Ausgewdhlte Betriebssysteme Memory Management

e Kernel

- Page Frames
- Buddy Allocator
- Slab Allocators
- Buffer Cache

Memory - Page Cache
* Process
- Memory Regions
1 2
Memory Map Page Frame
o — ¢ kernel must keep track of state
(Hardware) (Kernel)
e - kernel code, page cache, kernel data etc.

Y

XS ¢ which pages are available

0 0x1000 | i386_endbase

\ J ¢ page descriptor for each frame
start_mem

end_mem

- mem_map_t *mem_map

T
Dynamic Memory

¢ linked into appropriate list if needed

Buddy

* robust, efficient kernel allocator
* contiguous page frames
* external fragmentation

- paging
- managing pages in a suitable way

Buddy Allocator

¢ well-known buddy system algorithm
» free pages are grouped into 10 lists
- 1..512 contiguous pages

e apropriately aligned

Why not paging

¢ sometimes physical contiguous pages required

- DMA bypasses CPU paging circuitry

¢ paging modification deteriorate TLB efficiency

- TLB flushing required for consistency

mem_map

Buddy in action

free_area[0

bitmaps

20

o!

92

98

T ataratarara

Memory Area Management
Buddy API

¢ contiguous physical addresses

« get_free_page(pfp_mask): ¢ arbitrary length (not necessarily multiple of page size)

« _ get free_pages(gfp_mask,order): - feqtens or hundreds of bytes

* free_page(addr); internal fragmentation

« free_pages(addr.order): ¢ 2.0 buddies for small requests
- geometrically distributed size
- not more than 50 % loss

2.2 Slab Allocator

- first 1994 Solaris 2.4

Slab Slab

if size not geometrically distributed, addresses are less
prone to concentrate on physical addresses whose
values are power of 2

* memory areas as objects
- set of data structures
- constructor and destructor

- - better hardware cache usage
- not used in Linux

. . ¢ frequent calls to the buddy allocator pollutes the cache
* tendency of requesting and releasing same memory

type repeatedly
- e.g. process creation

- keep memory in cache as long as possible

11 12

Caches Cache

* object of same kind are stored in caches

- e.g. file object upon open system call is stored in cache
filp (file pointer)

" Slab

"*ﬁ

- Iproc/slabinfo Object

* consist of several slabs M' PR—— .@
H : i Object
- each slab consist of one or more contiguous page frames @

Object

13 14

Caches and Slabs General and Specific Caches

¢ general

¢ used only be the slab allocator for own purposses

v L—.

Cache Cache Cache
l’ Descriptor !,]7 Descriptor } = Descriptor

T

* cache descriptors (cache_cache)

« slab descriptors (cache_sl abp)

i ~ Slab
(o)

—» s_nextp @B Full slab

¢ 13 caches for geometrically distributed memory areas
kmem cache_init() , kmem cache_sizes_init()

i Siab
Descriptor

— = =S P Partally toll slab . s
......... I oo specific
— aiislp - kmem cache_create()

cee--» C_laslp

15 16

Slabs and Objects

Slab with Internal Object Descriptors

Free . | Allocated
Object fof Object

el
|
T L1 4 i
T i H
05~ - s £ omen Object
v L
: C ,l,, 7 ‘[
g g g . [58
17

Noncontiguous Memory

¢ vmalloc
* viree
high_memory
PAGE_OFFSET VMALLOC_START 4GB

19

Noncontiguous Memory

¢ rarely used

 only for (hopefully) infrequent changed objects
- data structures for active swap areas
- space for modules
- buffers for some /O drivers

18

Linux 2.4 and Memory

¢ Buddies
- 2.2 has two buddy systems (DMA and Non-DMA)
- 2.4 adds a third for high physical memory

* Slabs
- mostly unchanged

- slab caches can be destroyed

* modules are expected to do so

20

Process Address Space Memory Regions

* non-urgent

- allocation does not mean access

¢ addressing errors must be caught i -

. i ‘ K
¢ set of linear address (. N\
- memory region h

)

