASK _STOPPED - execution has been externally
stopped

- TASK _ZOMBIE - terminated

Process descriptor handling

* Processes are dynamic entities

- Dynamic allocation

- Half of all physical memory might be used for PCB
° max_t hreads = nmenpages / (THREAD Sl ZE/ PAGE SI ZE) | 2;

° [proc/ sys/ ker nel / t hr eads- max

* Two different data structures per process

- Process descriptor

- Kernel stack

task union

I ————————— T T —— - -

el e Y| OxO1Soff

movl $Oxffffe000, %ecx
andl $%esp, %ecx
novl %ecx, p

I P e

Zesp —»m RN | 0x015fa8 78

| 0x015fa3cb

|| 0x015£2000

CUurrent macro

uni on task _union {
struct task struct task;
unsi gned | ong stack

[2048] ;

s

Process List

* Linux keeps list of processes for different
purposses

- Special properties (e.g. runnable)
* Process List

- All processes in the system
— Circular double linked list
- SET_LINKS/REMOVE_LINKS macros ensure consistency

- next_task, prev_task field in task_struct

prev_task l next_task prev_task nexi task prev _task next task

| init_task| T a5 T e "\

Doubly linked lists (implementation)

e Often used

* Reusable implementation

— Access functions and macros

A ﬂmw sr

struct list_head

L i T o

ist w-item list
T LT
i .
7 !

A custom structure { i :
including a 1ist_head M - | ~

Effects of the 1ist_entry Macio

Run queue

* Scheduling needs only to consider runnable
processes

* Linked through struct Iist_head run_li st

* Select most viable process to run next

| schedul e
| do_softirq // manages post -1 RQ work
| for each task
| cal cul ate counter
| prepare_to__switch // does anything
| switch_mm// change Menory context (change CR3 val ue)
| switch_to (assenbl er)
| SAVE ESP
| RESTORE future_ ESP
| SAVE EI P
| push future EIP *** push parameter as we did a call
|[jnmp _switch_to (it does some TSS worKk)
| _switch_to()

|ret *** ret fromcall using future_EIP in place of call address
new t ask

Process identification

Address of PCB is unique in kernel address space
PID used at user level
Process list traversal to slow

Hash table for fast lookup

10

PCB linking

init task + - - r v -
next task r next task nexi task next task next task
prev_task prev task prev task Prev task prev task
runlist runlist
pidhash nex! idhash_nexi
gidhash ppre ptdhash_pprey
|
pidhash ‘ runqueue_head f@
pid ———— flags flags
lock iask fask
fask list e task list re—m fask list

11

Process management

* Process queue
 TASK RUNNABLE

- Run queue

 TASK STOPPED, TASK _ZOMBIE
- Not grouped

e TASK (UN)INTERRUPTIBLE

- Subdivided into many classes, each of which
correspondends to a specific event

- State alone does not provide enough information

- Specific lists of processes called wait queues

12

Wait Queues

* Define a new walit gqueue if needed
- DECLARE_WAI T_QUEUE_HEAID. . .)

e Functions

- add _wait_queue(..), renove _wait_queue(...)
- sl eep_on
- wake_up

13

Wait queue structure

sl walt quene pointer

i dummy pointer

rask field

next field

Process creation

* fork syscall

- Copy process
- |dependent new execution context
* cl one syscall

— Share resources with the new context

- lightweight

15

Forking

| sys_fork
| do_fork
| al oc_task_struct
| __get _free_pages
| p->state = TASK_UNI NTERRUPTI BLE

| copy_fl ags

| p->pid = get_pid
| copy_files

| copy_fs

| copy_si ghand
| copy_mm // shoul d manage CopyOnWite (I part)
| al | ocate_mm

[Mminit
| pogd_al l oc -> get _pgd_fast
| get _pgd_sl ow
| dup_mmap

| copy_page_r ange
| pt ep_set wrprotect
|clear _bit // set page to read-only

| copy_segnents // For LDT
| copy_t hread

| childregs->eax = 0

| p->thread. esp = childregs // child fork returns 0O

| p->thread.eip = ret_fromfork // child starts fromfork exit
|retval = p->pid // parent fork returns child pid
| SET_LINKS // insertion of task into the list pointers
| nr_threads++ // G obal variable
| wake_up_process(p) // Now we can wake up just created child
| return retva

