
1

Ausgewählte Betriebssysteme

Filesystem

2

File Systems
● Name space

– Hierarchical tree structure

● Simple I/O API

– open, close, read, write

● Uniform interface

– Persistent storage

– I/O devices

– Interprocess communication

– Kernel-user communication

3

File System types

4

File System Types (2)

● Persistent

– Block device based (disk)

● Ext2, VFAT

– Network based

● NFS, coda, AFS

● Virtual

– Provide information through file API

● procfs, sysfs, devfs, usbfs...

5

File systems (3)

peter@krypton:~> uname -a
Linux krypton 2.5.67 #1 SMP Tue Apr 8 00:17:05 CEST 2003 i686 unknown
peter@krypton:~> cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev usbfs
nodev usbdevfs
nodev futexfs
nodev tmpfs
nodev pipefs
nodev eventpollfs
nodev binfmt_misc
nodev devpts
 ext3
 ext2
nodev ramfs
 iso9660
nodev nfs
nodev nfsd
nodev autofs
 reiserfs
nodev oprofilefs
nodev rpc_pipefs

6

VFS Layer

● Virtual Filesystem Switch

● Kernel abstraction for different file system
implementations

● Framework

– Define usage model

– Implement common functionality

– Provide hooks for specific implementations

7

User view

8

Common File Model

● Mirrors UNIX file model strictly

● Features not available in a particular FS must be
emulated

– Directories as files (UNIX) vs. special tables (FAT)

● Indirection layer associated with objects

– Pointer to function pointer table

9

Commen File Model (2)
● Superblock (whole fs instance)

– Represents a whole mounted file system

● Inode (unique entity for an object in a fs)

– Manages properties of that particular object on disk

● Dentry (directory structure)

– Represents an entry in a directory

– Supports path-name to inode mapping

● File (file as seen by a task)

– Session specific

10

Object indirection

● Each object has an function pointer table
associated with it

● VFS framework calls customized function
– size_t (*read)(struct file *, char * size_t loff_t *);

if (file->f_op && (read = file-f_op-read) != NULL)
ret = read(file, buf, count , &file-f_ops);

● Actual functions provided by file system
implementation

● Operation table filled upon object creation or
initialization

11

VFS objects

12

Memory objects

● VFS objects are cached in memory

● Read from disk when needed

● Slab allocator for each object type

13

Disk and memory objects

14

File system types

● Structure for each particular file system

– Populated during system startup or module loading

– Upon mounting each registered file system probes
partition unless the type is explicitly provided

● Important properties

– name identifying name

– read_super file system specific function

– fs_supers all mounted file systems in a list

– owner module that provides the implementation

15

Registered file systems

16

FS registration
static int __init init_ext2_fs(void)
{

int err = init_ext2_xattr();
if (err)

return err;
err = init_inodecache();
if (err)

goto out1;
 err = register_filesystem(&ext2_fs_type);

if (err)
goto out;

return 0;
out:

destroy_inodecache();
out1:

exit_ext2_xattr();
return err;

}
static void __exit exit_ext2_fs(void)
{

unregister_filesystem(&ext2_fs_type);
destroy_inodecache();
exit_ext2_xattr();

}
module_init(init_ext2_fs)
module_exit(exit_ext2_fs)

/* file: fs/ext2/super.c */

static struct file_system_type ext2_fs_type =
{

.owner = THIS_MODULE,

.name = "ext2",

.get_sb = ext2_get_sb,

.kill_sb = kill_block_super,

.fs_flags = FS_REQUIRES_DEV,
};

17

Superblock

● Kernel data structure for a mounted fs

– Data type: struct super_block (include/linux/fs.h)

● Important fields

– fs parameters: s_blocksize, s_maxsize

– fs type: s_type

– Pointer to method array: s_op

– File system specific data: s_fs_info

– root dentry: s_root

18

Superblock (2)

● struct super_operations include/linux/fs.h

– Load inode object from disk: read_inode

– Write inode object to disk: write_inode

– Decrement reference count: put_inode

– Decrement superblock object: put_super

– Delete inode (with file content): delete_inode

19

 dentry

● Kernel data structure for directory entry

– Associates name with inode object

● Several dentries can refer to the same inode

– No corresponding disk data structure

● Directories are files with special interpreted content
(UNIX)

