
1

Ausgewählte Betriebssysteme

Filesystem

2

File Systems

� Name space

� Hierarchical tree structure

� Simple I/O API

� open, close, read, write

� Uniform interface

� Persistent storage

� I/O devices

� Interprocess communication

� Kernel-user communication

3

File System types

4

File System Types (2)

� Persistent

� Block device based (disk)

� Ext2, VFAT

� Network based

� NFS, coda, AFS

� Virtual

� Provide information through file API

� procfs, sysfs, devfs, usbfs...

5

File systems (3)

peter@krypton:~> uname -a
Linux krypton 2.5.67 #1 SMP Tue Apr 8 00:17:05 CEST 2003 i686 unknown
peter@krypton:~> cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev usbfs
nodev usbdevfs
nodev futexfs
nodev tmpfs
nodev pipefs
nodev eventpollfs
nodev binfmt_misc
nodev devpts
 ext3
 ext2
nodev ramfs
 iso9660
nodev nfs
nodev nfsd
nodev autofs
 reiserfs
nodev oprofilefs
nodev rpc_pipefs

6

VFS Layer

� Virtual Filesystem Switch

� Kernel abstraction for different file system
implementations

� Framework

� Define usage model

� Implement common functionality

� Provide hooks for specific implementations

7

User view

8

Common File Model

� Mirrors UNIX file model strictly

� Features not available in a particular FS must be
emulated

� Directories as files (UNIX) vs. special tables (FAT)

� Indirection layer associated with objects

� Pointer to function pointer table

9

Commen File Model (2)

� Superblock (whole fs instance)

� Represents a whole mounted file system

� Inode (unique entity for an object in a fs)

� Manages properties of that particular object on disk

� Dentry (directory structure)

� Represents an entry in a directory

� Supports path-name to inode mapping

� File (file as seen by a task)

� Session specific
10

Object indirection

� Each object has an function pointer table
associated with it

� VFS framework calls customized function

� size_t (*read)(struct file *, char * size_t loff_t *);
if (file->f_op && (read = file-f_op-read) != NULL)

ret = read(file, buf, count , &file-f_ops);

� Actual functions provided by file system
implementation

� Operation table filled upon object creation or
initialization

11

VFS objects

12

Memory objects

� VFS objects are cached in memory

� Read from disk when needed

� Slab allocator for each object type

13

Disk and memory objects

14

File system types

� Structure for each particular file system

� Populated during system startup or module loading

� Upon mounting each registered file system probes
partition unless the type is explicitly provided

� Important properties

� name identifying name

� read_super file system specific function

� fs_supers all mounted file systems in a list

� owner module that provides the implementation

15

Registered file systems

16

FS registration
static int __init init_ext2_fs(void)
{

int err = init_ext2_xattr();
if (err)

return err;
err = init_inodecache();
if (err)

goto out1;
 err = register_filesystem(&ext2_fs_type);

if (err)
goto out;

return 0;
out:

destroy_inodecache();
out1:

exit_ext2_xattr();
return err;

}
static void __exit exit_ext2_fs(void)
{

unregister_filesystem(&ext2_fs_type);
destroy_inodecache();
exit_ext2_xattr();

}
module_init(init_ext2_fs)
module_exit(exit_ext2_fs)

/* file: fs/ext2/super.c */

static struct file_system_type ext2_fs_type =
{

.owner = THIS_MODULE,

.name = "ext2",

.get_sb = ext2_get_sb,

.kill_sb = kill_block_super,

.fs_flags = FS_REQUIRES_DEV,
};

17

Superblock

� Kernel data structure for a mounted fs

� Data type: struct super_block (include/linux/fs.h)

� Important fields

� fs parameters: s_blocksize, s_maxsize

� fs type: s_type

� Pointer to method array: s_op

� File system specific data: s_fs_info

� root dentry: s_root

18

Superblock (2)

�

struct super_operations include/linux/fs.h

� Load inode object from disk: read_inode

� Write inode object to disk: write_inode

� Decrement reference count: put_inode

� Decrement superblock object: put_super

� Delete inode (with file content): delete_inode

19

 dentry

� Kernel data structure for directory entry

� Associates name with inode object

� Several dentries can refer to the same inode

� No corresponding disk data structure

� Directories are files with special interpreted content
(UNIX)