16

Process relationship

17

Kernel threads

* Critical tasks implemented as intermittently running
processes

- Flushing disk caches
— Swapping out unused page frames

* Regqular scheduling

— No unbound kernel activities

* Special characteristics

- Mostly only one single kernel function

- No user mode part

18

Kernel thread creation

int kernel thread(int (*fn)(void *), void * arg, unsigned |long flags)

{

| ong retval, dO;

_asm__ __volatile_(
"movl %esp, Wesi\n\t"
"int $0x80\n\t" [* Linux/i386 systemcall */
"cnpl %YWesp, Wesi\n\t" [/* child or parent? */
"je 1f\n\t" [* parent - junp */

/* Load the argunent into eax, and push it. That way, it does
* not matter whether the called function is conpiled with

* -nregparmor not. */

"movl %, Weax\n\t"

"pushl %eax\n\t"

"call *9%B\n\t" [* call fn */
"movl 98, %0\ n\t" [* exit */
"int $0x80\ n"
"L\t
:"=&" (retval), "=&S' (dO)

"0" (_NRclone), "i" (_NRexit),

"t (arg), “rt (fn),
"b" (flags | CLONE VM
: "menory");

return retval;

19

Kernel threads in action

Init,1

-(bdflush,6)
-(keventd,2)
-(khubd,53)
-(kjournald,10)
-(kjournald,89)
-(kjournald,90)
-(kjournald,1969)
-(ksoftirgd_CPUO0,4)
-(kswapd,5)
-(kupdated,7)
-(lockd,19499)

20

Context switch

 Transfer control between contexts

— Save state of current context
- Load state of next context and resume execution
e EXxecution context

— Architectural (user level) cpu state

- Virtual memory

21

Context switch (2)

* For the kernel programmer context switching looks
Ike a ordinary function call.

* Interleaved activities of pmm o
other pProcesses are Saheiiifle
transparent
e void schedul e(voi d){ mh;:::“”“ schedule
/* cal ¢ next process */ e
‘switch to(..., next, ...) I e

active process

22

Switch 1

kernal
code

kernel
coge

process 2

pracess 1

process 2

process 1

ftask

b4

23

Switch (2)

kernel code

switch to:

ret

Yoesi, %edi, %ebp = stack

%%esp = prev->thread.esp |

nexi->thread.esp = %esp
L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

L1: stack=2%esi, %edi, %eb

process 1

[ftask

process 2

ftask

stack

stack

CPU

24

Switch (3)

kernel code

swilch to:

ret

“eesi, Yeedi, Yoebp = stack

%esp = prev->thread.esp |

next->thread.esp = %esp |

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

L1: stack=%esi, %edi, %eb

process 1

Ttask

process 2

ftask

Yaehn

Yo
=

stack

)
eip

stack

CPU

25

Switch (4)

kernel code process 1
Task
switch to:

ret TLebp
Yol
a2l

Yeesi, Yeedi, Y%ebp = stack stack

%.esp = prev->thread.esp |

next->thread.esp = %esp

L1 = prev->thread.eip

next->thread.eip = stack

Jump to switch to

L1: stack=%esi, Y%edi, %eb

process 2

Hask

stack

CPU

26

Switch(5)

kernel code process 1
—Hitask
switch to:

ret SLEDD
el
B g|

%sesi, %edi, Y%ebp = stack stack

%esp = prev->thread.esp |

nexi->thread.esp = %esp |

L1 = prev->thread.eip

next-=thread.eip = stack

Jump to switch to

L1: stack=%esi, %edi, %eb

process 2

1task

stack

CPU

27

Switch (6)

kernel code process 1 process 2
=[5 [—— +{fitask
switch to:
ret “x&elfjn ; i
2 s
%eesi, %edi. %ebp = stack stack | i stack
%eesp = prev->thread.esp | ;
next->thread.esp = %esp | ;
L1 = prev->thread.eip '
next->thread.eip = stack :
Jumpto switchto | [;
L1: stack=%esi, %edi, %eb - CPU

