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Processes and Threads




What is a process

* Fundamental concept for multiprogramming

* |Instance of program in execution
- Sequential control flow
* Entity to which system resources are allocated

- Might be shared among processes (threads)




siate

Flaps
need_resched
codnter

priogity

next task
priv_task
XL
PIey _run

P
P_pprE

thy

155

ts

tiles

mim
sipnal_lock

5L

task struct

L e e e e e e e e e e e e e e e e e e e g

i e s s e — — —— — — — ——— — —

By _siruct

Fo_sqruet

Fifes_soreect

FEEILT__SECEECE

sipnal_struct

Hy assoclited with the process

crerent directory

pointers 1o file descriptors

podneers 1o memory area descriptars

stznals recebved




Process state

* Field in task_struct

* Currently available

- TASK RUNNING - executing or ready for execution
- TASK _INTERRUPTIBLE - suspended
- TASK_UNINTERRUPTIBLE - suspend, no signals

- TASK _STOPPED - execution has been externally
stopped

- TASK _ZOMBIE - terminated




Process descriptor handling

* Processes are dynamic entities

- Dynamic allocation

- Half of all physical memory might be used for PCB
° max_t hreads = nmenpages / (THREAD Sl ZE/ PAGE SI ZE) | 2;

° [ proc/ sys/ ker nel / t hr eads- max

* Two different data structures per process

- Process descriptor

- Kernel stack




task union

I ————————— T T —— - -

el e Y| OxO1Soff

movl $Oxffffe000, %ecx
andl $%esp, %ecx
novl %ecx, p

I P e

Zesp —»m RN | 0x015fa8 78

| 0x015fa3cb

|| 0x015£2000

CUurrent macro

uni on task _union {
struct task struct task;
unsi gned | ong stack

[ 2048] ;

s




Process List

* Linux keeps list of processes for different
purposses

- Special properties (e.g. runnable)
* Process List

- All processes in the system
— Circular double linked list
- SET_LINKS/REMOVE_LINKS macros ensure consistency

- next_task, prev_task field in task_struct

prev_task l next_task  prev_task nexi task prev _task next task

| init_task| T a5 T e "\




Doubly linked lists (implementation)

e Often used

* Reusable implementation

— Access functions and macros

A ﬂmw sr

struct list_head
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ist w-item list
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A custom structure { i :
including a 1ist_head M - | ~

Effects of the 1ist_entry Macio




Run queue

* Scheduling needs only to consider runnable
processes

* Linked through struct Iist_head run_li st

* Select most viable process to run next

| schedul e
| do_softirq // manages post -1 RQ work
| for each task
| cal cul ate counter
| prepare_to__switch // does anything
| switch_mm// change Menory context (change CR3 val ue)
| switch_to (assenbl er)
| SAVE ESP
| RESTORE future_ ESP
| SAVE EI P
| push future EIP *** push parameter as we did a call
|[jnmp _switch_to (it does some TSS worKk)
| _switch_to()

|ret *** ret fromcall using future_EIP in place of call address
new t ask




Process identification

Address of PCB is unique in kernel address space
PID used at user level
Process list traversal to slow

Hash table for fast lookup
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PCB linking

init task + - - r v -
next task r next task nexi task next task next task
prev_task prev task prev task Prev task prev task
runlist runlist
pidhash nex! idhash_nexi
gidhash ppre ptdhash_pprey
|
pidhash ‘ runqueue_head f@
pid ———— flags flags
lock iask fask
fask list e task list re—m fask list
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Process management

* Process queue
 TASK RUNNABLE

- Run queue

 TASK STOPPED, TASK _ZOMBIE
- Not grouped

e TASK (UN)INTERRUPTIBLE

- Subdivided into many classes, each of which
correspondends to a specific event

- State alone does not provide enough information

- Specific lists of processes called wait queues
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Wait Queues

* Define a new walit gqueue if needed
- DECLARE_WAI T_QUEUE_HEAID. . .)