● dentry cache

– Recently used (looked up) dentry object will be kept in
a slab cache

20

 dentry lists

● Tree layout

– Reflecting the directory layout

● Hash table

– Fast lookup from filename to dentry object

● List of unused dentry objects

● List of aliases

– Same inode, different dentries (hardlinks)

21

 dentry tree

22

 dentry lists (2)

23

 inode

● Kernel data structure for a file (or directory)

– Inode number is unique per fs

– Names are not (hard links)

● To access a file

– Allocate inode object in memory

– Initialize it with data from disk

● Inode cache

– Recently used objects (in memory) are kept for
further reference

24

 Inode data structure
● Struct inode (include/linux/fs.h)

● Important fields

– Number, superblock: i_ino, i_sb

– Reference counter: i_count

– File information: i_mode, i_nlink, i_uid, i_gid,
i_size,i_atime, i_mtime, i_ctime, i_blksize,
i_blocks

– Inode methods: i_op

– Default file methods: i_fop

– Inode lists: i_hash, i_list

– Referring dentries: i_dentry

25

 inode (2)

26

 inode methods

● struct inode_operations (include/linux/fs.h)

● fs dependent operations on inode

– Create a new inode (and a new file): create

– Find by name: lookup

– Create, remove hardlink: link, unlink

– Create, remove directory: mkdir, rmdir

– Special cases: symlink, mknod

27

 file objects
● Kernel data structure for a file opened by a task

– struct file (include/linux/fs.h)

● Important fields

– dentry object: f_dentry

– File operations: f_op

– Current file pointer: f_pos

– Reference count: f_count

– List link: f_list

– Device driver data: private_data

28

File operations
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);

int (*aio_fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long,

unsigned long);
};

29

Tasks and files
● Fields in task_struct
● struct fs_struct *fs

– fs related information
● struct dentry *root

● sturct dentry *pwd

● struct files_struct *files

– Currently open files

– t->files->fd[i] to access
file for file descriptor i

30

Mounting a file system
● Filesystem mounting

– Each fs can be represented by a tree structure

– Mounting: graft the root of one filesystem tree to the
leaf of another to get a bigger tree

● Terminologies

– Mount point: leave of a file system where the next fs
gets appended

– Root file system: root fs, by magic on the top

– Root directory of a mounted fs

● Data structure: struct vfsmount

– Representing a mounted fs instance

31

Mount anatomy

32

Walking a path
● Find the inode for a given pathname

– Common problem, used frequently

● Starting point dentry:

– Leading '/': current->fs->root

– Otherwise: current->fs->pwd

● Special handling when walking a path

– Symbolic links (loop detection)

– Access permission

– Crossing a mount point into another filesystem

33

Path Walking procedure

● Two relevant functions

– Lookup path, lock final dentry: path_lookup(name,
flags, nd)

– Decrement reference counts: path_release(nd)

● struct nameidata nd is the context used for walking

– Field struct dentry *dentry: the current (last used)
dentry

– Field struct vfsmount *mnt: current file system

34

path_lookup preparation

● Set up the nameidata object before walking

– Set dentry and mnt to the starting point

– Initialize flags and other fields

– If name starts with '/'
● nd->mnt = mntget(current->fs->rootmnt);
nd->dentry = dget(current->fs->root);

– If name does not start with '/'
● nd->mnt = mntget(current->fs->pwdmnt);
nd->dentry = dget(current->fs->pwd);

35

Walking further
● Actual work done in link_path_walk

● For each real path component

– Check for permission: permission

– Calculate hash value

– Check for special component name (like '.', '..')

– Lookup from the dcache: cached_lookup

– Lookup from disk if not cached: real_lookup

– Check mountpoint, symbolic links, errors etc.

– Set the dentry in nd down to the new component

36

 dentry cache lookup

● Look up the dentry in dcache

– Call d_lookup to return the dentry

– Call dentry->d_op->d_revalidate if defined

● Usually in network fs for stale files

● Routine d_lookup

– Find the hash bucket with d_hash

– Search the list for matching parent and filename

– Use parent->d_op->d_compare if defined to match the
filename

37

Real lookup

● Load dentry from the disk

– Called when cached_lookup fails to return the dentry

● Essentially

– Get a free dentry (from dcache) and set the filename
struct dentry *dentry = d_alloc(parent, name)

– Call parent inodes lookup method to file the dentry
struct inode *dir = parent->d_inode
dir->i_op->lookup(dir,dentry)

– Filesystem-specific lookup involves searching the
directory content, and perhaps loading a new inode

