
1

Ausgewählte Betriebssysteme

Memory

2

Memory Management

● Kernel

– Page Frames

– Buddy Allocator

– Slab Allocators

– Buffer Cache

– Page Cache

● Process

– Memory Regions

3

Memory Map

4

Page Frame

● kernel must keep track of state

– kernel code, page cache, kernel data etc.

● which pages are available

● page descriptor for each frame

– mem_map_t *mem_map

● linked into appropriate list if needed

5

Buddy

● robust, efficient kernel allocator

● contiguous page frames

● external fragmentation

– paging

– managing pages in a suitable way

6

Why not paging

● sometimes physical contiguous pages required

– DMA bypasses CPU paging circuitry

● paging modification deteriorate TLB efficiency

– TLB flushing required for consistency

7

Buddy Allocator

● well-known buddy system algorithm

● free pages are grouped into 10 lists

– 1 .. 512 contiguous pages

● apropriately aligned

8

Buddy in action

9

Buddy API

● get_free_page(pfp_mask);

● __get_free_pages(gfp_mask,order);

● free_page(addr);

● free_pages(addr,order);

10

Memory Area Management
● contiguous physical addresses

● arbitrary length (not necessarily multiple of page size)

– feq tens or hundreds of bytes

● internal fragmentation

● 2.0 buddies for small requests

– geometrically distributed size

– not more than 50 % loss

● 2.2 Slab Allocator

– first 1994 Solaris 2.4

11

Slab

● memory areas as objects

– set of data structures

– constructor and destructor

– not used in Linux

● tendency of requesting and releasing same memory
type repeatedly

– e.g. process creation

– keep memory in cache as long as possible

12

Slab

● if size not geometrically distributed, addresses are less
prone to concentrate on physical addresses whose
values are power of 2

– better hardware cache usage

● frequent calls to the buddy allocator pollutes the cache

13

Caches

● object of same kind are stored in caches

– e.g. file object upon open system call is stored in cache
filp (file pointer)

– /proc/slabinfo

● consist of several slabs

– each slab consist of one or more contiguous page frames

14

Cache

15

Caches and Slabs

16

General and Specific Caches

● general

● used only be the slab allocator for own purposses
● cache descriptors (cache_cache)

● slab descriptors (cache_slabp)

● 13 caches for geometrically distributed memory areas
– kmem_cache_init() ,kmem_cache_sizes_init()

● specific
– kmem_cache_create()

17

Slabs and Objects

18

Noncontiguous Memory

● rarely used

● only for (hopefully) infrequent changed objects

– data structures for active swap areas

– space for modules

– buffers for some I/O drivers

19

Noncontiguous Memory

● vmalloc

● vfree

20

Linux 2.4 and Memory

● Buddies

– 2.2 has two buddy systems (DMA and Non-DMA)

– 2.4 adds a third for high physical memory

● Slabs

– mostly unchanged

– slab caches can be destroyed
● modules are expected to do so

21

Process Address Space
● non-urgent

– allocation does not mean access

● addressing errors must be caught

● set of linear address

– memory region

● different access rights

● different for each process

● no relation among processes

22

Memory Regions

23

Memory Regions

● Situations for new regions

– process creation

– exec

– memory map

– stack growth

– IPC shared memory

– expand dynamic area (heap)

24

MM related system calls

– brk

– execve

– exit

– fork

– mmap

– munmap

– shmat

– shmdt

25

Memory Descriptor

● pointer to regions list

● pointer to Global Directory

● number of allocated pages

● address space size

● reference count

● possibly shared among lightweight processes

26

Memory Region

● vm_area_struct

● start of region

● end of region

● access rights

● all regions of a process are linked

27

Memory Region (2)

● find_vma()

● find_vma_intersection()

● get_unmapped_area()

● insert_vm_struct()

● do_map()

● do_unmap()

28

Changing Memory Regions

29

Page Faults

● programming errors

● missing page, though linear address belongs to the
process address space

– contained in some memory region

– not invalid from process point of view

– allocate page frame and have process continue

30

Page Fault

● handle_mm_fault()

– allocates new pages

– demand paging
● do_no_page

– vma->vm_ops->nopage handler loads page from disk
– do_anonymous_page()

● do_swap_page

31

Page Faults

32

Page Fault (2)

image from p. 217

33

Copy On Write

● share pages

● duplicate on modification attempts

● handle_pte_fault()

– allocate new page frame

– adjust counter in frame descriptor

– Copy content

34

Creating
● clone(), fork(), vfork()

● copy_mm()

– copy_segments()

– new_page_tables()
● 0-3 GB clear

● 3-4 GB initialized from swapper process

– dup_mmap()
● Duplicate memory regions

● set up the copy-on-write mechanism

35

Heap

● C-library for user land

– malloc, calloc, free, brk

– only brk as system call

● brk syscall

– check if request overlaps with current regions

– maps/unmaps page

36

Disk Caches

● try to keep as much as possible in memory

● Buffer Cache

– cache for buffer I/O operations

– blocks of block devices

● Page Cache

– content of files

– not necessarily adjacent on disk

37

Operations related to disk caches

I/O Operation Cache System Call Kernel Function
Read a block device file Buffer read() block_read()

Write a block device file Buffer write() block_write()

Read an Ext2 directory Buffer getdents() ext2_bread()

Read an Ext2 regular file Page read() generic_file_read()

Write an Ext2 regular file Page, Buffer write() ext2_file_write()

Access to memory-mapped file Page None file_map_nopage()

Access to swapped-out page Page, Buffer None do_swap_page()

38

Finding Buffers

● buffer identified by device and block number

● hash_table helps to find buffer quickly

– find_buffer()

– insert_into_queues()

– remove_from_queues()

39

getblk()

● main service routine for the buffer cache

40

Buffer Allocation

● not single memory objects for reasons of efficiency

41

Page Cache

● all accesses through read(),write(), and mmap() are
handled by the page cache

● blocks contained in page don't need to be adjacent on
disk

– device and block number not identifying

● file inode and offset are unique

42

Page Cache Data Structures

● page hash table

– struct page **page_hash_table;

– identified by inode and offset

– size depends on memory available

● inode queue

– all pages of an inode

43

Page Cache