e Functions

- add _wait_queue(..), renove _wait_queue(...)
- sl eep_on
- wake_up
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Wait queue structure

sl walt quene pointer

i dummy pointer

rask field

next field




Process creation

* fork syscall

- Copy process
- |dependent new execution context
* cl one syscall

— Share resources with the new context

- lightweight
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Forking

| sys_fork
| do_fork
| al oc_task_struct
| __get _free_pages
| p->state = TASK_UNI NTERRUPTI BLE

| copy_fl ags

| p->pid = get_pid
| copy_files

| copy_fs

| copy_si ghand
| copy_mm // shoul d manage CopyOnWite (I part)
| al | ocate_mm

[ Mminit
| pogd_al l oc -> get _pgd_fast
| get _pgd_sl ow
| dup_mmap

| copy_page_r ange
| pt ep_set wrprotect
|clear _bit // set page to read-only

| copy_segnents // For LDT
| copy_t hread

| childregs->eax = 0

| p->thread. esp = childregs // child fork returns 0O

| p->thread.eip = ret_fromfork // child starts fromfork exit
|retval = p->pid // parent fork returns child pid
| SET_LINKS // insertion of task into the list pointers
| nr_threads++ // G obal variable
| wake_up_process(p) // Now we can wake up just created child
| return retva
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Process relationship
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Kernel threads

* Critical tasks implemented as intermittently running
processes

- Flushing disk caches
— Swapping out unused page frames

* Regqular scheduling

— No unbound kernel activities

* Special characteristics

- Mostly only one single kernel function

- No user mode part
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Kernel thread creation

int kernel thread(int (*fn)(void *), void * arg, unsigned |long flags)

{

| ong retval, dO;

_asm__ __volatile_(
"movl %esp, Wesi\n\t"
"int $0x80\n\t" [* Linux/i386 systemcall */
"cnpl %YWesp, Wesi\n\t" [/* child or parent? */
"je 1f\n\t" [* parent - junp */

/* Load the argunent into eax, and push it. That way, it does
* not matter whether the called function is conpiled with

* -nregparmor not. */

"movl %, Weax\n\t"

"pushl %eax\n\t"

"call *9%B\n\t" [* call fn */
"movl 98, %0\ n\t" [* exit */
"int $0x80\ n"
"L\t
:"=&" (retval), "=&S' (dO)

"0" (_NRclone), "i" (_NRexit),

"t (arg), “rt (fn),
"b" (flags | CLONE VM
: "menory");

return retval;
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Kernel threads in action

Init,1

-(bdflush,6)
-(keventd,2)
-(khubd,53)
-(kjournald,10)
-(kjournald,89)
-(kjournald,90)
-(kjournald,1969)
-(ksoftirgd_CPUO0,4)
-(kswapd,5)
-(kupdated,7)
-(lockd,19499)
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Context switch

 Transfer control between contexts

— Save state of current context
- Load state of next context and resume execution
e EXxecution context

— Architectural (user level) cpu state

- Virtual memory
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Context switch (2)

* For the kernel programmer context switching looks
Ike a ordinary function call.

* Interleaved activities of pmm o
other pProcesses are Saheiiifle
transparent
e void schedul e(voi d){ mh;:::“”“ schedule
/* cal ¢ next process */ e
‘switch to(..., next, ...) I e

active process
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Switch 1

kernal
code

kernel
coge

process 2

pracess 1

process 2

process 1

ftask

b4
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Switch (2)

kernel code

switch to:

ret

Yoesi, %edi, %ebp = stack

%%esp = prev->thread.esp |

nexi->thread.esp = %esp
L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

L1: stack=2%esi, %edi, %eb

process 1

[ftask

process 2

ftask

stack

stack

CPU
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Switch (3)

kernel code

swilch to:

ret

“eesi, Yeedi, Yoebp = stack

%esp = prev->thread.esp |

next->thread.esp = %esp |

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto  switch to

L1: stack=%esi, %edi, %eb

process 1

Ttask

process 2

ftask

Yaehn

Yo
=

stack

)
eip

stack

CPU
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Switch (4)

kernel code process 1
Task
switch to:

ret TLebp
Yol
a2l

Yeesi, Yeedi, Y%ebp = stack stack

%.esp = prev->thread.esp |

next->thread.esp = %esp

L1 = prev->thread.eip

next->thread.eip = stack

Jump to  switch to

L1: stack=%esi, Y%edi, %eb

process 2

Hask

stack

CPU
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Switch(5)

kernel code process 1
—Hitask
switch to:

ret SLEDD
el
B g|

%sesi, %edi, Y%ebp = stack stack

%esp = prev->thread.esp |

nexi->thread.esp = %esp |

L1 = prev->thread.eip

next-=thread.eip = stack

Jump to  switch to

L1: stack=%esi, %edi, %eb

process 2

1task

stack

CPU
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Switch (6)