� dentry cache

� Recently used (looked up) dentry object will be kept in
a slab cache

20

 dentry lists

� Tree layout

� Reflecting the directory layout

� Hash table

� Fast lookup from filename to dentry object

� List of unused dentry objects

� List of aliases

� Same inode, different dentries (hardlinks)

21

 dentry tree

22

 dentry lists (2)

23

 inode

� Kernel data structure for a file (or directory)

� Inode number is unique per fs

� Names are not (hard links)

� To access a file

� Allocate inode object in memory

� Initialize it with data from disk

� Inode cache

� Recently used objects (in memory) are kept for
further reference

24

 Inode data structure

�

Struct inode (include/linux/fs.h)

� Important fields

� Number, superblock: i_ino, i_sb

� Reference counter: i_count

� File information: i_mode, i_nlink, i_uid, i_gid,
i_size,i_atime, i_mtime, i_ctime, i_blksize,
i_blocks

� Inode methods: i_op

� Default file methods: i_fop

� Inode lists: i_hash, i_list

� Referring dentries: i_dentry

25

 inode (2)

26

 inode methods

�

struct inode_operations (include/linux/fs.h)

� fs dependent operations on inode

� Create a new inode (and a new file): create

� Find by name: lookup

� Create, remove hardlink: link, unlink

� Create, remove directory: mkdir, rmdir

� Special cases: symlink, mknod

27

 file objects

� Kernel data structure for a file opened by a task

� struct file (include/linux/fs.h)

� Important fields

� dentry object: f_dentry

� File operations: f_op

� Current file pointer: f_pos

� Reference count: f_count

� List link: f_list

� Device driver data: private_data
28

File operations
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);

int (*aio_fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long,

unsigned long);
};

29

Tasks and files

� Fields in task_struct

� struct fs_struct *fs

� fs related information

� struct dentry *root

� sturct dentry *pwd

� struct files_struct *files

� Currently open files

� t->files->fd[i] to access
file for file descriptor i

30

Mounting a file system

� Filesystem mounting

� Each fs can be represented by a tree structure

� Mounting: graft the root of one filesystem tree to the
leaf of another to get a bigger tree

� Terminologies

� Mount point: leave of a file system where the next fs
gets appended

� Root file system: root fs, by magic on the top

� Root directory of a mounted fs

� Data structure: struct vfsmount

� Representing a mounted fs instance

31

Mount anatomy

32

Walking a path

� Find the inode for a given pathname

� Common problem, used frequently

� Starting point dentry:

� Leading '/': current->fs->root

� Otherwise: current->fs->pwd

� Special handling when walking a path

� Symbolic links (loop detection)

� Access permission

� Crossing a mount point into another filesystem

33

Path Walking procedure

� Two relevant functions

� Lookup path, lock final dentry: path_lookup(name,
flags, nd)

� Decrement reference counts: path_release(nd)

�

struct nameidata nd is the context used for walking

� Field struct dentry *dentry: the current (last used)
dentry

� Field struct vfsmount *mnt: current file system

34

path_lookup preparation

� Set up the nameidata object before walking

� Set dentry and mnt to the starting point

� Initialize flags and other fields

� If name starts with '/'

� nd->mnt = mntget(current->fs->rootmnt);
nd->dentry = dget(current->fs->root);

� If name does not start with '/'

� nd->mnt = mntget(current->fs->pwdmnt);
nd->dentry = dget(current->fs->pwd);

35

Walking further

� Actual work done in link_path_walk

� For each real path component

� Check for permission: permission

� Calculate hash value

� Check for special component name (like '.', '..')

� Lookup from the dcache: cached_lookup

� Lookup from disk if not cached: real_lookup

� Check mountpoint, symbolic links, errors etc.

� Set the dentry in nd down to the new component

36

 dentry cache lookup

� Look up the dentry in dcache

� Call d_lookup to return the dentry

� Call dentry->d_op->d_revalidate if defined

� Usually in network fs for stale files

� Routine d_lookup

� Find the hash bucket with d_hash

� Search the list for matching parent and filename

� Use parent->d_op->d_compare if defined to match the
filename

37

Real lookup

� Load dentry from the disk

� Called when cached_lookup fails to return the dentry

� Essentially

� Get a free dentry (from dcache) and set the filename
struct dentry *dentry = d_alloc(parent, name)

� Call parent inodes lookup method to file the dentry
struct inode *dir = parent->d_inode
dir->i_op->lookup(dir,dentry)

� Filesystem-specific lookup involves searching the
directory content, and perhaps loading a new inode