: . Linear Address Space
-

4
!
-t Memory Regions

] —p Vm_start
mmap_cache -

« different access rights

- = ~p-vm_end
« different for each process ooy oo > e
* no relation among processes
21 22
Memory Regions MM related system calls
 Situations for new regions - brk
- process creation - execve
- exec - exit
- memory map - fork
- stack growth - mmap
- IPC shared memory - munmap
- expand dynamic area (heap) - shmat
- shmdt

23 24

Memory Descriptor

pointer to regions list
pointer to Global Directory
number of allocated pages
address space size
reference count

possibly shared among lightweight processes

25

Memory Region (2)

find_vma()
find_vma_intersection()
get_unmapped_area()
insert_vm_struct()
do_map()

do_unmap()

27

Memory Region

vm_area_struct
start of region
end of region
access rights

all regions of a process are linked

26

Changing Memory Regions

(a) Access rights of interval to be added are (a’) The existing region is enlarged
equal to those of contiguous regian

(b) Access rights of interval to be added are
different from those of contiguous region

(c) Interval 1o be removed is &t the end of
existing region

(d4) Interval to be remaved s inside (d*) Two smaller regions are created
existing region
Address space before operation Address space after operation

28

Page Faults Page Fault

* programming errors ¢ handle_mm_fault()

* missing page, though linear address belongs to the
process address space

- allocates new pages

- demand paging
- contained in some memory region * do_no_page

- not invalid from process point of view - vma->vm_ops->nopage handler loads page from disk
- do_anonymous_page()

- allocate page frame and have process continue « do_swap_page

29 30

Page Faults Page Fault (2)

O/ In interrupt or in YYES
Legal access . kermel thraad
allocate a new)
page frame
Does the access ty

Does the addres:
belong to the
process address

space? :I

match the memory
" region access rights?
‘ Ilegal access:

send a SIGSEGV
’ signal
Did the exception

occur in User Mode?

Kernel bug:
kill the process

31

good_area

e

YES/ Regionis
writatile
\

R v -

Demand
saging

Copy On Write:

p
Send
SIGSERY

e page s aresen()—Js ES{ 1n User Moge)L
l \ ‘
/" Region s
YES(reaubicor RO
_executable

(-

wrong system
_call parameter

Kill process “Fixup code”

(Te
o
and kemel B | (ypicaly send
“Oops” SIGSEGV)

32

Copy On Write Creating
¢ clone(), fork(), vfork()

* share pages « copy_mm()
* duplicate on modification attempts - copy_segments()
e handle_pte_fault() - new_page_tables()
- allocate new page frame * 0-3GB clear
- adjust counter in frame descriptor * 3-4 GB initialized from swapper process
- Copy content - dup_mmap(
¢ Duplicate memory regions
* set up the copy-on-write mechanism
33 34
Heap Disk Caches
e C-library for user land ¢ try to keep as much as possible in memory
- malloc, calloc, free, brk ¢ Buffer Cache
- only brk as system call - cache for buffer I/O operations
e brk syscall - blocks of block devices
- check if request overlaps with current regions * Page Cache
- maps/unmaps page - content of files

- not necessarily adjacent on disk

35 36

Operations related to disk caches Finding Buffers

¢ buffer identified by device and block number

VO Operation cache rseij‘(t)em cal t'jfcrk’f!;g”‘“")” * hash_t abl e helps to find buffer quickly
Write a block device file Buffer write() block_write() - find_buffer()
Read an Ext2 directory Buffer getdents() ext2_bread() - insert_into_queues()
Read an Ext2 regular file Page read() generic_file_read() B remove_from_queues()
Write an Ext2 regular file Page, Buffer write() ext2_file_write()
Access to memory-mapped file Page None file_map_nopage()
Access to swapped-out page Page, Buffer None do_swap_page()
37 38
getblk() Buffer Allocation

e main service routine for the buffer cache ¢ not single memory objects for reasons of efficiency

: —— b_data
~“Page descriptor B-------------- o oo=CEmEED
i e b_this_page

Page *

“Bufferhead

Bufferhead

39 40

Page Cache Page Cache Data Structures

* all accesses throughread(), wite(), and mmap() are ¢ page hash table

handled by the page cache _ struct page **page_hash_t abl e;
* blocks contained in page don't need to be adjacent on - identified by inode and offset

disk

- size depends on memory available
- device and block number not identifying * inode queue

* file inode and offset are unique ~ all pages of an inode

41 42

Page Cache