kernel code process 1 process 2
=[5 [—— +{fitask
switch to:
ret “x&elfjn ; i
2 s
%eesi, %edi. %ebp = stack stack | i stack
%eesp = prev->thread.esp | ;
next->thread.esp = %esp | ;
L1 = prev->thread.eip '
next->thread.eip = stack :
Jumpto switchto | [ ;
L1: stack=%esi, %edi, %eb - CPU
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Switch (7)

kernel code

switch to:

process 1

ret

Y%esi, Yeedi, Y%aebp = stack

%esp = prev->thread.esp |

next->thread.esp = %esp |

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto  switch to

1

Chin
44
w
=

process 2

Hask

=7
(4] (e
] (<1

/

r--

L1: stack=%esi, %edi, %eb

L1

stack

CPU
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Switch (8)

kernel code

swilch to:

ret

“eesi, Yeedi, Yoebp = stack

%esp = prev->thread.esp |

nexi->thread.esp = %esp |

L1 = prev->thread.eip

next-sthread.eip = stack

Jump to  switch to

L1: stack=%esi, %edi, %eb

process 1 process 2
-—'llask r__________.E:::llaSK
! i
=
\%f_i 'E L1
Lstack stack
——L W |cpy
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Switch (9)

kernel code

swilch to:

process 1

ret

“wesi, Yeedi, Yoebp = stack

%.esp = prev->thread.esp |

nexi->thread.esp = %esp |

L1 = prev->thread.eip

next->thread.eip = stack

Jumpto switch to

Ye8hD
o
TeBs|

stack

[ ————

L1: stack=%esi, %edi, %eb

'—'llask S

process 2

Jask

stack

CPU
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Switch (10)

kernel code process 1 process 2
—task | p---—-----={fitask
switch to:
ret SLEnD i i
o i i
Zeesl | i L
Yeesi, %edi, Y%ebp = stack stack | |
%esp — prev->thread.esp | ; stack
next->thread.esp = %esp | ;
L1 = prev-sthread.eip i
next->thread.eip = stack '
Jumpto switch to
L1: stack=%esi, %edi. %eb CPU
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Process switch - Code

#define switch to(prev, next,last) do { \
unsi gned | ong esi, edi; \
asmvol atile("pushfl\n\t" \
"pushl %ebp\n\t" \
"movl %esp, WO\ n\t" /| * save ESP */ \
"movl 9%, Wesp\n\t” /|* restore ESP */ \
"movl $1f,%d\n\t" /* save EIP */ \
“pushl %G\ n\t" /* restore EIP */ \
"jmp __switch_to\n" \
"1\t \
"popl YWebp\n\t" \
"popfl™ \
:"=m' (prev->thread. esp),"=nm" (prev->thread.eip),
\
"=a" (last),"=S" (esi),"=D" (edi) \
:"m' (next->thread.esp),"nm (next->thread.eip),
"2" (prev), "d" (next)); \
} while (0)

\
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Threads

 LinuxThreads Is the standard POSIX thread library for
Linux (1996)

* Based on principles of kernels of that time

- Cheap kernel thread switches
- Missing thread aware ABI

e Thread local data with fixed relation to stack
- Management thread necessary for creation etc.

- No adequate kernel synchronization support
e Signals abused
 Kernel is not aware of threads

— Processes cooperate,




LinuxThreads problems
e Signal handling is not POSIX compliant

e Extra management thread
* ps shows all threads in a process, procfs littered

e Core dumps do not contain the stack and machine
registers for all threads

e get pi d() returns different results for each thread

 Threads cannot wait for threads created by another
thread

* Parent-child relationship instead of being peers

e Threads d I | "
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Kernel support added

TLS (thread local storage) support in the kernel
Cl one syscall extensions

- Flag indicates that thread is created

POSIX signal handling in the kernel

- SIGSTOP forwarded to all threads of a process
exi t in two flavors for thread and process
User level synchronization support

- futex (fast user mutex)
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Native POSIX thread library (NPTL)

Better POSIX compliance
Low startup/teardown costs

Scalability

- Enormous (100000) number of threads supported
NUMA support

- Node aware memory allocation

Integration with C++
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