
1

Ausgewählte Betriebssysteme

Preemption and Low-Latency patches

Scheduling

2

What is scheduler latency ?

● 'the interval between stimulus and response'
(webster.com)

● Linux: time between a wakeup signaling that an event
has occurred and the kernel scheduler runs the now
runnable activity

● Wakeups are often caused by interrupts

– Thread induced wakeups possible, too.

3

Components of response time

● Interrupt latency

– Time between physical signal and start of interrupt handler
execution

● Interrupt handler duration

● Scheduler latency

– Time spent after completion of IRQ handler and invocation
of scheduler

– Might be non-existent on SMP (real parallelism)

● Scheduling duration

– Time spent in the scheduler

4

Why does latency matter ?

● Some applications depend on timely execution

● Delays devaluate computation

● Wide variety of examples

– Process controlling

● CD burning

● Flight control

– Multi media

● MPEG playback

– Delays result in jerks

5

Preemption patches
● Run the scheduler more often

– If there might be the need to run the scheduler

– Minimize the time until the scheduler runs

– Preempt the kernel if this is safe

● Linux Kernel originally not preemptable

– Only interrupts and bottom halves were allowed to run
asynchronously

– No synchronization primitives necessary for data that is
not modified by IRQ and BH

– In SMP this requirement is burdensome and partially lifted

6

Preemption patches (2)
● assumption that code does not rely on non-preemption

– SMP requires this anyway

● Kernel can be preempted if not holding spin locks

– Holding spinlocks signals exclusive access

● If neglected

– Deadlocks
– Priority inversion

● Run the scheduler if needed when

– Return from IRQ

– Releasing spinlock

● No further code modification (besides making it SMP safe)

● Mitigates scheduler latency problem

7

Low latency patch (1)

● Explicit preemption points

● Processing large data structures

 redo:
set_lock()
do_some_work()
get_into_consistent_state()
release_lock()
if not done:

goto redo

set_lock()
do_all_work()
release_lock()

8

Low latency patch (2)

● Work intensive

– Find long-lasting spots

● In many short loops it is not obvious how large that
processed amount of data is

– Support by special tools

● Andrew Morton's rtc-debug

● Error prone

– Find a consistent state that allows reentrant code

– Ensure Progress

● Starvation might be possible otherwise

9

Iterating over infinite data
 void prune_dcache(int count)
 {
 spin_lock(&dcache_lock);
 for (;;) {
 struct dentry *dentry;
 struct list_head *tmp;

 tmp = dentry_unused.prev;
 if (tmp == &dentry_unused)
 break;
 list_del_init(tmp);
 dentry = list_entry(tmp, struct dentry, d_lru);

 /* If the dentry was recently referenced, don't free
it. */
 if (dentry->d_vfs_flags & DCACHE_REFERENCED) {
 dentry->d_vfs_flags &= ~DCACHE_REFERENCED;
 list_add(&dentry->d_lru, &dentry_unused);
 continue;
 }
 dentry_stat.nr_unused--;

 /* Unused dentry with a count? */
 if (atomic_read(&dentry->d_count))
 BUG();

 prune_one_dentry(dentry);
 if (!--count)
 break;
 }
 spin_unlock(&dcache_lock);
 }

10

Adding a preemption point

 void prune_dcache(int count)
 {
 DEFINE_RESCHED_COUNT;
 redo:
 spin_lock(&dcache_lock);
 for (;;) {
 struct dentry *dentry;
 struct list_head *tmp;
 if (TEST_RESCHED_COUNT(100)) {
 RESET_RESCHED_COUNT();
 if (conditional_schedule_needed()) {
 spin_unlock(&dcache_lock);

 unconditional_schedule();
 goto redo;
 }
 }

 tmp = dentry_unused.prev;

 if (tmp == &dentry_unused)
 break;
 list_del_init(tmp);
 dentry = list_entry(tmp, struct dentry, d_lru);

 /* If the dentry was recently referenced,
 don't free it. */
 if (dentry->d_vfs_flags & DCACHE_REFERENCED) {
 dentry->d_vfs_flags &= ~DCACHE_REFERENCED;
 list_add(&dentry->d_lru, &dentry_unused);
 continue;
 }
 dentry_stat.nr_unused--;

 /* Unused dentry with a count? */
 if (atomic_read(&dentry->d_count))
 BUG();

 prune_one_dentry(dentry);
 if (!--count)
 break;
 }
 spin_unlock(&dcache_lock);
 }

11

Vanilla Linux 2.4.17

© 2002 Red Hat, Inc.

Max. latency: 232.7ms

12

Linux 2.4.17 + preemption patches

© 2002 Red Hat, Inc.

Max. latency: 45.3ms

13

Linux 2.4.17 + low latency patches

© 2002 Red Hat, Inc.

Max. latency: 1.4ms

Max. latency in FIASCO:
 <30?s

14

The old scheduler

● Features to keep

– Good interactivity under high load

– Good performance with few runnable tasks

– Fairness

– Support of priorities

– SMP

● efficiency

– No idling cpu with runnable tasks in the system
● affinity

– Goodness takes last running process into account

15

Implementation of the old scheduler
● Time divided into epochs

● Each task gets a quantum per epoch

– Based on static priority

– Quantum grows if not exhausted in previous epochss

● Interactivity boost

● Scheduler selects task with highest goodness

– Calculation of goodness of all runnable processes must be
done for each scheduling decision

● Cache pollution on different CPU

– all CPUs fetch tasks from one global queue

● Contention

● Automatic load balancing

16

Insufficiencies

● Duration of scheduling grows with number of processes

– Iteration over all runnable processes to find maximal
goodness

● Missing SMP scalability

– Only one global runqueue

– Random bouncing

● Processes with expired quantum are marked unrunnable
until all processes of the epoch finished

● No fixed cpu affinity

17

O(1) scheduler

● Runqueue per CPU

– Two priority-sorted arrays (active, expired)

● Transfer exhausted task from active to expired array

● Switch arrays if all tasks have expired

– 64bit bitfield for efficient lookup of highest available priority
with runnable threads

● No goodness calculation necessary

18

Handling interactivity

● Depending on the sleeping behavior a classification of
interactive /non-interactive task is done

– Empirical based on “good interactive feeling”

● Priority change [-5, +5]

● Interactive tasks are not transferred into expired array,
but scheduled again

– Lose interactivity classification if not sleeping anymore

19

Load balancing
● No automatic load balancing due to global queue any

longer

● Load-balancing kernel thread per CPU

– Activation depending on load situation

● Immediately if idle

● Every 250ms if running tasks are available

– Tries to fetch tasks from heavily loaded other CPUs

● From expired array

● If runnable on destination CPU (affinity is user defined)

● Avoid task with hot cache working set

20

O(1) Scheduler

21

Performance
● 20% better in chatserver benchmark

● Significant more context switches

– Important for highly threaded systems

– 300% more on 2 way system

– 60 times more on a 8 way system

● Better fork() performance

– 25% - 100% gain

– Runs childs before parents

● Saves copy-on-write when execing immediately