28

Switch (7)

kernel code

switch to:

process 1

ret

Y%esi, Yeedi, Y%aebp = stack

%esp = prev->thread.esp |

next->thread.esp = %esp |

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

1

Chin
44
w
=

process 2

Hask

=7
(4] (e
] (<1

/

r--

L1: stack=%esi, %edi, %eb

L1

stack

CPU

29

Switch (8)

kernel code

swilch to:

ret

“eesi, Yeedi, Yoebp = stack

%esp = prev->thread.esp |

nexi->thread.esp = %esp |

L1 = prev->thread.eip

next-sthread.eip = stack

Jump to switch to

L1: stack=%esi, %edi, %eb

process 1 process 2
-—'llask r__________.E:::llaSK
! i
=
\%f_i 'E L1
Lstack stack
——L W |cpy

30

Switch (9)

kernel code

swilch to:

process 1

ret

“wesi, Yeedi, Yoebp = stack

%.esp = prev->thread.esp |

nexi->thread.esp = %esp |

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

Ye8hD
o
TeBs|

stack

[————

L1: stack=%esi, %edi, %eb

'—'llask S

process 2

Jask

stack

CPU

31

Switch (10)

kernel code process 1 process 2
—task | p---—-----={fitask
switch to:
ret SLEnD i i
o i i
Zeesl | i L
Yeesi, %edi, Y%ebp = stack stack | |
%esp — prev->thread.esp | ; stack
next->thread.esp = %esp | ;
L1 = prev-sthread.eip i
next->thread.eip = stack '
Jumpto switch to
L1: stack=%esi, %edi. %eb CPU

32

Process switch - Code

#define switch to(prev, next,last) do { \
unsi gned | ong esi, edi; \
asmvol atile("pushfl\n\t" \
"pushl %ebp\n\t" \
"movl %esp, WO\ n\t" /| * save ESP */ \
"movl 9%, Wesp\n\t” /|* restore ESP */ \
"movl $1f,%d\n\t" /* save EIP */ \
“pushl %G\ n\t" /* restore EIP */ \
"jmp __switch_to\n" \
"1\t \
"popl YWebp\n\t" \
"popfl™ \
:"=m' (prev->thread. esp),"=nm" (prev->thread.eip),
\
"=a" (last),"=S" (esi),"=D" (edi) \
:"m' (next->thread.esp),"nm (next->thread.eip),
"2" (prev), "d" (next)); \
} while (0)

\

33

Threads

 LinuxThreads Is the standard POSIX thread library for
Linux (1996)

* Based on principles of kernels of that time

- Cheap kernel thread switches
- Missing thread aware ABI

e Thread local data with fixed relation to stack
- Management thread necessary for creation etc.

- No adequate kernel synchronization support
e Signals abused
 Kernel is not aware of threads

— Processes cooperate,

LinuxThreads problems
e Signal handling is not POSIX compliant

e Extra management thread
* ps shows all threads in a process, procfs littered

e Core dumps do not contain the stack and machine
registers for all threads

e get pi d() returns different results for each thread

 Threads cannot wait for threads created by another
thread

* Parent-child relationship instead of being peers

e Threads d I | "

35

Kernel support added

TLS (thread local storage) support in the kernel
Cl one syscall extensions

- Flag indicates that thread is created

POSIX signal handling in the kernel

- SIGSTOP forwarded to all threads of a process
exi t in two flavors for thread and process
User level synchronization support

- futex (fast user mutex)

36

Native POSIX thread library (NPTL)

Better POSIX compliance
Low startup/teardown costs

Scalability

- Enormous (100000) number of threads supported
NUMA support

- Node aware memory allocation

Integration with C++

37

